

МЕЖДУНАРОДНЫЙ СТАНДАРТ * 4759/1

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

ДОПУСКИ КРЕПЕЖНЫХ ИЗДЕЛИЙ. Часть І. БОЛТЫ, ВИНТЫ И ГАЙКИ ДИАМЕТРОМ РЕЗЬБЫ ОТ 1,6 ДО 150 ММ КЛАССОВ ТОЧНОСТИ А В И С

Первое издание

Цена 5 коп.

Группа ГЗО

УДК 621.882:621.753.1

Рег. № ИСО 4759/І--78

Дескрипторы: крепежные изделия, винты, болты, гайки (крепежные изделия), допуски на размер, допуски формы, допуски расположения

ПРЕДИСЛОВИЕ

Международная организация по стандартизации (ИСО) представляет собой объединение национальных организаций по стандартизации (комитеты — члены ИСО). Разработка международных стандартов осуществляется техническими комитетами ИСО. Каждый комитет-член может принимать участие в работе любого технического комитета по интересующему его вопросу. Правительственные и неправительственные международные организации, сотрудничающие с ИСО, также принимают участие в этой работе.

Проекты международных стандартов, принятые техническими комитетами, перед утверждением их Советом ИСО в качестве международных стандартов направляются на рассмотрение всем комитетам-членам.

Международный стандарт ИСО 4759/І разработан Техническим комитетом ИСО/ТК 2 «Крепежные изделия» и направлен комитетам-членам в апреле 1977 г.

Его одобрили следующие комитеты-члены.

Австрия Италия Бельгия Канада Болгария Мексика Бразилия Нидерланды Великобритания Новая Зеландия Норвегия Венгрия Дания Польша Индия Румыния CCCP Ирландия Испания

Турция Финляндия Франция ФРГ Швейцария ЮАР Югославия Южная Корея Япония

Комитеты-члены Австралия, Швеция и США не одобрили данный документ по причинам технического характера.

Допуск крепежных изделий. Часть І. БОЛТЫ, ВИНТЫ И ГАЙКИ ДИАМЕТРОМ РЕЗЬБЫ ОТ 1,6 ДО 150 мм КЛАССОВ ТОЧНОСТИ А. В И С

Рег. № ИСО 4759/I—78

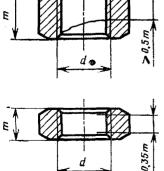
Tolerances for fasteners. Part I.

Bolts, screws and nuts with thread
diameters >1,6 and <150 mm and product grades A, B and C

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий международный стандарт устанавливает ряд допусков, выбранных из ИСО/Р 286 «Система допусков и посадок ИСО. Часть І. Общие положения, допуски и отклонения» и ИСО 965/3 «Резьба метрическая ИСО общего назначения. Допуски. Часть III. Отклонения резьб», для использования при разработке стандартов на болты, винты и гайки (далее — изделия) диаметром резьбы от 1,6 до 150 мм включительно классов точности А, В и С.

Отступления от ряда допусков, установленного настоящим международным стандартом допускаются в стандартах на конкретные изделия по причинам технического характера.


Рекомендуется применять эти допуски также для нестандартных крепежных изделий.

Допуски формы и расположения поверхностей соответствуют ИСО/Р 1101/І «Чертежи технические. Допуски формы и расположения. Часть І. Общие положения, условные обозначения и обозначения на чертежах».

В случаях, где принципу максимума материала по ИСО 1101/II «Чертежи технические. Допуски формы и расположения. Часть II. Принцип максимума материала» соответствуют определенные характеристики некоторых изделий в стандартах ИСО на конкретные изделия, допускается применять другие допуски.

Примечание. Классы точности определяют качество изделий и значения допусков; класс А является наиболее точным, а класс С — наименее точным.

0	Допуск дл	нэделия класс	а точности			
Элемент	A B C		С	Примечание		
2. УРОВЕНЬ ТОЧНОСТИ: стержня и рабочей поверхности других элементов	Точный Точный	Точный Грубый	Грубый Грубый	_		
3. РЕЗЬБА 3.1. Внутренняя (гайки)	6H	6Н,	7H	Для гальванических покрытий и горячего цинкования международные стандарты разрабатываются		
		ı		г дарты разраоатываются		

Для гаек высотой >0.8d внутренний диаметр резьбы должен быть в пределах установленных допусков, но не менее 0.5m (для размеров $>\!M3$).

Для гаек высотой >0.5d<0.8d внутренний диаметр резьбы должен быть в пределах установленных допусков, но не менее 0.35m.

	Попуск ил	я издел ия клас	KTOOHPOT 82	Продолжение
Элемент		1		П риме чание
9.35 d	Для сам	в	ся гаек в	нутренний диаметр резьбы может выходить ка на высоту не более 0,35d от опорной
	за пределы плоскости.	установленн	юго допуск	ка на высоту не более 0,35d от опорной
3.2. Наружная (болты и винты)	6g	6g	8 g	Для гальванических покрытий и горячего цинкования международные стандарты разрабатываются
4. ДЛИНА РЕЗЬБЫ				Р — шаг резьбы;
				t_s — минимальная длина ненарезанного (гладкого) стержня;
i_s i_g b	b ^{+2P}	b ^{+2P}	b+cop	I _g — максимальная длина ненарезанного стержня (включая сбег резьбы) или соответственно минимальная длина зажима.
Стяжка				
b b	b ^{+2P}	b ^{+2P}	b ^{+2P} ₀	Допуск $+2P$ — только для болтов, где l_s и l_g — не установлены в стандартах на конкретные изделия.
Шпилька	7.4.9D	, <u>19</u> p	, +2P	* TONLYO PROPERTING AND THE VIEW OF THE VI
				только ввертываемый конец шийльки.
b,* b	b ₁ j _s 16	b ₁ j _s 17	b ₁ j ₅ 17	
5. НОМИНАЛЬНАЯ ДЛИНА				_
	j _s 15 j _s 16 для винтов с головкой под шлиц <i>l</i> >50 мм	j _s 17	l ≤ 150: : j _s 17 l>150: : 2j _s 17	
5. НОМИНАЛЬНАЯ ДЛИНА	винтов с головкой	b ₁ j _s 17	$b_{1}j_{s}17$ $b_{1}j_{s}17$ $l < 150:$ $: j_{s}17$ $l > 150:$ $: 2j_{s}17$	* Только ввертываемый конец ш

and the second contract of the second contrac	بران المساوي بران بروان المحاصلات			Продолжение
Элемент	Допуск для	изделия класс	в точности	
ONEMERI	A	В	c	Пр и мечани е
	j _s 15 j _s 16 для винтов с головкой под шлиц <i>l</i> >50 мм	j _s 17	l ≤150: j _s 17 l>150:2j _s 17	
6 ГЕОМЕТРИЯ ЭЛЕМЕНТОВ ДЛЯ ЗАВИНЧИВАНИЯ 6.1. Наружные				
6.1.1. Размер под ключ	s Допуск ≪32 h13 >32 h14	s <19 >19 < 60 >60 < 180 >180		

		Подуму та	TO TO THE MENO	0.0000000000000000000000000000000000000	Продолжение
	Элемент	A A	я изделия клас В	Са точности	Примечание
6.1.2. Диаметр ности	описанной окруж-	e_1 min $\geqslant 1$,			
		e.	₂ min≽1,3s n	nin	
6.1.3. Высота го	рдовок К	j _s 14	j _s 15	k Допуск <10 js16 ≥10 js17	* Форма углубления — по дого- воренности между изготовителем и потребителем
6.1.4. Высота га	ек	>M12≤	2: h14 :M18: h15 3: h16	h17	
6.1.5. Положени ров		k'' - cM.	<i>k'</i> >0,7 <i>k</i> m стандарт на изделия.	iin конкретные	

0	До	опуск для издели	я класса то	чности	11 родолжение
Элемент		A	В	С	Примечание
		m' > 0 $m'' > 0$,8 <i>m</i> min	<u> </u>	_
6.2. Внутренние 6.2.1. Шестигранные углубления	s 0,7 0,9 1,3 1,5 2 2,5 3 4 5 6 8 10 12 14 >14	Допуск * ** EF8 J ₈ 9 K9 D9 D10 D10 D11 E11 E11 E12			* Поля допусков для установочных винтов с углублением (в настоящее время исследуется возможность использования этих полей допусков для винтов с шестигранным углублением в головке). ** Поля допусков для винтов с шестигранным углублением в головке е min > 1,14s min Значение е min см. в стандарте на конкретные изделия.
6.2.2. Шлиц	n ≪1 >1≪3 >3≪6	Допуск* +0,20 +0,06 +0,31 +0,06			* Поле допуска С13 для n≤1 С14 для n>1
6.2.3. Глубина шестигранных уг- лублений и шлицев					Допуск зависит от метода измерения (см. стандарт на конкретные изделия)

Допуск для изделия класса точности Элемент				Прооолжение	
Элемент	A	В	С	Примечание	
7. РАЗМЕРЫ КРУГЛЫХ ГОЛО- ВОК ВИНТОВ 7.1. Диаметры	h13*	h14**		* ±IT13 для головок с накат- кой. ** ±IT14 для головок с накаткой	
	h14	h14		Рекомендуется комплексный конт- роль диаметра и высоты потайных головок	
7.2. Высоты	≤M5: h13 >M5: h14	h14		* Допуск высоты потайной го- ловки — см. стандарт на конкрет- ные изделия. Рекомендуется комплексный конт- роль диаметра и высоты потайных головок	
8. ДИАМЕТРЫ СТЕРЖНЯ	h13	h14	± IT15	Относительно допустимости уве- личения диаметра под головкой — см. соответствующий стандарт на конкретные изделия	
5.0	Диаметр	стержня рав диаметру	ен среднему		
d d s					

					Продолжение
Элемент	Допу	ск для издел	ия класса то	очности	—
Overed		A	В	С	Примечание
9. OПОРНАЯ ПОВЕРХНОСТЬ	мера п $d_{\rm w}$ п ра под $d_{\rm w}$ п Диам резь 3, 5, 8— 16—	$d_{\rm w}$ min = smin—17 мера под ключ <21 $d_{\rm w}$ min = 0,95smin ра под ключ >21 м $d_{\rm w}$ max=s эффект Диаметр резьбы не мет 3, 4 0,1 5, 6 0,1 8—14 16—36 0,2 св. 36 0,3		-	Для класса точности C применять опорную шайбу не рекомендуется Значения d_w min — см. в стандарте на конкретные изделия. * Форму сбега определяет изготовитель.
	Диаме	тр резьбы	d_{w}	min	Значения d_{W} min — см. в стан-
	Св.	До 2,5 Св. 2,5 , 5 , 15 , 10 , 10 , 16 , 16 , 24 , 24 , 36 , 36		1-0,14 1-0,25 1-0,4 1-0,5 1-0,8 1-1 1-1,2	дарте на изделие. * Форму кромки (закругленную или с фаской) определяет изготови- гель
10. ДРУГИЕ РАЗМЕРЫ			1	ſ	-
₩	l _e	h14	h15	h16	
	n	hl4	h15	h17	
	n'	См. 1	1. 6.1.4		
m'	n	H14	H14	H15	
	v	h14	h15	h17	
11 HOUNCEN WODMFF IN DAC			<u> </u>	1	I

11. ДОПУСКИ ФОРМЫ И РАС-ПОЛОЖЕНИЯ

В соответствии с ИСО 1101/I допуски формы и расположения, указанные в пп. 11.1—11.4, не определяют метода определения или контроля. Относительно применения принципа максимума материала см. п. 1.

	Допуск t д	ля изделия кла	сса точности		Примечание
Характеристика	A	В	С	Значение до- пуска t опре- деляют по размеру	
 11.1. Соосность, симметричность и радиальное биение 					
Ø¢t d*	21713	21T14	21T15	s	
	21T13	21T14	21T15	$d_{\mathbf{k}}$	* База должна бытг гладкой или резьбовой При необходимости ба за может быть располо- жена на расстоянии (тах, 3P) от головки винта (без сбега резь- бы)
d*	21T13	21T14	21T15	d	
O O E	21713		7	d	JP max d

	Допуск t для	н изделия класс	а точности	точности Приме чание		
Характеристика	A	В	С	Значение до- пуска t опре- деляют по размеру		
©Øt d*	21713			d		
	21T12		—	d		
	21T12	21T13	21714	d	* См. стр. 8.	
	21712	21713	21T‡4	đ		
	2IT 12	21 713	21T14	đ		

	Допуск t д	ля изделия клас	сса точности			
Характеристика	A	В	С	Значение до- пуска t опре- деляют по размеру		
	21712		_	d		
	21T13			đ		
	21T13	-	- -	d	* См. стр. 8.	
	21T13	21T14	21T15	d		
	21T13			d		

	Допуск t д	я изделня клас	са точности	ости Примечание		
Характеристика	А	В	С	Значение до- пуска t опре- деляют по размеру		
	21T13			d		
	21713		-	d		
	2IT13	21T14	21T15	d	* См. стр. 8. ** Или длина про- ходного калибра-кольца для резьбы с полем до- пуска бh	
Oøt 1,5d d**	2IT 13	21T14	21T15	d		
	21T13	21T14	_	đ		

	Продолжени				
Хар я ктеристика	А	дя изделия к л а	Са точности	Значение до- пуска t опре- деляют по размеру	Примечание
S P	21713	21T14	21T15	s	
	21T13	21T14	21715	d	
Ø Ø t	21T13	_	-	$d_{\mathbf{k}}$	
11.2. Перпендикулярность	Значени	Я t см. по ни:	* См. стр. 8. Измерительная окружность: 0,8 ×размер под ключили 0,8 ×диаметр головки		
d*					

Продолжение

	Допуск t** дл	я изделия кла	сса точности	-			
Характеристика	A	В	С		Примечание		
\$ 0.8 d k				d			
t t	0,0)5		1,6	- -		
d*	0,1			2,5 3 3,5 4	• •		
	0,1	5	0,3	5 6 7	- -		
	0,1	.8	0,36	$\frac{d}{8}$	_		
	0,2		0,48	10	_ * См. ст р. 8.		
	0,2	27	0,54	12	Измерительная ок-		
	0,3	31	0,62	14	ружность: 0,8 × размер под ключ или		
d*	0,3	3.1	0,68	16	· 0,8×днаметр голов- ки		
	0,3	38	0,76	18	-		
	0,4	12	0,84	20	and the state of t		
d_{ι}	0,4	45	0,90	22	** Допуск t рассчи- тан по углу 1° для классов точности A и B		
	0,8	50	1,00	24	$_{\rm H}$ 2° для класса точно- сти С до $d=39$ мм		
	0,5	57	1,14	27	- и 30' или 1° соответст- венно для размеров		
<u>d</u>	0,	64	1,28	30	- свыше 39 мм (в соот- ветствии с общеприня-		
-	0,	70	1,40	33	_ той практикой)		
		77	1,54	36	-		
r ≪ ∐ t h⊤	0,	84	1,68	39	_		
	0,	45	0,90	42			
0,8 dp	0,	49	0,98	45			
	0,	52	1,04	48	_		
Leading V	0,	56	1,12	52			

Примечание		сса точности	ия изделия кл	Honyek I' A	Характеристика
Примечание		С	В	A	Aspaniepholina
_	1,6 2		05	0,0	
_					$\leftarrow It$
	2,5 3				
			1	0,	\$ 0 0 0 B S
_	3,5				
_	4				
-	5 6	0,3	.5	0,1	
-				-	
-	7				
-	8	0,36	8	0,1	
•••	10	0,48	4	0,2	
Измерительная окруж ность:	12	0,54	7	0,2	B 0 0 8 8 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
0,8×размер под клю или 0,8 × наружны диаметр	14	0,62	1	0,3	7 - 1 V
	16	0.68	4	0,3	
** Cм. стр· 13.	18	0,76	3	0,38	
_	20	0,84	2	0,4	
	22	0,90	5	0,45	
	24	1,00)	0,50	
•	27	1,14	7	0,57	\$ 0.84k
	30	1,28	1	0,6	9 9
	33	1,40)	0,70	<u></u>
	36	1,54	7	0,77	
	39	1,68	<u> </u>	0,84	
	42	0,90	5	0,45	
	45	0,98)	0,49	
	48	1,04	2	0,52	
	52	1,12	3	0,56	

	Продолжение				
Характе ристика	Допуск і д	ля изделия 	класса :	гочности	Примечание
	A	В		С	
11.3. Параллельность	0,017×k′	0,035	×k′		
	0,017×m′ 0,035×m′				Значения <i>k'</i> и <i>m'</i> — см. п. 6.1.5
11.4 Полистиновичеств					
11.4. Прямолинейность — Øt — — 8 — 8 — >8	t=0,002t $t=0,0025t$				
$ \begin{array}{c c} \hline & & \\ \hline $				0,002l'+0,05) $0025l'+0,05)$	* Допуск прямолинейности при- меняется только для l'

допуски

Стандартные допуски IT приведены в табл. 1, поля допусков для валов и отверстий — в табл. 2 и 3.

Значения ІТ в мм

Таблица 1

				Стандартные допуски										
Номинал	нальный размер		IT12	IT13	IT14	I T 15	IT16	IT1 7						
		До 3	0,10	0,14	0,25	0,40	0,60	1,00						
Св. 3	,,	6	0,12	0,18	0,30	0,48	0,75	1,20						
" 6	,	10	0,15	0,22	0,36	0,58	0,90	1,50						
, 10	39	18	0,18	0,27	0,43	0,70	1,10	1,80						
, 18	2)	30	0,21	0,33	0,52	0,84	1,30	2,10						
" 30	n	50	0,25	0,39	0,62	1,00	1,60	2,50						
, 50	,,	80	0,30	0,46	0,74	1,20	1,90	3,00						
" 80	27	120	0,35	0,54	0,87	1,40	2,20	3,50						
, 120	**	180	0,40	0,63	1,00	1,60	2,50	4,00						
, 180	**	250	0,46	0,72	1,15	1,85	2,90	4,60						
, 250	59	315	0,52	0,81	1,30	2,10	3,20	5,20						
, 315	,	400	0,57	0,89	1,40	2,30	3,60	5,70						
, 400	,,	500	0,63	0,97	1,55	2,50	4,00	6,30						

Таблица 2

Поля допусков для валов

								Поле допу	ска			
Номинальный диаметр		h13	h14	h15	h16	h17	j _s 14	j _s 15	j _s 16	j _g 17		
			До 3	0 -0,14	00,25	0 -0,40	$\begin{bmatrix} 0 \\ -0,60 \end{bmatrix}$	0 _1,00	<u>+</u> 0,125	±0,20	±0, 30	±0,50
Св.	3	"	6	$\begin{bmatrix} 0 \\ -0,18 \end{bmatrix}$	0 -0,30	$0 \\ -0,48$	$\begin{bmatrix} 0 \\ -0,75 \end{bmatrix}$	0 -1,20	±0,15	±0,24	±0,375	±0,60
n	6	3)	10	0 -0,22	0 -0,36	$\begin{bmatrix} 0 \\ -0.58 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -0,90 \end{bmatrix}$	$0 \\ -1,50$	±0,18	±0, 29	±0,45	<u>+</u> 0,75
,	10	n	18	$\begin{bmatrix} 0 \\ -0,27 \end{bmatrix}$	0 -0,43	$\begin{bmatrix} 0 \\ -0.70 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1, 10 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1,80 \end{bmatrix}$	±0,215	<u>+</u> 0,35	±0,55	±0,90
n	18	n	30	$\begin{bmatrix} 0 \\ -0.33 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -0,52 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -0.84 \end{bmatrix}$	0 _1,30	$\begin{bmatrix} 0 \\ -2,10 \end{bmatrix}$	±0,26	<u>+</u> 0,42	±0,65	±1,05
,	30	"	50	0 -0,39	0 -0,62	0 —1,00	0 -1,60	$\begin{bmatrix} 0 \\ -2,50 \end{bmatrix}$	±0,31	±0,50	<u>±</u> 0,80	$\pm 1,25$
,	50	"	80	0 -0,46	$\begin{bmatrix} 0 \\ -0.74 \end{bmatrix}$	$0 \\ -1,20$	0 -1,90	$0 \\ -3,00$	±0 ,37	$\pm 0,60$	±0,95	±1,50
"	80	27	120	$\begin{bmatrix} 0 \\ -0,54 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -0.87 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1,40 \end{bmatrix}$	$-\frac{0}{2,20}$	-3,50	$\pm 0,435$	$\pm 0,70$	$\pm 1,10$	$\pm 1,75$
,,	120	,,	180	$\begin{bmatrix} 0 \\ -0,63 \end{bmatrix}$	0 1,00	$0 \\ -1,60$	$\begin{bmatrix} 0 \\ -2,50 \end{bmatrix}$	0 -4,00	±0,50	± 0 ,80	<u>±1,25</u>	$\pm 2,00$
n	180	n	250	0,72	0 -1,15	0 -1,85	$0 \\ -2,90$	$\begin{bmatrix} 0 \\ -4,60 \end{bmatrix}$	±0,575	±0, 925	<u>±</u> 1,45	±2,30
"	250	"	315	$\begin{bmatrix} 0 \\ -0.81 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -1,30 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -2, 10 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -3,20 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -5,20 \end{bmatrix}$	±0,65	$\pm 1,05$	±1,60	$\pm 2,60$
27	315	n	400	$\begin{bmatrix} 0 \\ -0.89 \end{bmatrix}$	0' -1,40	$\begin{bmatrix} 0 \\ -2,30 \end{bmatrix}$	$0 \\ -3,60$	$0 \\ -5,70$	±0,70	±1,15	±1,80	±2, 8 5
n	400		500	0,97	0 -1,55	$\begin{bmatrix} 0 \\ -2,50 \end{bmatrix}$	0 -4,00	$\begin{vmatrix} 0 \\ -6,30 \end{vmatrix}$	±0,775	$\pm 1,25$	±2, 0 0	±3,15

Таблица 3 Поля допусков для отверстий

							Поле доп	уска					
Номинальный размер	C13	C14	D9	D10	D11	D12	EF8	E11	E12	H14	H15	j _s 9	K9
До 3	$+0,20 \\ +0,06$	$^{+0,31}_{+0,06}$	$+0.045 \\ +0.020$	$^{+0.060}_{+0.020}$	$^{+0.080}_{+0.020}$	$^{+0,12}_{+0,02}$	$^{+0,024}_{+0,010}$		$+0,100 \\ +0,014$	+0,25 +0	$^{+0,40}_{0}$	±0,0125	0 -0,025
Св. 3 до 6	$+0,24 \\ +0,06$	+0,37 +0,07	+0,060 +0,030	+0.078 +0.030	+ 0 ,115 +0,030	+0,15 +0,03	$+0.028 \\ +0.014$	$^{+0.095}_{+0.020}$	+0,140 +0,020	+0,30 0	+0,48 0	<u>+</u> 0,015	0 -0, 0 30
Св. 6 до 10					+0,130 +0.040	$+0.19 \\ +0.04$	+0 040 +0,018		$+0,175 \\ +0,025$	+0,36 0	+0.58 0	±0,018	0,036
Св. 10 до 18						$+0,2 \\ +0,05$		$^{+0,142}_{+0,032}$	$+0.212 \\ +0.032$	+0,43 0	+0,70		
Св. 18 до 30						$+0,275 \\ +0,065$				+0,52	+0,84		
Св. 30 до 50						+0,33 +0,08				$\begin{bmatrix} -0,62 \\ 0 \end{bmatrix}$	+1,00		
Св. 50 до 80						+0,40 +0,10				+0,74	+1,20 0		
Св. 80 до 120						+0,47 +0,12				+0,87	+1,40 0		
Св. 120 до 180										+1,00 0	+1,60 0		
Св. 180 до 250								•		+1,15	+1,85 0		
Св. 250 до 315										+1,30 0	+2,10		•
Св. 315 до 400										+1,40 0	$^{}_{+2,30}$		
Св. 400 до 500										+1,55 0	$^{+2,50}_{0}$		

Редактор А. Л. Владимиров Технический редактор Л. Я. Митрофанова Корректор И. Л. Асауленко

Сдано в наб. 17.03.83 Подп. в печ. 31.05.83 2,5 п. л. 1,49 уч.-изд. л. Тир. 800 Цена 5 коп. Ордена «Знак Почета» Издательство стандартов, 123557, Москва, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256. Зак. 904