Научно-исследовательский институт гигиены водного транспорта

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

выпуск х

РЕКЛАМИНФОРМБЮРО ММФ МОСКВА — 1974

Научно-исследовательский институт гигиены водного транспорта

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

выпуск х

РЕКЛАМИНФОРМБЮРО ММФ МОСКВА — 1974 Сборник технических условий составлен метолической секцией по промышленно-санитарной химин при проблемной комиссии «Научные основы гигиены труда и профессиональной патологии».

Редакционная коллегия: М. Д. Бабина, В. А. Зыкова, С. И. Муравьева, Н. М. Уразаев, А. С. Филатова

УТВЕРЖДАЮ.
Заместитель главного санитарного врача СССР
А. ЗАИЧЕНКО.
2 апреля 1973 г.
№ 1033 — 73

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОД ОПРЕДЕЛЕНИЯ ФЕНАНТРЕНА В ВОЗДУХЕ

Настоящие технические условия распространяются на метод определения фенантрена в воздухе промышленных помещений при санитарном контроле.

1. Общая часть

- 1. Метод основан на образовании окрашенного в малиновый цвет соединения при окислении фенантрена перманганомом калня в уксуснокислой среде и последующем взаимодействии продукта реакции с уксуснокислым или углекислым гуанидином.
- 2. Чувствительность определения 25,0 мкг в анализируемом объеме раствора.
- 3. Метод специфичен в присутствии антрацена и карбазола.
- 4. Предельно допустимая концентрация фенантрена в воздухе не установлена.

II. Реактивы и аппаратура

5. Применяемые реактивы и растворы.

Стандартный раствор фенантрена № 1 с содержанием 1 *мг/мл* фенантрена готовят растворением 25 *мг* фенантрена в 25 *мл* уксусной кислоты в мерной колбе емкостью 25 *мл*.

Стандартный раствор № 2, содержащий 250 *мкг/мл* фенантрена, готовят соответствующим разведением основного раствора уксусной кислотой.

Кислота уксусная, х. ч., ледяная, ГОСТ 61-51.

Қалий марганцовокислый, ГОСТ 4527—48, **0,2** н. раствор.

Кислота щавелевая, ГОСТ 5873—51, 0,2 н. раствор. Бензол, ч. д. а.

Спирт этиловый, ректификат, ГОСТ 10749. Фильтры АФА.

6. Применяемые посуда и приборы.

Патроны для фильтров (см. рис. 1-4).

Воздуходувка.

Пробирки химические.

Колбы мерные, ГОСТ 1770—59, емкостью 25 и 50 мл. Пипетки градуированные, ГОСТ 1770—59, емкостью

1, 2 и 5 мл с делениями на 0,1 мл. Баня водяная и глицериновая.

Термометр на 250°С.

Фотоэлектроколориметр $\Phi \ni K = 1$ или $\Phi \ni KH = 57$.

III. Отбор пробы воздуха

7. Исследуемый воздух протягивают через фильтр со скоростью 20~n/мин. Для анализа следует отобрать $500~\hbar$ воздуха.

IV. Описание определения

8. Фильтр в развернутом виде помещают в воронку и смывают постепенно уксусной кислотой в пробирку до полного растворения. Для анализа берут 1 мл полученного раствора.

Одновременно готовят шкалу стандартов согласно

табл. 19.

Таблица 19

Шкала стандартов								
№ стандарта	1	2	3	4	5	6	7	
Стандартный раст-	0	0,1	0,2	0,4	0,6	0,8	1,0	
вор, мл Уксусная кислота, мл	1,0	0,9	0,8	0,6	0,4	0,2	0	
Содержание фе- нантрена, <i>мкг</i>	0	25	50	1600	150	200	250	

В шкалу и в пробы приливают по 1 мл 0,2 н. раствора марганцовокислого калия. Окисление производят при комнатной температуре в течение 30 мин, затем прибавляют по 1 мл 0,2 н. раствора щавелевой кисло-

ты и пробы помещают на несколько минут в кипящую водяную баню для обесцвечивания избытка марганцовокислого калия. После охлаждения образовавшийся фенантренхинон экстрагируют бензолом: в каждую пробирку прибавляют по 3 мл бензола, встряхивают, после расслаивания пипеткой осторожно отбирают 2,5 мл бензольного раствора в одну пробирку и выпаривают досуха на водяной бане. (Не допускать попадания водного слоя, так как после спекания получаются мутные растворы с рыжеватой окраской.) К сухому остатку, смоченному 4 каплями бензола, прибавляют несколько сантиграммов (на кончике шпателя) ацетата или карбоната гуанидина и производят сплавление в глицериновой бане при температуре 170-200°С в течение нескольких минут. На положительную реакцию указывает образование синего красителя. После охлаждения в пробирки добавляют по 3 мл этанола. Оптическую плотность полученного раствора замеряют на ФЭК-1 или ФЭКН-57 при длине 530 или 536 им соответственно в кювете 5 мм против этанола.

По результатам стандартных растворов строится калибровочный график. На оси абсцисс откладывают содержание фенантрена в пробе в мкг, на оси ординат—значение оптической плотности.

Содержание фенантрена в $melm^3$ воздуха (X) рассчитывают по формуле:

$$X = \frac{G V_1}{V V_0}$$

где G — количество фенантрена, найденное в анализируемом объеме, *мкг*;

 V_1 — общий объем пробы, мл;

V — объем пробы, взятый для анализа, мл;

 V_0 — объем протянутого воздуха, взятый для анализа и приведенный к нормальным условиям по формуле (см. приложение 1), a.

Приведение объема воздуха к нормальным условиям производят согласно газовым законам Бойля-Мариотта и Гей-Люссака по следующей формуле:

$$V_0 = \frac{V_t \ 273 \, p}{(273+t) \ 760},$$

где V_I — объем воздуха, отобранный для анализа, π ;

р — барометрическое давление, мм рт. ст.;

t — температура воздуха в месте отбора пробы, °С. Для удобства расчета V_0 следует пользоваться таблицей коэффициентов (см. приложение 2). Для приведения объема воздуха к нормальным условиям надо умножить \dot{V}_t на соответствующий коэффициент.

Таблица коэффициентов для различных температур и давления, на которые надо умножить для приведения объема воздуха к нормальным условиям

ď				Давление р,	мм рт ст			
<i>t</i> rasa, °C	730	732	734	736	738	740	742	744
5	0,9432	0,9458	0,9484	0,9510	0,9536	0,9561	0,9587	0,9613
6	0,9398	0,9424	0,9450	0,9476	0,9501	0,9527	0,9553	0,9579
7	0,9365	0,9390	0,9416	0,9442	0,9467	0,9493	0,9518	0,9544
8	0,9331	0,9357	0,9383	0,9408	0,9434	0,9459	0,9485	0,9510
9	0,9298	0,9324	0,9349	0,9375	0,9400	0,9426	0,9451	0,9477
10	0,9265	0,9291	0,9316	0,9341	0,9367	0,9392	0,9418	0,9443
11	0,9233	0,9258	0,9283	0,9308	0,9334	0,9359	0,9384	0,9410
12	0,9200	0,9225	0,9251	0,9276	0,9301	0,9326	0,9351	0,9376
13	0,9168	0,9193	0,9218	0,9243	0,9269	0,9294	0,9319	0,9344
14	0,9136	0,9161	0,9186	0,9211	0,9236	0,9261	0,9286	0,9311
15	0,9104	0,9129	0,9154	0,9179	0,9204	0,9229	0,9254	0,9279
16	0,9073	0,9097	0,9122	0,9147	0,9172	0,9197	0,9222	0,9247
17	0,9041	0,9066	0,9092	0,9116	0,9140	0,9165	0,9190	0,9215
18	0,9010	0,9035	0,9059	0,9084	0,9109	0,9134	0,9158	0,9183
19	0,8979	0,9004	0,9028	0,9053	0,9078	0,9102	0,9127	0,9151
10	0.8070	0.0004	0.0028	0.0053	0.0078	0.0102	0.0127	0.0151
20	0,8948	0,8973	0,8997	0,9022	0,9046	0,9071	0,9096	0,9120
21	0,8918	0,8942	0,8967	0,8991	0,9016	0,9040	0,9065	0,9089
22	0,8888	0,8912	0,8936	0,8961	0,8985	0,9010	0,9034	0,9058
23	0,8858	0,8882	0,8906	0,8930	0,8955	0,8979	0,9003	0,9028
24	0,8828	0,8852	0,8876	0,8900	0,8924	0,8949	0,8973	0,8997
25	0,8798	0,8822	0,8846	0,8870	0,8894	0,8919	0,8943	0,8967
26	0,8769	0,8793	0,8817	0,8841	0,8865	0,8889	0,8913	0,8937
27	0,8739	0,8763	0,8787	0,8811	0,8835	0,8859	0,8883	0,8907
28	0,8710	0,8734	0,8758	0,8782	0,8806	0,8830	0,8853	0,8877
29	0,8681	0,8705	0,8729	0,8753	0,8776	0,8800	0,8824	0,8848
30	0,8653	0,8676	0,8700	0,8724	0,8748	0,8771	0,8795	0,8819
31	0,8624	0,8648	0,8672	6,8695	0,8719	0,8742	0,8766	0,8790
32	0,8596	0,8619	0,8643	0,8667	0,8691	0,8714	0,8736	0,8761
33	0,8568	0,8591	0,8615	0,8638	0,8662	0,8685	0,8709	0,8732
34	0,8540	0,8563	(1,8587	0,8610	0,8634	0,8658	0,8680	0,8704
35	0,8512	0,8535	0 8559	0,8582	0,8605	0,8629	0,8652	0,8675
36	0,8484	0,8508	0,8531	0,8554	0,8577	0,8601	0,8624	0,8647
37	0,8457	0,8480	0,8503	0,8526	0,8549	0,8573	0,8596	0,8619
38,	0,8430	0,8453	0,8476	0,8499	0,8522	0,8545	0,8568	0,8591
39	0,8403	0,8426	0,8449	0,8472	0,8495	0,8518	0,8541	0,8564
40	0,8376	0,8399	0,8422	0,8444	0,8467	0,8490	0,8513	0,8536

3a,			1	Давлен	ие <i>р, мм</i>	рт. ст.		1	
t rasa, °C	746	748	750	752	754	756	758	760	762
5	0,9638	0,9665	0,9691	0,9717	0,9742	0,9768	0,9794	0,9285	0,984
6	0,9604	0,9630	0,9656	0,9682	0,9707	0,9733	0,9759	0,9820	0.98
7	0,9570	0,9596	0,9621	0,9647	0,9673	0,9698	0,9724	0,9785	0,97
8	0,9536	0,9561	0,9587	0,9613	0,9368	0,9664	0,9689	0,9750	0.97
9	0,9502	0,9528	0,9553	0,9578	0,9604	0,9629	0,9655	0,9715	0,97
10	0,9468	0,9494	0,9519	0,9544	0,9570	0,9595	0,9621	0,9680	0,96
11	0,9435	0,9460	0,9486	0,9511	0,9536	0,9562	0,9587	0,9646	0,96
12	0,9402	0,9427	0,9452	0,9477	0,9503	0,9528	0,9553	0,9612	0,96
13	0,9369	0,9394	0,9419	0,9444	0,9469	0,9495	0,9520	0,9578	0,95
14	0,9336	0,9363	0,9386	0,9411	0,9436	0,9461	0,9486	0,9545	0,95
15	0,9304	0,9329	0,9354	0,9378	0,9404	0,9428	0,9453	0,9511	0,95
16	0,9271	0,9296	0,9321	0,9346	0,9371	0,9396	0,9420	0,9478	0,94
17	0,9239	0,9264	0,9289	0,9314	0,9339	0,9363	0,9388	0,9445	0,94
18	0,9207	0,9232	0,9257	0,9282	0,9306	0,9331	0,9356	0,9413	0,94
19	0,9176	0,9200	0,9225	0,9250	0,9275	0,9299	0,9324	0,9380	0,93
20	0,9145	0,9169	0,9194	0,9218	0,9243	0,9267	0,9292	0,9348	0,93
21	0,9113	0,9138	0,9162	0,9187	0,9211	0,9236	0,9260	0,9316	0,93
22	0,9083	0,9107	0,9131	0,9155	0,9180	0,9204	0.0000		
23	0,9052	}	ł.	1	- /	0,3204	0,9229	0,9253	0,9
24	(0,0002	0,9076	0,9100	0,9125	0,9149	1		1	
24	}	0,9076	0,9100 0,9070	į	0,9149	0,9173	0,9197	0,9222	0,9
	0,9021	0,9045	0,9070	0,9094	0,9149 0,9118	0,9173 0,9142	0,9197 0,9165	0,9222 0,9191	0,95 0,95
25	0,9021 0,8991	0,9045 0,9015	0,9070 0,9039	0,9094 0,9063	0,9149 0,9118 0,9087	0,9173 0,9142 0,9112	0,9197 0,9165 0,9135	0,9222 0,9191 0,9160	0,92 0,92 0,9
25 26	0,9021 0,8991 0,8961	0,9045 0,9015 0,8985	0,9070 0,9039 0,9009	0,9094 0,9063 0,9033	0,9149 0,9118 0,9087 0,9057	0,9173 0,9142 0,9112 0,9081	0,9197 0,9165 0,9135 0,9105	0,9222 0,9191 0,9160 0,9120	0,92 0,92 0,9 0,9
25 26 27	0,9021 0,8991 0,8961 0,8931	0,9045 0,9015 0,8985 0,8955	0,9070 0,9039 0,9009 0,8979	0,9094 0,9063 0,9033 0,9003	0,9149 0,9118 0,9087 0,9057 0,9027	0,9173 0,9142 0,9112 0,9081 0,9051	0,9197 0,9165 0,9135 0,9105 0,9074	0,9222 0,9191 0,9160 0,9120 0,9099	0,99 0,99 0,91 0,91
25 26 27 28	0,9021 0,8991 0,8961 0,8931 0,8901	0,9045 0,9015 0,8985 0,8955 0,8925	0,9070 0,9039 0,9009 0,8979 0,8949	0,9094 0,9063 0,9033 0,9003 0,8973	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068	0,99 0,99 0,99 0,99
25 26 27 28 29	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038	0,92 0,99 0,99 0,99 0,90
25 26 27 28 29 30	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008	0,92 0,9 0,9 0,9 0,90 0,90
25 26 27 28 29 30 31	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038	0,92 0,9 0,9 0,9 0,90 0,90
25 26 27 28 29 30	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008	0,92 0,99 0,99 0,99 0,90 0,90
25 26 27 28 29 30 31	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979	0,90 0,90 0,91 0,90 0,90 0,90 0,90
25 26 27 28 29 30 31 32	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837 0,8808	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861 0,8831	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949	0,90 0,90 0,90 0,90 0,90 0,90 0,90 0,90
25 26 27 28 29 30 31 32 33	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784 0,8756	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837 0,8808 0,8779	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861 0,8831	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878 0,8850	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920	0,92 0,99 0,91 0,91 0,90 0,90 0,90 0,85 0,85
25 26 27 28 29 30 31 32 33	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784 0,8756	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837 0,8808 0,8779 0,8750	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861 0,8831 0,8803 0,8774	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826 0,8797	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878 0,8850 0,8850	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873 0,8844	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897 0,8867	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920 0,8891	0,99 0,99 0,99 0,99 0,90 0,90 0,90 0,88 0,88
25 26 27 28 29 30 31 32 33 34 35 36	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784 0,8756 0,8727 0,8699 0,8670	0,9045 0,9015 0,8985 0,8955 0,8895 0,8895 0,8866 0,8837 0,8808 0,8779 0,8750 0,8722 0,8694	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8890 0,8861 0,8831 0,8803 0,8774 0,8745	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826 0,8797 0,8768	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878 0,6850 0,8821 0,8792 0,8763	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873 0,8844 0,8815	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897 0,8867 0,8839 0,8810	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920 0,8891 0,8862 0,8833	0,92 0,93 0,91 0,91 0,90 0,90 0,90 0,88 0,88 0,88
25 26 27 28 29 30 31 32 33 34 35 36 37	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784 0,8756 0,8727 0,8699 0,8670 0,8642	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837 0,8808 0,8779 0,8750 0,8750 0,8722 0,8694 0,8665	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8861 0,8831 0,8803 0,8774 0,8745 0,8717	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826 0,8797 0,8768 0,8740 0,8712	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878 0,8850 0,8821 0,8792 0,8763 0,8735	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873 0,8844 0,8815 0,8787	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897 0,8867 0,8839 0,8810 0,8781	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920 0,8891 0,8862 0,8833 0,8804	0,92 0,91 0,91 0,91 0,90 0,90 0,90 0,83 0,83 0,83
25 26 27 28 29 30 31 32 33 34 35 36 37	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8756 0,8727 0,8699 0,8670 0,8642 0,8615	0,9045 0,9015 0,8985 0,8955 0,8895 0,8895 0,8837 0,8808 0,8779 0,8750 0,8722 0,8694 0,8665 0,8638	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8861 0,8831 0,8774 0,8745 0,8717 0,8689 0,8661	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826 0,8797 0,8768 0,8740 0,8712 0,8684	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8850 0,8850 0,8821 0,8792 0,8763 0,8735 0,8707	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873 0,8844 0,8815 0,8787	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897 0,8867 0,8839 0,8810 0,8781	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920 0,8891 0,8862 0,8833 0,8804 0,8776	0,92 0,92 0,91 0,91 0,91 0,90 0,90 0,90 0,89 0,83 0,88 0,88
25 26 27 28 29 30 31 32 33 34 35 36 37	0,9021 0,8991 0,8961 0,8931 0,8901 0,8872 0,8842 0,8813 0,8784 0,8756 0,8727 0,8699 0,8670 0,8642	0,9045 0,9015 0,8985 0,8955 0,8925 0,8895 0,8866 0,8837 0,8808 0,8779 0,8750 0,8750 0,8722 0,8694 0,8665	0,9070 0,9039 0,9009 0,8979 0,8949 0,8919 0,8861 0,8831 0,8803 0,8774 0,8745 0,8717	0,9094 0,9063 0,9033 0,9003 0,8973 0,8943 0,8914 0,8884 0,8855 0,8826 0,8797 0,8768 0,8740 0,8712	0,9149 0,9118 0,9087 0,9057 0,9027 0,8997 0,8967 0,8937 0,8908 0,8878 0,8850 0,8821 0,8792 0,8763 0,8735	0,9173 0,9142 0,9112 0,9081 0,9051 0,9021 0,8990 0,8961 0,8931 0,8902 0,8873 0,8844 0,8815 0,8787	0,9197 0,9165 0,9135 0,9105 0,9074 0,9044 0,9014 0,8985 0,8955 0,8926 0,8897 0,8867 0,8839 0,8810 0,8781	0,9222 0,9191 0,9160 0,9120 0,9099 0,9068 0,9038 0,9008 0,8979 0,8949 0,8920 0,8891 0,8862 0,8833 0,8804	0,92 0,93 0,91 0,91 0,90 0,90 0,83 0,83 0,83 0,83

e .				Давлен	ие р, мм	рт. ст			олжение
trasa,	764	766	768	770	772	774	776	778	780
5	0,9871	0,9897	0,9923	0,9949	0,9975	1,0001	1,0026	1,0051	1,0078
6	0,9836	0,9862	0,9888	0,9913	0,9939	0,9965	0,9990	1,0016	1,0042
7	0,9801	0,9827	0,9852	0,9878	0,9904	0,9929	0,9955	0,9980	1,0006
8	0,9766	0,9792	0,9817	0,9843	0,9868	0,9894	0,9919	0,9945	0,9970
9	0,9731	0,9757	0,9782	0,9807	0,9833	0,9859	0,9884	0,9910	0,9935
10	0,9697	0,9722	0,9747	0,9773	0,9798	0,9824	0,9849	0,9874	0,9900
11	0,9663	0,9688	0,9713	0,9739	0,9764	0,9789	0,9814	0.9839	0,9865
12	0,9629	0,9654	0,9679	0,9704	0,9730	0,9754	0,9780	0,9805	0,9830
13	0,9595	0,9620	0,9645	0,9670	0,9695	0,9720	0,9745	0,9771	0,9796
14	0,9561	0,9586	0,9612	0,9637	0,9661	0,9686	0,9711	0,9736	0,9762
15	0,9528	0,9553	0,9578	0,9603	0,9628	0,9653	0,9678	0,9703	0,9728
16	0,9495	0,9520	0,9545	0,9570	0,9595	0,9619	0,9644	0,9669	0,9694
17	0,9462	0,9487	0,9512	0,9537	0,9561	0,9586	0,9611	0,9636	0,9661
18	0,9430	0,9454	0,9679	0,9504	0,9528	0,9553	0,9578	0,9602	0,9627
19	0,9397	0,9422	0,9447	0,9471	0,9496	0,9520	0,9545	0,9569	0,9594
20	0,9365	0,9390	0,9414	0,9439	0,9463	0,9488	0,9512	0,9537	0,9561
21	0,9333	0,9359	0,9382	0,9407	0,9431	0,9455	0,9480	0,9504	0,9529
22	0,9302	0,9326	0,9350	0,9375	0,9399	0,8909	0,9448	0,9472	0.9496
23	0,9270	0,9294	0,9319	0,9343	0,9367	0,9025	0,9416	0,9440	0,9464
24	0,9239	0,9263	0,9287	0,9311	0,9336	0,9055	0,9384	0,9408	0,9432
25	0,9208	0,9232	0,9256	0,9280	0,9304	0,8996	0,9352	0,9377	0,9401
26	0,9177	0,9201	0,9225	0,9249	0,9273	0,8967	0,9321	0,9345	0,9369
27	0,9146	0,9170	0,9194	0,9218	0,9242	0,9205	0,9290	0,9314	0,9338
28	0,9116	0.9140	0,9164	0,9187	0,9211	0,9174	0,9259	0,9283	0,9307
29	0,9086	0,9109	0.9133	0,9157	0,9181	0,9235	0,9228	0,9252	0,9276
30	0,9056	0,9079	0,9109	0,9127	0,9151	0,9360	0,9198	0,9222	0,9245
31	0,9026	0,9050	0,9073	0,9097	0,9121	0,9391	0,9168	0,9191	0,9215
32	0,8996	0,9020	0,9043	0,9067	0,9091	0,9423	0,9138	0,9161	0,9185
33	0,8967	0,8990	0,9014	0,9037	0,3061	0,9144	0,9108	0,9131	0,9154
34	0,8938	0,8961	0,8984	0,9008	0,9031	0,9114	0,9078	0,9101	0,9125
35	0,8908	0,8932	0,8955	0,8978	0,9002	0,9084	0,9048	0,9072	0,9092
36	0,8880	0,8903	0,8926	0,8949	0,8972	0,8938	0,9019	0,9042	0,9065
37	0,8851	0,8874	0,8897	0,8920	0,8943	0,9328	0,8990	0,9013	0,9036
38	0,8822	0,8845	0,8869	0,8892	0,8915	0,9266	0,8961	0,8984	0,9007
39	0,8794	0,8817	0,8840	0,8863	0,8886	0,9297	0,8932	0,8955	0,8978
40	0,8766	0,8789	0,8812	0,8835	0,8857	0,8881	0,8903	0,8926	0,8949
-10	0,0100	0,0100	1 0,0012	}	1	1 5,0001	1 3,3000	0,0020	0,0010

Вещества, определяемые по утвержденным и опубликованным техническим условиям

Ne 11/11	Наименование вещества	Метод опубликован в Технических условиях на методы определения вредных веществ в воздухе
1	Поливинилхлорид	Выпуск IV, стр. 165, Технические условия на метод определения пыли в воздухе, утверждены 2 октября 1964 г., № 122—1/166
2	Сополимер стирола с а-метилстиролом	То же
3	Нитрофоска азотносер- нокислотная	»
4	Нитрофоска фосфорная,	»
5	сульфатная, бесхлорная Сульфаниламидные пре- параты (стрептоцид бе- лый, норсульфазол, суль- фацил, сульфадимезин,	»
6	сульгин) Фторопласт-4	»
7	Аминопласты, фенопла- сты	»
8	Борный ангидрид	»
9	Ренацид-п	»
10 11	а-нафтохинон Полиэфирный стеклопла-	» ! »
-	стик	~
12	Алюминат лантана-тита- на кальция	»
13 14	Нитрид бора	»
15	Карбонитрид бора Нитрид титана	» "
16	Нитрид запоминия	» »
17	Нитрид кремиия	»
18	Нитрид ниобия	»
19	Силицид титана	»
20	Силицид молибдена	»
$\begin{array}{c} 21 \\ 22 \end{array}$	Силицид вольфрама	»
23	Фєррохром Смоло-доломитовая	» »
20	пыль	"
24	Пыль медно-никелевой руды	»
25	Зола горючих сланцев	»
26	Карбонат бария	»
27	Двуокись церия	»
28	Полиакрилат Ф-1	*
		•

№ п/п	Наименование вещества	Метод опубликован в Технических условиях на методы определения вредных веществ в воздухе
29	Огвержденный поли- эфирный лак ПЭ-246	Выпуск IV, стр. 165, Технические условия на метод определения пыли в воздухе, утверждены 2 октяб-
30 31	Ацетонанил 3,3-дихлорметилоксацик- лобутан	ря 1964 г., № 122—1/166 То же Выпуск IV, стр. 143, Технические условия на метод определения хлорорганических ядохимикатов в воздухе, утверждены 2 октября 1964 г. № 122—1/162. Коэффициент пересчета хлора на хлорорганическое соединение рассчитывают по следующей формуле: $K = \frac{M}{n \cdot 35.5},$
		где М — молекулярный вес хлорорга- инческого соединения; п — число атомов хлора в моле- куле;
32	4-хлорбензофенон двух- карбоновой кислоты	35,5— атомный вес хлора То же
33	Хлористый изобутилен	»
34	1,2-дихлоризобутан	»
35	1,2-дихлорпропан	»
36	Дихлорфенилтрихлорси- лан	»
37	Тетрахлорпропан	»
38	Тетрахлорпентан	»
39 40	Тетрахлорнонан	» »
41	Тетрахлорундекан Парахлорфенол	*
42	Бензотрифторид	Выпуск IV, стр. 139, Технические
72	Zenes i proprieta	условия на метод определения фторорганических соединений в воздухе, утверждены 2 октября 1964 г., № 122—1/161
43	м-аминобензотрифторид	То же
44	Гексафторпропилен	»
45	Дигидрат перфторацето- на	»
46	Трифторэтиловый спирт	»
47	Трифторбутиловый спирт	»
48	Тетрафторпропиловый спирт	»
49	Октафторамиловый спирт	»
_	Трифторхлорпропан) »
8 3	аказ № 900	113

Продолжени	П	D	0	Д	0	л	ж	e	н	И	6
------------	---	---	---	---	---	---	---	---	---	---	---

		TIPOROUMENT
Ne n/n	Наименование вещества	Метод опубликован в Технических условиях на методы определения вредных веществ в воздухе
51	Спирт изооктиловый	Выпуск V, стр. 111, Технические условия на метод определения высщих спиртов в воздухе, утверждены 29 декабря 1965 г., № 546—65. Чувствительность определения изо-
52	Диэтилртуть	октилового спирта — 10 мкг Выпуск VI, стр. 85, Технические условия на метод определения ртутьорганических ядохимикатов в воздухе, утверждены 7 октября 1967 г., № 716—67.
53	Амилформиат	Выпуск IV, стр. 98, Технические условия на метод определения сложных эфиров одноосновных органических кислот в воздухе, утверждены 2 октября 1964 г.
54	α-монохлорпропионовая кислота	Выпуск III, стр. 47, Технические условия на метод определения одноосновных карбоновых кислот в воздухе, утверждены 3 апреля 1963 г. Чувствительность определения мопохлорпропионовой кислоты — 30 мкг; этерификацию проводят в течение 1 ч при комнатной температуре.
55	α,α-дихлорпропионовая кислота	Выпуск III, стр. 47, Технические условия на метод определения одноосновных карбоновых кислот в воздухе, утверждены 3 апреля 1963 г. Чувствительность определения дихлорпропионовой кислоты — 40 мкг; этерификацию проводят в пробирках с воздушными холодильниками в течение 1 ч при нагревании в бане при $t=50-56^{\circ}$ С.
56	α,α,β-трихлорпропнопо- вая кислота	Выпуск III, стр. 47, Техинческие условия на метод определения одноосновных карбоновых кислот в воздухе, утверждены 3 апреля 1963 г. Чувствительность определения трихлорпропионовой кислоты—50 мкг; этерификацию проводят в пробирках с воздушными холодильниками в течение 2 и при нагревании в бане при $t=50-55$ °C.
114	1	I

N π/π №	Наименование вещества	Метод опубликован в Технических условиях на методы определения вредных веществ в воздухе
	<u> </u>	
57	ү-хлоркротиловый эфир 2,4-Д	Выпуск X, стр. 9, Технические условия на метод определения бутилового эфира 2,4-дихлорфенокснуксусной кислоты в воздухе, утверждены 2 апреля 1973 г., № 1017—73.
58	Оптиловый эфир 2,4-Д	Выпуск X, стр. 9, Технические условия на метод определения бутилового эфира 2,4-дихлорфеноксиуксусной кислоты в воздухе, утверждены 2 апреля 1973 г., № 1017—73.
59	Цнанистый бензил	Выпуск VII, стр. 7, Технические условия на метод определения акрилонитрила в воздухе, утверждены 16 мая 1969 г., № 788—69.
60	Масляный альдегид	Выпуск I, стр. 71, Технические условия на метод определения формальдегида в воздухе, утверждены 7 мая 1958 г., № 122—1/202.
61	Бутифос	Выпуск III, стр. 34, Технические условия на метод определения фосфорорганических инсектицидов в воздухе, утверждены 3 апреля 1963 г.
62 63	Фталофос	Тоже
64	Метилацетофос	» •
65	Фосфамид Фозалон	\$
		•

СОДЕРЖАНИЕ

	Стр.
Технические условия на метод определения аценафтилена в воздухе	3
Технические условия на метод определения бутилового эфира	
2,4-дихлорфеноксиуксусной кислоты в воздухе ,	9
Технические условия на метод определения гексахлорбензола	12
Технические условия на мстод определения бутилового эфира	
2,4,5-трихлорфеноксиуксусной кислоты в воздухе	15
Технические условия на метод определения гидроперекиси изо-	
пропилбензола в воздухе	18
Технические условия на метод определения двуокиси хлора в воздухе	21
Технические условия на метод определения содержания диме-	
тилдиоксана (ДМД) в воздухе	26
Технические условия на метод определения ди (2-хлорэтил)-	20
дисульфида в воздухе	29
Технические условия на метод определения аэрозоля едких ще-	2.0
лочей в воздухе	34
Технические условия на метод определения изобутилена в воз-	01
AVXe	38
Технические условия на метод суммарного определения карбо-	00
ната циклогексиламина (КЦА) и циклогексиламина (ЦГА)	
В воздухе	41
Технические условия на метод определения мезитилена в воздухе	44
Технические условия на метод определения нитритдициклогек-	44
силамина в воздухе	47
Технические условия на метод определения органических пере-	41
кисей (третбутилперацетата, третбутилпербензоата, трет-	
бутилгидроперекиси, гидроперекиси изопропилбензола, гид-	
роперекисей м-диизопропилбензола) в воздухе	g 1
Технические условия на метод раздельного определения окиси	51
и двуокиси азота в воздухе	
н двускиси азота в воздухе	55
	117

	Стр.
Технические условия на метод определения содержания аэро-	•
золя серной кислоты в присутствии сульфатов	59
Технические условия на метод определения трихлорфенола в	
воздухе	62
Технические условия на метод определения фенантрена в воз-	
духе	65
Технические условня на метод определения хлорангидридов ак-	
риловой и метакриловой кислот и метакрилового ангидрида	
в воздухе	68
Технические условия на метод определения хромата циклогек-	
силамина (ХЦА) в воздухе	72
Технические условия на метод определения хлоранила в воздухе	76
Технические условия на метод определения циклогексана в	_
воздухе	79
Технические условия на метод определения таллия в воздухе	
Технические условия на метод определения винилацетата в воз-	-
духе с помощью бумажной хроматографии	86
Технические условия на метод раздельного определения меди,	-
кобальта и никеля в воздухе с помощью бумажной хромато-	
графии.	91
Технические условия на метод раздельного определения орга-	31
нических кислот С1—С4 (муравьиная, уксусная, пропионо-	
вая, масляная) с помощью хроматографии на бумаге	98
· · · · · · · · · · · · · · · · · · ·	105
	106
	112
	-12

Технические условия на методы определения вредных веществ в воздухе

Редактор Г. А. Герасимов Технический редактор Л. И. Минскер

Корректор О. Л. Лизина

Сдано в производство 5/III-74 г. Подписано к печати 30/VII-74 г. Формат 84×108¹/₃₂. 3,75 печ. л., 6,30 усл. печ. л., 1,87 бум. л. Изд. № 384-В. Заказ тип. № 900. Тираж 8000 экз. Цена 27 коп.