ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

ВЫПУСК 2

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОДЫ ОПРЕДЕЛЕНИЯ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

ВЫПУСК 2

Сборник технических условий составлен Методической комиссией по промышленно-санитарной химии при Главной государственной санитарной инспекции ССР.

УТВЕРЖДАЮ

Зам. главного государственного санитарного инспектора СССР Ю. ЛЕБЕДЕВ 19 марта 1962 г. № 122-1/13

ТЕХНИЧЕСКИЕ УСЛОВИЯ НА МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ТРИНИТРОТОЛУОЛА (ТНТ) В ВОЗДУХЕ

Настоящие технические условия распространяются на метод определения содержания тринитротолуола в воздухе промышленных помещений при санитарном контроле.

I. Общая часть

1. Метод основан на колориметрическом определении окрашенных в розовый цвет растворов, образующихся при действии щелочи на спиртовой или ацетоновый раствор тринитротолуола $C_6H_2(NO_2)_3CH_3$.

2. Чувствительность метода — 1 у тринитротолуола

в анализируемом объеме раствора.

3. Определению мешают другие ароматические полинитросоединения. При проведении анализа в спиртовом растворе динитробензол не мешает определению тринитротолуола.

4. Предельно допустимая концентрация тринитрото-

луола в воздухе 0,001 мг/л.

II. Реактивы и аппаратура

5. Применяемые реактивы и растворы:

Основной стандартный раствор № 1, содержащий 100 у тринитротолуола: готовят растворением 0,01 г тринитротолуола в 100 мл этилового спирта или ацетона.

Стандартный раствор № 2 с содержанием 10 у/мл тринитротолуола готовят разбавлением в 10 раз спиртом или ацетоном основного раствора.

Спирт этиловый 96% ГОСТ 5962-51.

Ацетон ГОСТ 2603-51, перегнанный.

Натр едкий ГОСТ 4328-48, 5% раствор.

Фильтры беззольные.

6. Применяемые посуда и приборы:

Патрон металлический или плексигласовый

(см. рис. 3, 4).

Пробирки колориметрические, плоскодонные из бесцветного стекла высотой 120 мм, внутренний диаметр 15 мм.

Пипетки ГОСТ 1770-51 емкостью 1, 5 и 10 мл с делениями 0,01 и 0,1 мл.

Бюретки ГОСТ 1770-51 емкостью 25 мл.

Колбы мерные ГОСТ 1770-51 емкостью 100 мл.

Сосуд для отсасывания раствора.

Цилиндры мерные ГОСТ 1770-51 емкостью 25 мл. Пылесос.

Реометр от 0 до 15 л/мин.

Трубки резиновые, зажимы, склянки реактивные.

III. Отбор пробы воздуха

7. Воздух со скоростью 10 л/мин протягивают через бумажный фильтр, помещенный в плексигласовый или металлический патрон. Для определения предельно допустимой концентрации тринитротолуола достаточно отобрать 1—2 л воздуха.

IV. Описание определения

8. Фильтр переносят в небольшой стакан и дважды обрабатывают его по 15 мл ацетона или этилового спирта. После каждой обработки жидкость отсасывают с помощью водоструйного насоса, сливают промывные жидкости вместе и измеряют общий объем. 1 и 10 мл пробы вносят в колориметрические пробирки. Объем пробы с 1 мл доводят до 10 мл этиловым спиртом или ацетоном.

Одновременно готовят стандартную шкалу согласно таблице

Шкала	стандартов
-------	------------

№ стандарта	0	1	2	3	4	5	6	7	8	9	10	11	12
Стандартный раствор № 2, мл Этиловый спирт или ацетон, мл	0	0,1	0,2	0,3 9,7	0,4 9,6	0,5 9,5	0,6	0,7 9,3	0,8 9,2	0,9	1	2	3
Содержание тринитро-толуола, ү	0	1	2	3	4	5	6	7	8	9	10	20	30

Затем в пробу и стандартную шкалу прибавляют по 0,1 мл 5% раствора едкого натра, взбалтывают и через 10 минут сравнивают интенсивность окраски пробы со стандартной шкалой.

Концентрацию тринитротолуола в миллиграммах на 1 л воздуха (X) вычисляют по формуле:

$$X = \frac{G \cdot V_1}{V \cdot V_0 \cdot 1000},$$

где G — количество тринитротолуола в γ , найденное в анализируемом объеме пробы;

в анализируемом объеме просы, V — объем пробы, взятый для анализа, в миллилитрах;

 V_1 — общий объем пробы, в миллилитрах;

1/1000 — коэффициент для пересчета у в миллиграммы;

 V_0 — объем воздуха в литрах, взятый для анализа, приведенный к нормальным условиям по формуле:

 $V_0 = \frac{V_{\rm t} \cdot 273 \cdot P}{(273 + t) \cdot 760},$

где $V_{\rm t}$ — объем воздуха, взятый для анализа в литрах; t — температура воздуха в месте отбора пробы;

P — температура воздуха в месте отобра пробы, P — барометрическое давление воздуха в милли-

метрах рт. ст.

Для удобства расчета V_0 следует пользоваться таблицей коэффициентов (см. Приложение). Для приведения объема воздуха к нормальным условиям надо умножить $V_{\rm t}$ на соответствующий коэффициент.

 $\Pi P U J O X E H U E$ Таблица коэффициентов для различных температур и давлений, на которые надо умножить $V_{
m t}$ для приведения объема воздуха к нормальным условиям

Температура .	Давление Р (в мм ртутного столба)											
газа, °С	730	732	734	736	738	740	742	744				
5	0,9432	0,9458	0,9484	0,9510	0,9536	0,9561	0,9587	0,9613				
5 6 7	0.9398	0,9424	0,9450	0,9476	0,9501	0,9527	0,9553	0,9579				
7	0,9365	0,9390	0,9416	0,9442	0,9467	0,9493	0,9518	0,9544				
8	0,9331	0,9357	0,9383	0,9408	0,9434	0,9459	0,9485	0,9510				
8 9	0,9298	0,9324	0,9349	0,9375	0,9400	0,9426	0,9451	0,9477				
10	0,9265	0,9291	0,9316	0,9341	0,9367	0,9392	0,9418	0,9443				
11	0.9233	0,9258	0,9283	0,9308	0,9334	0,9359	0,9384	0,9410				
12	0,9200	0,9225	0,9251	0.9276	0,9301	0,9326	0.9351	0.9376				
i3	0,9168	0,9193	0,9218	0,9243	0,9269	0,9294	0,9319	0,9344				
14	0,9136	0,9161	0,9186	0,9211	0,9236	0,9261	0.9286	0,9311				
15	0,9104	0,9129	0,9154	0.9179	0,9204	0,9229	0.9254	0,9279				
iĕ	0,9073	0,9097	0,9122	0,9147	0,9172	0,9197	0,9222	0,9427				
îř	0,9041	0,9066	0.9092	0,9116	0.9140	0.9165	0,9190	0,9215				
18	0,9010	0,9035	0,9059	0,9084	0,9109	0,9134	0,9158	0,9183				
19	0.8979	0,9004	0.9028	0,9053	0,9078	0.9102	0.9127	0,9151				
20	0,8948	υ ,89 73	0,8997	0,9022	0,9046	0,9071	0,9096	0,9120				
21	0,8918	0.8942	0,8967	0.8991	0,9016	0,9040	0,9065	0,9089				
22	0,8888	0,8912	0,8936	0,8961	0,8985	0,9010	0,9034	0,9058				
23	0,8858	0,8882	0,8906	0,8930	0,8955	0.8979	0,9003	0,9028				
24	0,8828	0,8852	0,8876	0.8900	0,8924	0.8949	0,8973	0,8997				
25	0,8798	0,8822	0,8846	0,8870	0,8894	0,8919	0.8943	0,8967				

Температура			Д	авление Р (в мы	тртутного столб	a)		
Температура газа, °С	730	732	734	736	738	740	742	744
								1
26	0,8769	0,8793	∩,8817	0,8841	0,8865	0,8889	0,8913	0,8937
27	0,8739	0,8763	0,8787	0,8811	0,8835	0,8859	0,8883	0,8907
28	0,8710	0,8734	0,8758	0,8782	0,8806	0,8830	0,8853	0,8877
29	0,8681	0,8705	0,8729	0,8753	0,8776	0,8800	0,8824	0,8848
30	0,8653	0,8676	0,8700	0,8724	0,8748	0,8771	0,8795	0,8819
31	0,8624	0,8648	0,8672	0,8695	0,8719	0,8742	0,8766	0,8790
32	0.8596	0,8619	0.8643	0,8667	0,8691	0,8714	0,8736	0,8761
33	0,8568	0,8591	0,8615	0,8638	0,8662	0,8685	0,8709	0,8732
34	0,8540	(,8563	0,8587	0,8610	0,8634	0,8658	0.8680	0,8704
35	0,8512	0,8535	0,8559	0,8582	0,8605	0,8629	0,8652	0,8675
36	0,8484	0,8508	0,8531	0,8554	0,8577	0,8601	0,8624	0,8647
37	0,8457	0, 8480	0,8503	0,8526	0,8549	0,8573	0,8596	0.8619
38	0,8430	0,8453	0,8476	0,8499	0,8522	0,8545	0,8568	0,8591
39	0,8403	0,8426	0,8449	0,8472	0,8495	0,8518	0,8541	0,8564
40	0,8376	0,8399	0,8422	0,8444	0,8467	0,8490	0,8513	0,8536
						1		
		1		1	1	l .	1	

Гемпература		Давление Р (в мм ртутного столба)											
газа °С	746	748	750	752	754	756	758	760	762				
5	0,9639	0,9665	0,9691	0,9717	0,9742	0,9768	0,9794	0,9820	0,9846				
6	0,9604	0,9630	0,9656	0,9682	0,9707	0,9733	0,9759	0,9785	0,9810				
7	0,9570	0,9596	0,9621	0,9647	0,9673	0,9698	0,9724	0,9750	0,977				
8	0,9536	0,9561	0,9587	0,9613	0,9368	0,9664	0,9689	0,9715	0,9741				
9	0,9502	0,9528	0,9553	0,9578	0,9604	0,9629	0,9655	0,9680	0,970				
10	0,9468	0,9494	0,9519	0,9544	0,9570	0,9595	0,9621	0,9646	0,967				
11	0,9435	0,9460	0,9486	0,9 511	0,9536	0,9562	0,9587	0,9612	0,9637				
12	0,9402	0,9427	0,9452	0,9477	0,9503	0,9528	0,9553	0,9578	0,960				
13	0,9369	0,9394	0,9419	0,9444	0,9469	0,9495	0,9520	0,9545	0,957				
14	0,9336	0,9363	0,9386	0,9411	0,9436	0;9461	0,9486	0,9511	0,9536				
15	0,9304	0,9329	0,9354	0,9378	0,9404	0,9428	0,9453	0,9478	0,950				
16	0,9271	0,9296	0,9321	0,9346	0,9371	0,9396	0,9420	0,9445	0,947				
17	0,9239	0,9264	0,9289	0,9314	0,9339	0,9363	0,9388	0,9413	0,9438				
18	0,9207	0,9232	0,9257	0,9282	0,9306	0,9331	0,9356	0,9380	0,940				
19	0,9176	0,9200	0,9225	0,9250	0,9275	0,9299	0,9324	0,9348	0,937				
20	0,9145	0,9169	0,9194	0,9218	0,9243	0,9267	0,9292	0,9316	0,934				

Температура	Давление Р (в мм ртутного столба)									
Температура газа, °С	746	748	750	7 52	754	756	758	760	762	
21	0,9113	0,9138	0,9162	0,9187	0,9211	0,9236	0,9260	0,9285	0,9309	
22	0,9083	0,9107	0,9131	0,9155	0,9180	0,9204	0,9229	0,9253	0,9277	
23	0,9052	0,9076	0,9100	0,9125	0,9149	0,9173	0,9197	0,9222	0,9246	
24	0,9021	0,9045	0,9070	0,9094	0,9118	0,9142	0,9165	0,9191	0,9215	
25	0,8991	0,9015	0,9039	0,9063	0,9087	0,9112	0,9135	0,9160	0,9184	
26	0,8951	0,8985	0,9009	0,9033	0,9057	0,9081	0,9105	0,9120	0,9153	
27	0,8861	0,8955	0,8979	0,9003	0,9027	0,9051	0,9074	0,9099	0,9122	
28	0,8901	0,8925	0,8949	0,8973	0,8997	0,9021	0,9044	0,9068	0,9092	
29	0,8872	0,8895	0,8919	0,8943	0,8967	0,8990	0,9014	0,9038	0,9062	
30	0,8842	0,8866	0,8890	0,8914	0,8937	0,8961	0,8985	0,9008	0,9032	
31	0,8813	0,8837	0,8861	0,8884	0,8908	0.8931	0,8955	0,8979	0,9002	
32	0,8784	0,8808	0,8831	0,8855	0,8878	0.8902	0,8926	0,8949	0,8973	
33	0,8756	0,8779	0,8803	0,8826	0,8850	0,8873	0,8897	0,8920	0,8943	
34	0,8727	0,8750	0,8774	0,8797	0,8821	0,8844	0,8867	0,8891	0,8914	
35	0,8699	0,8722	0,8745	0,8768	0,8792	0,8815	0,8839	0,8862	0,8885	
36	0,8670	0,8694	0,8717	0,8740	0,8763	0,8787	0,8810	0,8833	0,8856	
37	0,8642	0,8665	0,8689	0,8712	0,8735	0,8758	0,8781	0,8804	0,8828	
38	0,8615	0,8638	0,8661	0,8684	0,8707	0,8730	0,8753	0,8776	0,8799	
39	0,8587	0,8610	0,8633	0,8656	0,8679	0,8702	0,8725	0,8748	0,8771	
40	0,8559	0,8582	0,8605	0,8628	0,8651	0,8674	0,8697	0,8720	0,8743	

Продолжение

емпература	Давление P (в мм ртутного столба)											
газа, °С	764	766	768	770	772	774	776	778	780			
				<u> </u>	1			İ				
5	0,9871	0,9897	0,9923	0,9949	0,9975	1,0001	1,0026	1,0051	1,0078			
6	0,9836	0,9862	0,9888	0,9913	0,9939	0,9965	0,9990	1,0016	1,004			
7	0,9801	0,9827	0,9852	0,9878	0,9904	0,9929	0,9 955	0,99 80	1,000			
8	0,9766	0,9792	0,9817	0,9843	0,9868	0,9894	0,9919	0,9945	0,997			
9	0,9731	0,9757	0,9782	0,9807	0,9833	0,9859	0,9884	0,9910	0,993			
10	0,9697	0,9722	0,9747	0,9773	0,9798	0,9824	0,9849	0,9874	0,990			
11	0. 9663	0.9688	0.9713	0,9739	0.9764	0,9789	0,9814	0,9839	0.986			
12	0,9629	0,9654	0.9679	0,9704	0,9730	0,9754	0,9780	0,9805	0,983			
13	0,9595	0,9620	0,9645	0,9670	0,9695	0,9720	0,9745	0,9771	0,979			
14	0,9561	0,9586	0,9612	0,9637	0,9661	0,9686	0,9711	0,9736	0,976			
15	0,9528	0,95 53	0,9578	0,9603	0,9628	0,9 653	0,9678	0,9703	0,972			
16	0,9495	0,9520	0,9545	0,9570	0,9595	0,9619	0,9644	0,9669	0,969			
17	0,9462	0,9487	0,9512	0,9537	0,9561	0,9586	0,9611	0,9636	0,966			
18	0,9430	0,9454	0,9479	0,9504	0,9528	0,9553	0,9578	0,9602	0,962			
19	0,9397	0, 9422	0,9447	0,9471	0,9496	0,9520	0,9545	0,9569	0,959			
20	0,9365	0,9390	0,9414	0,9439	0,9463	0,9488	0,9512	0,9537	0,956			

Температура	Давление Р (в мм ртутного столба)											
газа, °С	764	766	768	770	772	774	776	778	780			
21	0,9333	0,9359	0,9382	0,9407	0,9431	0,9455	0.9480	0,9504	0,9529			
22	0,9302	0,9326	0,9350	0,9375	0,9399	0,9423	0.9448	0,9472	0,9496			
23	0,9270	0,9294	0,9319	0,9343	0,9367	0,9391	0,9416	0,9440	0,9464			
24	0,9239	0,9263	0,9287	0,9311	0,9336	0,9360	0,9384	0,9408	0,9432			
25	0,9208	0,9232	0,9256	0,9280	0,9304	0,9328	0,9352	0,9377	0,9401			
26	0,9177	0,9201	0,9225	0,9249	0,9273	0,9297	0,9321	0,9345	0,9369			
27	0,9146	0,9170	0,9194	0,9218	0,9242	0,9266	0,9321	0,9314	0,9338			
28	0,9116	0,9140	0,9164	0,9187	0,9211	0,9235	0,9259	0,9283	0,9307			
29	0,9086	0,9109	0,9133	0.9157	0,9181	0,9205	0,9238	0,9252	0,9276			
30	0,9056	0,9079	0,9109	0,9127	0,9151	0,9174	0,9228	0,9222	0,9245			
31	0,9026	0,90 50	0,9073	0,9097	0,9121	0.9144	0,9168	0.9191	0,9215			
32	0,8996	0,9020	0,9043	0,9067	0,9091	0,9114	0,9138	0,9161	0,9185			
33	0,8967	0,8990	0,9014	0,9037	0,9061	0,9084	0,9138	0,9131	0,9154			
34	0,8938	0,8961	0,8984	0,9008	0.9031	0,9055		0,9101	0,9125			
35	0,8908	0,8932	0,8955	0,8978	0,9002	0,9025	0,9078	0,9101	0,9092			
36	0,8880	0,8903	0.8926	0,8949	0,8972	0.8996	0,9048	0,9072	0,9065			
37	0,8851	0,8874	0,8897	0,8920	0,8943	0,8967	0,9019 0,8990	0,9042	0,9036			
38	0,8822	0,8845	0,8869	0,8892	0,8915	0,8938	0,8961	0,8984	0,9007			
39	0,8794	0,8817	0,8840	0,8863	0,8886	0,8909	0,8932	0,8955	0,8978			
40	0,8766	0,8789	0,8812	0,8835	0,8857	0,8881	0,8903	0,8926	0,8949			

СОДЕРЖАНИЕ

Технические условия на метод определения содержания хлористого водорода в воздухе	3
Технические условия на метод определения содержания хлора в воздухе	7
Технические условия на метод определения содержания тумана серной кислоты в воздухе	11
Технические условия на метод определения содержания гидразина в воздухе	15
Технические условия на метод определения содержания меди в воздухе	19
Технические условия на метод определения содержания никеля в воздухе	22
Технические условия на метод определения содержания ацетона в воздухе	26
Технические условия на метод определения содержания окиси этилена в воздухе	30
Технические условия на метод определения содержания метилового эфира акриловой кислоты в воздухе	36
Технические условия на метод определения содержания тринитротолуола (THT) в воздухе	40
Технические условия на метод определения содержания паров стирола в воздухе	43
Технические условия на метод определения содержания нитрофенолов в воздухе	47
Технические условия на метод определения содержания динитроортокрезола в воздухе	50
Приложение	53

Техн. редактор Н. А. Яковлева Корректор К. И. Патарецкая

Сдано в набор 5/VII—1962 г. Полписано к печати 27/VIII—1962 г. Формат бумаги $84\times108^{1}/_{32}=1.88$ печ. л. (условных 3,08 л.) 2,3 уч.-изд. л. Тираж 5000 экз. Т-10815 МО-53.

Медгиз, Москва, Петроверигский пер., 6/8. Смоленск, типография имени Смирнова. Заказ № 4171 Цена 12 коп.