CCCP

ОТРАСЛЕВЫЕ СТАНДАРТЫ

КОТЛЫ ПАРОВЫЕ СТАЦИОНАРНЫЕ. ШВЫ СВАРНЫХ СОЕДИНЕНИЙ ТРУБ ПОВЕРХНОСТЕЙ НАГРЕВА С КОЛ-ЛЕКТОРАМИ. ШТУЦЕРА. КОЛЬЦА ПОДКЛАДНЫЕ. ОСНОВНЫЕ РАЗМЕРЫ. КОНСТРУКЦИЯ. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ.

OCT 108.462.33-82; OCT 108.030.41-82; OCT 108.030.102-82; OCT 108.030.106-82

Издание Официальное

Министерство энергетического машиностроения

УТВЕРИДЕН И ВВЕДЕН В ДЕ СТВИЕ указанием Министерства энергетического машиностроения от 25.11.82 \$88-002/9182

ИСПОЛНИТЕЛИ: В.В.Боганский, А.И.Скаляпов, Э.М.Лисицкая (руководитель темы). Н.Я.Масленникова

СОИСПОЛНИТЕЛИ: В.В.Митор, П.И.Христок, Э.П. Мулятьева

OTPACHEBOR CTAHLAPT

ETYLEPA DAPOBUX CTALMOHAPHIX

OCT 108,462,33-82

Типы, конструкция, размеры и технические требования

Взамен ОСТ 24.462.33-74

00SIIE 1730

Указанием Министерства энергетического машиностроения от 27. II. 1982 г. В ВВ-002/0182 срок взедения установлен

c 01.01.1983 r.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на штуцера к коллекторам и барабанам паровых стационарных котлов с рабочим давлением от 60kTc/cm^2 до 255 kTc/cm²

I. TWIS W OCHOBESE PASMERN

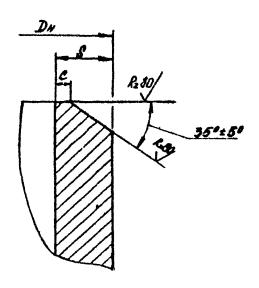
- I.I. Штуцера изготавливают 3 типов, согласно табл. I.
- I. 2. Конструкция и размеры штуцеров должны соответствовать указанным на черт. 2-5 и в табл. 3-6.
- 1.3. Форма и размеры кромок штуцеров всех типов, подготовленных под сварку с трубами, должны соответствовать указанным на черт. I и в табл. 2.

1.4. Сочетание днаметров штуцеров и коллекторов определяется конструктивно. При этом максимальное значение днаметра отверстия в коллекторе (барабане) должно удовлетворять условир:

$$\frac{d}{D_{\alpha}-2S_{\alpha}} \leq 0.75$$
 , Fig.

d - внутренний диаметр штуцера;

 D_{κ} - наружный дваметр колмектора (барабана);

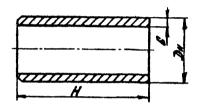

S. - расчетная толщина отенки коллектора без учета ослаблений.

I.5. Пример условного обозначения штуцера с наружным диаметром $D_{\!\scriptscriptstyle N}=10$ мм, толщиноя стенки 2 мм, типа I из стали 20:

MITTUEP 10x2,0-1 CTAMB 20 OCT 109462.33-82

Tadamua I

Tuu	Эскиз	Номинальные размеры диаметров штуцеров, мм
I		10-219
2		76-219
3		76-325


qepr. I

Tadamus 2

S	C		
	номин.	Пред.отки.	
2,0 - 4,0	0,5	+ 0,5	
4,5 - 8,0	I,0	± 0,5	
8,5 -15,5 и более	Ι,0	± 0.5	

2. KOHCTPYRIMA W PASMEPH BTYLEPA TMIA I

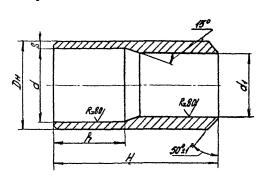
- 2.1.Конструкция и размеры штуцера типа I должны состветствовать указанным на черт.2 и в табл.3
 - 2.2. Размер Н устанавливается конструктором.

Черт. 2

Tadmina 3

	Размеры в ми	
D _H S		Н
Пре	дельные от	гкдонения
h14	± 1 <u>7</u> 14	±1
10	2,0	
IS	2,0 2,5	
16	2,5 3,0	80 - 100
25	2,5 3,5	
1		

Продолжение табл.3


D _{rr}	S	Н
	Предельны	е отклонения
h14	<u> + 17/4</u>	t/
28	3,0 3,5 4,0	
32	3,5 4,0 4,5 5,0 6,0	80 - I00
36	6,0	
38	2,5 3,0 3,5 4.0 4.5 5,0 6,0 7,0	
42	3,0 3,5 4,0 4,5 5,0 6,0	I00 - I20
45	4,5 6,0	
50	3,0 4,0 5,0	

Продолжение табл. 3

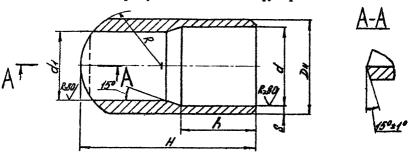
D _{**}	S	Н
	Предельние	отклонения
h14	± 1.T/Y	±1
60	3,0 4,0 5,0 5,5 6,0 7,5	100 - 120
76	3,5 5,0 6,0 7,0 7,5 10,0	
89	4,5	
108	4,5 6,0 7,0 9,0 10,0 12,0	
133	4,0 6,0 7,0 10,0	120 - 170
159	6,0 7,0 13,0	
168	7.0	
219	8,0 10,0	

3. КОНСТРУКЦИЯ И РАЗМЕРЫ ВТУЦЕРА ТИПА 2

3.1. Конструкция и размери штупера типа 2 должни соочветствовать указанным на черт. 3 и в табл. 4

Tepr.3

		Paswer	NN E H		Tagen	ца 4
$\mathcal{D}_{\!\scriptscriptstyle{\mathcal{H}}}$	S	d	d,	Н	4	
Предельные отклоненкя					Nacca, Er	
h14	1 1714	Н	[2	± :	2	1
76	6,5 10,0 11,0	63 56 54	50 46 42	150	40	I,73 I,84 2,08
89	4,0 6,0 17,5	8I 77 54	77 68 48	150	40	I,62 2,50 6,50


Продолжение табл. 4

Д,	S	d	d,	Н	h	
	Предельные отклонения					
h14	1 17/Y		HIS	+		
108	4,5 6,0	99 96	92	I50	40	2,47 2,6I
133	13,0 18,0	107 <i>9</i> 7	99 89	150	40	5,70 6,00
159	9, 0 10,5	141 138	131	200	50	6,74 8,87
219	8,0 15,5	203 172	180	240	50	18,04 21,53

Tedaune 5

4. КОНСТРУКЦИЯ И РАЗМЕРЫ ВТУЦЕРА ТИПА З

- 4.І. Конструкция и размеры штуцера типа 3 должны соответствовать указанным на черт. 4 и в табл.5.
 - 4.2. Размер Н устанавлявается конструктором.

Gept.4

				Taran	ца
		Размеры в	MM		
D _r	S	d	dı	Н	h
	Пред	GEFER	e 0 T 1	KACROR	H A
h 14	± 17/4	HI	2		3. 2
	2,5	71	66		
	3,5	69	65		
	5,0	66	62		
	6,0	64	57		
76	7,0	62		80-150	40-60
	7,5	61	56		
	9,0	58			
	10.0	56	50		
	12,0	52	46		
	1	ji	1	, ,	1

Продолжение табли5

D,	S	d	d,	Н	А
	пре	дельн	не от	клонен	ия
h 14	± 17/4	H	115	+3 -2	
83	2,5 3,0 II,0 I5,0 I7,0	78 77 61 53 49	73 72 57 48 42 79	115–160	40-80
89	4,0 4,5 5,0 5,5 6.0 7,0	81 80 79 78 75 77 68	77 75 72 68 48	115-160	4D-80
CONTRACTOR OF THE PROPERTY OF	14,0 18,0	61 53 102			
	3,0 4,0 4,5 5,0	102 100 99 98	95 92		
108	6,0 7,0 8,0	96 94 92	92 90 88	135-150	40-115
:	9,0 10,0 II,0	90 88 86	84		
	12,0 13,0 14,0	84 82 80	8 0 75		
133	3,0 3,5 5,0 6,0	127 125 125 121	125 121 118 115	150-180	40~ISO

OCTIO8.462.33-82 CTp.II

Продолжение табл.5

$\mathcal{D}_{\!\scriptscriptstyle\mathcal{H}}$	S	d	d,	H	h
		ельны	\	онения	<u> </u>
n14	<u>† 17/Y</u>		HI2	±	3
	8,0	117	IIS		
	10,0	ID	115	150-180	40-120
	13,0	107			
13 5	15,0	103	95		
100	16;0	101		1	
	17,0	99	88	130-180	50-120
	20,0	93			
	25,0	83	77		
	4,5	I 50			
	6,0	I48	I4I]	
	7,0	I45	135	1	
	9,0	I4I	177		
	10,0	13 9			1
	II,0	137	131	1	
+ ==0	12,0	135			
159	13,0	133	127	150-240	50-120
	I4,0	131			
	15,0	129	I24	1	
	16,0	127	120	1	
	17,0	125]	
	18,0	123	118		
	20,0	119	115		
	21,0	117	113	ł	
	22,0	115	109	1	
	25,0	109	102	1	l
	28,0	103	95		
	7,0	I 54	148		
108	10,0	I48	I44	190-250	50-130
	13,0	142	138		
	·				

Продолжение табл.5

D _H	S	d	d,	H	h
	Преде	REEHO_	0 T K # 0 H	CHER	
h14	1 17/4	H	15	-2	
	17,0	134	127		
	20,0	128	125		İ
	21,0	126	160		
168	22,0	124	120	190-250	50-130
200	25,0	118	II2	150-250	1 70-170
	28,0	112	106		
	40,0	-88	84		
	6,0	207			
	8,0	203	195	210-250	50-170
	9,0	501		210-250	30-210
	10,0	199			Ì
219	14,0	191	184		
	15,0	189	204	Ì	
	16.0	184			
	18,0	183	175	200-275	100-170
	22,0	175	150	Ī	
	28.0	163			
	36.0	I47	I40		
	22,0	201	194		
01.5	28,0	189	182		
245	30,0	185	178	200-275	100-170
	34,0	177	170	į	
SANTANIAN TERMINANT STATES	36,0	173	I65		
273	50.0	215	203	325	150
325	20,0	285	273	400	150
	l	l	1		j

5. TEXHIUECRUE TPESOBAHUS

- 5. I. Материал для изготовления штуцеров должен назначаться в соответствии с требованиями Правил устройства и безопаской эксплуатации паровых и водогрейных котлов Госгортехнадвора СССР.
- 5.2. Значение радиуса скругления торца штуцера типа 3 в зави-

Табляца 6

Edskepk B kk					
Диаметр коллектора.	Радиус скругле	ния штуцера; R			
Д кол.	Номинальный	Пред.откл.			
I33					
159		A			
168	60-125	± 0,87			
<u> </u>					
219					
245	125-175	± 1,00			
273	10,11,5	1,00			
325	<u></u>				
377					
426	175-220	± 1,15			
465	11,5-220	- 1,17			
630					
650	220-270	± 1,20			
720		į			

Примечание. При выборе радмуса скругления торца штуцера должно соблюдаться соотношение: $\frac{R}{7L} \le 0.5$

5.3. Типы сварных соединений штуцеров с коллекторами и барабанами по ОСТ 108.030.41-82.

Лист регистрации изменений

OCT 108.462.33-82

Изм.	(страниц)	Номер	:Полимсь	: Jara	Срок введе-	
: -эме- : Заме- : : жин эн: хин нэн	Новых Аннулиро-	документа		;	ния изме- нения	

СОДЕРЖАНИЕ

•	Стр.
ОСТ 108.462.33-82 Чтуцера паровых стационарных котлов	2
ОСТ 108.030.41-82 "Швы сварных соединений штуцеров с коллекторами и барабанами"	16
ОСТ 108.030.102-82 "Кольца подкладные для швов сварных соединений штуцеров"	28
ОСТ 108.030.106-82 "Швы сварных соединений труб поверхностей нагрева с коллекторами"	33