ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 57198— 2016

КОРМОВОЙ КОНЦЕНТРАТ ЛИЗИНА (ККЛ)

Технические условия

Издание официальное

Предисловие

- 1 PA3PAБOTAH Некоммерческим партнерством «Координационно-информационный центр содействия предприятиям по вопросам безопасности химической продукции» при участии ООО «Центр промышленной биотехнологии имени княгини Е.Р. Дашковой»
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 326 «Биотехнологии»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 1 ноября 2016 г. № 1554-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения
2	Нормативные ссылки
3	Технические требования
4	Приемка
5	Методы испытаний
6	Транспортирование и хранение
7	Гарантии изготовителя
Бі	иблиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОРМОВОЙ КОНЦЕНТРАТ ЛИЗИНА (ККЛ)

Технические условия

Fodder concentrate of lysine. Specifications

Дата введения — 2017—05—01

1 Область применения

Настоящий стандарт распространяется на кормовой концентрат лизина, получаемый путем микробиологического синтеза с использованием культуры *Br. bact.* и наполнителей и предназначенный для использования при выращивании и откорме сельскохозяйственных животных.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.008 Система стандартов безопасности труда. Биологическая безопасность. Общие требования

ГОСТ 12.2.003 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности

ГОСТ 61 Реактивы. Кислота уксусная. Технические условия

ГОСТ 1770 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2226 Мешки из бумаги и комбинированных материалов Общие технические условия

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 4198 Реактивы. Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4233 Реактивы. Натрий хлористый. Технические условия

ГОСТ 4328 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 5962 Спирт этиловый ректификованный из пищевого сырья. Технические условия

ГОСТ 6006 Реактивы. Бутанол-1. Технические условия

ГОСТ 6309 Нитки швейные хлопчатобумажные и синтетические. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 7402 Электровентиляторы бытовые. Общие технические условия

ГОСТ 8074 Микроскопы инструментальные. Типы, основные параметры и размеры. Технические требования

ГОСТ 9147 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 12026 Бумага фильтровальная лабораторная

ГОСТ 13496.1 Комбикорма, комбикормовое сырье. Методы определения содержания натрия и хлорида натрия

FOCT P 57198-2016

- ГОСТ 13647 Реактивы. Пиридин. Технические условия
- ГОСТ 13496.13 Комбикорма. Методы определения запаха, зараженности вредителями хлебных запасов
- ГОСТ 13805 Пептон сухой ферментативный для бактериологических целей. **Технические усло**вия
 - ГОСТ 14192 Маркировка грузов
 - ГОСТ 14735 Планки откидные. Конструкция
 - ГОСТ 14961 Нитки льняные и льняные с химическими волокнами. Технические условия
 - ГОСТ 16280 Агар пишевой. Технические условия
 - ГОСТ 17206 Агар микробиологический. Технические условия
 - ГОСТ 17308 Шпагаты. Технические условия
 - ГОСТ 17811 Мешки полиэтиленовые для химической продукции. Технические условия
 - ГОСТ 18251 Лента клеевая на бумажной основе. Технические условия
 - ГОСТ 20729 Питательные среды. Вода мясная (для ветеринарных целей). Технические условия
- ГОСТ 20730 Питательные среды. Бульон мясо-пептонный (для ветеринарных целей). Технические условия
 - ГОСТ 21239 Инструменты хирургические. Ножницы. Общие требования и методы испытаний
 - ГОСТ 22280 Реактивы. Натрий лимоннокислый 5,5-водный. Технические условия
 - ГОСТ 22314 Электрофены бытовые. Общие технические условия
- ГОСТ 22967 Шприцы медицинские инъекционные многократного применения. Общие технические требования и методы испытаний
- ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры
 - ГОСТ 25377 Иглы инъекционные многократного применения. Технические условия
 - ГОСТ 28950 Инструменты чертежные. Общие технические требования и методы испытаний
 - ГОСТ 29227 Пипетки градуированные. Часть 1. Общие требования
- ГОСТ Р 53228 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания
- ГОСТ Р 55878 Спирт этиловый технический гидролизный ректификованный. Технические условия

Примечание — Припользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется принять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется принять в части, не затрагивающей эту ссылку.

3 Технические требования

3.1 Кормовой концентрат лизина должен изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

3.2 Характеристики

3.2.1 Кормовой концентрат лизина изготовляют с наполнителем. В качестве наполнителя используют кукурузную или пшеничную муку, пшеничные или ржаные отруби.

Наполнитель по крупности и влажности должен соответствовать значениям, установленным для кормового концентрата лизина.

- 3.2.2 Кормовой концентрат лизина изготовляют с содержания активного действующего начала не менее 30 %.
- 3.2.3 По физико-биологическим показателям кормовой концентрат лизина должен соответствовать требованиям, указанным в таблице 1.

Таблица 1 — Физико-биологические показатели кормовой концентрат лизина

Наименование показателя	Значения
Внешний вид	Однородный порошок от светло-желтого до светло-коричневого цвета
Массовая доля влаги, %, не более	9,5
Остаток на сите с отверстиями диаметром 1,00 мм, %, не более	0,5
Лизин в 1 кг препарата, г	300 ± 10,0
Подлинность	Появление нингидрино-окрашенных компонентов на хроматограмме, совпадающих по положению с нингидрино-окрашенными компонентами стандартного образца лизин, а также зон задержки тест-культуры от испытуемых компонентов пробы
Безвредность в тест-дозе на одну мышь, мг	100
Зараженность вредителями и плесенью	Не допускается
Массовая доля поваренной соли, %, не более	15

3.3 Требования безопасности

- 3.3.1 Препарат кормовой концентрат лизина изготовляют в соответствии с правилами безопасности для производства микробиологической промышленности, [1].
- 3.3.2 Предельно допускаемая концентрация препарата в воздухе рабочих помещений не должна превышать $0.4~\rm Mr/m^3$.
- 3.3.3 При работе с препаратом необходимо применять индивидуальные средства защиты: респиратор, защитные очки, резиновые перчатки, также соблюдать меры личной гигиены.
 - 3.3.4 Производственное оборудование должно отвечать требованиям ГОСТ 12.2.003.
- 3.3.5 Для предупреждения опасного и вредного воздействия микроорганизмов следует соблюдать требования биологической безопасности по ГОСТ 12.1.008.
 - 3.3.6 Общие санитарно-гигиенические требования к воздуху рабочей зоны по ГОСТ 12.1.005.

3.4 Маркировка

- 3.4.1 На каждый бумажный мешок наносят транспортную маркировку по ГОСТ 14192 с изображением манипуляционных знаков «Боится сырости», «Боится нагрева», «Крюками непосредственно не брать» и с указанием дополнительных сведений:
 - наименования предприятия-изготовителя и (или) его товарного знака;
 - наименования и марки препарата;
 - массы нетто;
 - номера партии;
 - даты изготовления препарата;
 - гарантийного срока хранения;
 - условий хранения;
 - предупредительных надписей «Хранить с предосторожностью. Список Б», «Для ветеринарии»;
 - обозначения настоящего стандарта.
- 3.4.2 В каждый бумажный мешок вкладывают инструкцию по применению препарата в количестве, равном числу полиэтиленовых мешков.

3.5 Упаковка

3.5.1 Кормовой концентрат лизина фасуют по 20 кг в мешки из полиэтиленовой пленки по ГОСТ 10354 или мешки полиэтиленовые по ГОСТ 17811. Полиэтиленовые мешки термоспаивают и упаковывают в бумажные четырехслойные мешки по ГОСТ 2226.

Допускается фасовать кормовой концентрат лизина в бумажные мешки марок БМ, ВМ, ПМ, БМП, ВМБ, ВМП по ГОСТ 2226.

3.5.2 Бумажные мешки зашивают машинным способом нитками по ГОСТ 14961 или по ГОСТ 6309, или шпагатом по ГОСТ 17308, оставляя гребень по всей ширине мешка не менее 4 см.

Допускается вместо зашивания бумажных мешков их склеивание по ГОСТ 18251.

3.5.3 Масса нетто упаковочной единицы должна составлять (20 ± 0.2) кг.

4 Приемка

4.1 Кормовой концентрат лизина принимают партиями. Партией считают любое количество препарата, изготовленное за один технологический цикл, однородное по показателям качества и оформленное одним документом о качестве.

В документе о качестве указывают:

- наименование предприятия-изготовителя и (или) его товарный знак;
- наименование и марку препарата;
- номер партии:
- массу нетто партии;
- количество мест в партии;
- дату изготовления препарата (год, месяц, число);
- результаты испытаний, дату выдачи документа о качестве;
- гарантийный срок и условия хранения;
- обозначение настоящего стандарта.
- 4.2 Для проверки качества кормового концентрата лизина от каждой партии отбирают выборку в размере: от партии до 100 упаковочных единиц не менее 5 упаковочных единиц; свыше 100 упаковочных единиц 5 %.
- 4.3 Подлинность кормового концентрата лизина определяют в каждой 10-й партии. При изменении технологии изготовления кормового концентрата лизина, подлинность определяют в пяти партиях подряд.
- 4.4 При неудовлетворительных результатах испытаний хотя бы по одному показателю по нему проводят повторные испытания на удвоенном количестве выборки, взятой от той же партии продукции. Результаты испытаний распространяют на всю партию.

5 Методы испытаний

5.1 Отбор проб

- 5.1.1 От каждой упаковочной единицы отбирают 2—3 точечно пробы щупом вместимостью не более 50 г, погружая его на всю глубину мешка.
- 5.1.2 Точечные пробы объединяют, тщательно перемешивают и выделяют среднюю пробу массой не менее 600 г.
- 5.1.3 Среднюю пробу делят пополам и помещают в две чистые сухие банки с притертыми пробками или в полиэтиленовые мешочки.

Одну банку или мешочек передают в лабораторию для анализа качества препарата, а другую банку или мешочек хранят в течение срока годности препарата на случай разногласий в оценке качества.

- 5.1.4 Пробы, направляемые в лабораторию или на хранение, опечатывают и снабжают этикеткой с указанием:
 - наименования предприятия-изготовителя и (или) его товарного знака;
 - наименования препарата;
 - номера партии;
 - массы нетто партии;
 - даты отбора пробы;
 - должности и подписи лица, отбиравшего пробу;
 - гарантийного срока хранения.

5.2 Определение внешнего вида и плесени

Навеску массой 50 г рассыпают на белую чистую поверхность, рассматривают и определяют цвет и наличие плесени при естественном освещении.

5.3 Определение массовой доли влаги

Сущность метода заключается в высушивании препарата при нагревании до постоянной массы при температуре (105 \pm 2) °C и определении влаги по разности результатов взвешиваний.

5.3.1 Аппаратура и реактивы

Сушильный шкаф любого типа, обеспечивающий температуру нагрева от 100 °C до 200 °C с точностью терморегуляции ± 2 °C.

Весы лабораторные общего назначения по ГОСТ Р 53228 1-го и 2-го классов точности с пределом взвешивания 200 г.

Бюксы, изготовленные из не коррозируемого металла, или стаканчики CB 14/8; 19/9; 24/10; 34-2 — по ГОСТ 25336.

Эксикатор исполнения 2 с диаметром корпуса 100, 140, 190, 250 мм по ГОСТ 25336, содержащий силикагель с добавлением индикатора влажности или прокаленный хлорид кальция.

5.3.2 Проведение испытания

Открытую бюксу и крышку помещают в сушильный шкаф при температуре (105 ± 2) °C на 30 мин. Затем закрывают бюксу крышкой, охлаждают в эксикаторе до комнатной температуры и взвешивают. Высушивание бюксы с крышкой проводят до достижения постоянной массы.

5 г препарата помещают в бюксу. Открытую бюксу и крышку помещают в сушильный шкаф при температуре (105 ± 2) °C на 4 ч, затем закрывают бюксу крышкой, переносят в эксикатор, охлаждают до комнатной температуры и быстро взвешивают.

Вновь высушивают образец в течение 1 ч, охлаждают и взвешивают. Повторяют высушивание до тех пор, пока разность результатов двух последовательных взвешиваний будет не более 0,0004 г. Если после повторного высушивания масса увеличится, за результат принимают наименьшее значение.

5.3.3 Обработка результатов

Массовую долю влаги (X_1) в процентах вычисляют по формуле:

$$X_1 = \frac{m_1 - m_2}{m_1 - m_3} \cdot 100,\tag{1}$$

где m_1 — масса бюксы с пробой до высушивания, г;

 m_2 — масса бюксы с пробой после высушивания, г;

 m_3^- — масса бюксы, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений. Допускаемые расхождения не должны отличаться от среднего значения более чем на 5 % (отн.).

5.4 Определение крупности помола

Сущность метода заключается в гравиметрическом определении остатка на сите после просеивания пробы.

5.4.1 Аппаратура

Установка для рассева с ситами: с номинальными размерами ячейки 0,560 мм и 1,00 мм по [2].

Весы лабораторные общего назначения 1-го и 2-го классов точности с наибольшим пределом взвешивания 200 г. — по ГОСТ Р 53228.

5.4.2 Проведение испытаний

100 г препарата помещают на сито, которое закрывают крышкой, укрепляют на платформе установки для рассева, включают установку и просеивают в течение 10 мин при 190—210 колебаниях в минуту.

Допускается просеивание ручным способом при 110—120 колебаниях в минуту и размахе колебаний около 10 см.

5.4.3 Обработка результатов

Остаток на сите (X_2) в процентах вычисляют по формуле:

$$X_2 = \frac{m_4}{m_5} \cdot 100, \tag{2}$$

где m_4 — масса остатка на сите, г;

 m_5 — масса пробы, г.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений. Допускаемые расхождения не должны отличаться от среднего значения более чем на 10 % отн.

5.5 Определение лизин

Сущность метода заключается в сравнении зон задержки роста тест-культуры Bac. subtilis 6633 испытуемым препаратом и стандартом лизин. Чувствительность метода 0,5 ЕД в 1 мг.

5.5.1 Аппаратура, материалы, реактивы и питательные среды

рН-метр с погрешностью измерения не более 0,1.

Весы лабораторные общего назначения 1-го и 2-го классов точности с наибольшим пределом взвешивания $200 \, \text{г}$ — по Γ OCT P 53228.

Автоклав вертикальный.

FOCT P 57198—2016

Микроскоп — по ГОСТ 8074.

Термостат любого типа, обеспечивающий температуру нагрева < 37 (\pm 1) °C.

Ватерпас.

Столик с горизонтальной пластиной вертикального стекла.

Сушильный шкаф любого типа, обеспечивающий температуру нагрева от 100 °C до 200 °C с погрешностью терморегуляции ± 2 °C.

Термометр с ценой деления ГС и диапазоном измерения от 0 °C до 100 °C.

Баня водяная любого типа, обеспечивающая температуру нагрева от 20 °C до 100 °C с погрешностью терморегуляции ± 3 °C.

Бур или пробочное сверло с внутренним диапазоном 8 мм.

Капельница, представляющая собой инъекционную иглу, впаянную в стеклянную трубку диаметром 5—7 мм, на конец которой одета резиновая груша.

Колбы мерные вместимостью 100, 1000 cm^3 — по ГОСТ 1770.

Колбы конические вместимостью 100 cm^3 — по ГОСТ 25336.

Чашки бактериологические (чашки Петри) типа ЦБН исполнения 2, номинальным диаметром 100 мм — по ГОСТ 25336.

Пипетки вместимостью 5, 10 и 20 см 3 исполнения 6, 7 — по ГОСТ 29227.

Пробирки типа П1 диаметром 16 мм, высотой 150 мм из химически стойкого стекла группы XC — по ГОСТ 25336.

Спиртовки стеклянные — по ГОСТ 25336.

Матрацы стеклянные.

Воронка типа В диаметром 100 мм высотой 150 мм — по ГОСТ 25336.

Петля микробиологическая.

Бумага фильтровальная — по ГОСТ 12026.

Образец стандартный стеклянный для визуального определения мутности бактериальных взвесей, мутность которого равна 1,66 см⁻¹ и эквивалента 10 международным единицам мутности.

Цилиндры мерные вместимостью 50 см^3 — по ГОСТ 1770.

Лизин сульфат стандартный с активностью, указанной на этикетке.

Тест-микроорганизм Bac. subtilis 6633.

Натрий лимоннокислый трехзамещенный — по ГОСТ 22280.

Натрия гидроокись — по ГОСТ 4328.

Натрий хлористый — по ГОСТ 4233.

Кислота соляная, растворы концентрации $0,01\,\mathrm{моль/дm^3}$ $(0,01\,\mathrm{H.})$ и $0,2\,\mathrm{моль/дm^3}$ $(0,2\,\mathrm{H.})$ — по ГОСТ 3118.

Кальций фосфорнокислый однозамещенный — по ГОСТ 4198.

Пептон сухой ферментативный для бактериологических целей — по ГОСТ 13805.

Бульон Хоттингера.

Агар микробиологический — по ГОСТ 17206 или агар пищевой — по ГОСТ 16280.

Раствор буферный лимоннокислый с рН 3—3,2; готовят смешением двух растворов: 62 см³ раствора А и 100 см³ раствора Б.

Растворы А и Б готовят следующим образом:

- раствор A 22,6 г цитрата дигидрата натрия помещают в мерную колбу вместимостью 1000 см³ и доливают воду до метки:
- раствор 5-8,2 см 3 концентрированной соляной кислоты помещают в мерную колбу вместимостью 1000 см 3 и разбавляют водой до метки.

Растворы для окраски по Граму.

Вода мясная — по ГОСТ 20729.

Бульон мясо-пептонный (МПБ) — по ГОСТ 20730.

Среда агаровая голодная; готовят следующим образом:

15 г агара, взвешенного с погрешностью не более 0,01 г, помещают в колбу вместимостью 1000 см³, содержащую 900 см³ воды. Колбу ставят на водяную баню и нагревают до полного расплавления агара.

3 г дигидроортофосфата калия, взвешенного с погрешностью не более 0,01 г, растворяют в $100\,\mathrm{cm}^3$ воды, затем выливают в расплавленный агар, доводят объем водой до $1000\,\mathrm{cm}^3$ и перемешивают. Устанавливают рН 8,0 при помощи $30\,\%$ -ного раствора гидрооксида натрия. Агаровую среду кипятят до образования осадка, затем фильтруют через толстый слой ваты и стерилизуют в автоклаве в течение $30\,\mathrm{mu}$ при температуре $(110\pm1)\,^\circ\mathrm{C}$. рН среды поля стерилизации должна быть 7,8—8,0. Среду хранят при температуре 20— $22\,^\circ\mathrm{C}$ не более двух месяцев.

Среда агаровая питательная; готовят аналогично приготовлению агаровой голодной среды, при этом взамен воды берут МПБ с содержанием аминного азота 50—60 мг в 100 см 3 бульона. Питательную среду стерилизуют в автоклаве в течение 30 мин при температуре (110 ± 1) °C. После стерилизации рН раствора должна быть 7,8—8,0. Раствор хранят в течение месяца при комнатной температуре.

Раствор физиологический.

Агар мясо-пептонный (МПА) — среда для культуры Bac. subtilis 6633; готовят следующим образом: МПБ разбавляют водой в соотношении 1:2. К $1000 \, \mathrm{cm}^3$ разбавленного МПБ добавляют $20 \, \mathrm{r}$ агара, взвешенного с погрешностью не более $0,01 \, \mathrm{r}$. Для набухания агара смесь выдерживают в течение 40— $60 \, \mathrm{mu}$ н при комнатной температуре.

МПА расплавляют на водяной бане, устанавливают рН 7,2—7,4 при помощи 30 %-ного раствора гидрооксида натрия, дают среде отстояться в течение 30 мин, после чего среду фильтруют через толстый слой ваты, затем разливают в колбы и стерилизуют при температуре (110 \pm 1) °C в течение 30 мин. рН среды после стерилизации должен быть 7,2—7,4.

Среду для выращивания спор Bac. subtilis 6633 в матрицах готовят следующим образом:

25 г агара, взвешенного с погрешностью не более 0,01 г, добавляют на 1000 см 3 бульона Хоттингера с содержанием 30—35 % аминного азота. Полученную среду разливают по матрицам и стерилизуют в течение 30 мин при температуре (110 ± 1) °C. pH после стерилизации должен быть 6.0—6,2.

Суспензию тест-культуры Bac. subtilis 6633 готовят следующим образом:

тест-культуру Bac. subtilis 6633 переносят микробиологической петлей в пробирку с физиологическим раствором, затем пипеткой каплю полученной суспензии переносят в чашки Петри со средой МПА, растирают ее по чашке стеклянным шпателем, после чего этим же шпателем переносят оставшуюся на нем культуру из чашки в чашку с вышеуказанной средой путем растирания (5—7 чашек), добиваясь таким образом в последующем роста отдельных характерных колоний.

Тест-культуру выращивают при температуре 37 °C в течение 18—24 ч. Затем отбирают типичные колонии — мелкие, сероватые с зубчатым краем и пересевают бактериальной петлей на скошенный МПА в пробирку и выращивает при температуре 37 °C в течение 18 ч, после чего культуру со скошенного агара смывают 5—10 см³ стерильной дистиллированной воды и смыв переносят в матрацы. Засеянный матрац выдерживают при температуре 37 °C в течение 5—7 суток, после чего производят микроскопический контроль и, если в мазках, окрашенных по Граму, имеется в поле зрения 80—90 % спор, делают смыв культуры стерильной дистиллированной водой.

Полученную взвесь спор прогревают при температуре 60—70 °C на водяной бане в течение 30 мин, затем взвесь спор промывают не менее трех раз стерильной дистиллированной водой при центрифугировании до полной прозрачности надосадочной жидкости. Промытую взвесь спор хранят в стерильной дистиллированной воде в запаянных ампулах или пробирках в течение двух лет при температуре от 4 °C до 10 °C.

Лизин основной стандартный раствор концентрации 1000 ЕД в 1 см³; раствор готовят следующим образом: 20 мг стандартного образца лизин, взвешенные с погрешностью не более 0,0002 г, растворяют в рассчитанном объеме раствора соляной кислоты концентрации 0,01 моль/дм³.

Объем раствора соляной кислоты (X_3) в кубических сантиметрах вычисляют по формуле

$$X_3 = \frac{m_6 \cdot A}{1000},\tag{3}$$

где m_6 — масса стандартного образца с**ульфата лизин, мг**;

A— активность стандартного образца сульфата лизин, ЕДв 1 мг (весовое выражение 1 ЕД активности сульфата лизин зависит от активности действующего в настоящее время стандартного образца);

1000 — активность основного стандартного раствора сульфата лизин, ЕД в 1 см³.

Полученный раствор хранят в колбе с притертой пробкой при температуре 4 °C в защищенном от света месте не более одного месяца.

Лизин рабочий стандартный раствор концентрации 3 ЕД в 1 см3; готовят следующим образом:

1 см³ основного стандартного раствора переносят в мерную колбу вместимостью 100 см³, доводят до метки лимоннокислым буферным раствором, получая разведение 1:100 (10 ЕД в 1 см³). Затем берут пипеткой 3 см³ этого разведения, помещают в пробирку, добавляют 7 см³ лимоннокислого буферного раствора.

5.5.2 Подготовка к испытанию

5.5.2.1 Приготовление раствора испытуемого препарата

5 г пробы, взвешенной с погрешностью не более 0,01 г, помещают в ступку, заливают 25 см³ соляной кислоты концентрации 0,2 моль/дм³ и растирают пестиком. Затем взвесь переносят в колбу или ста-

ГОСТ Р 57198-2016

кан, а ступку смывают 25 см³ раствора соляной кислоты концентрации 0,2 моль/дм³ и смыв добавляют в колбу.

Взвесь препарата выдерживают в течение 2—3 ч при комнатной температуре для экстракции лизин, периодически взбалтывая, после чего содержимое колбы центрифугируют при 2000 мин⁻¹ в течение 10—15 мин и фильтруют через бумажный фильтр, получая таким образом разведение 1:10. Затем из этого раствора готовят следующие разведения с помощью лимоннокислого буферного раствора (с учетом предыдущего разведения 1:10):

- для кормовой концентрат лизина-10 1:1000; 1:2000; 1:4000;
- для кормовой концентрат лизина-40 1:4000; 1:8000; 1:16000.
- 5.5.2.2 Подготовка чашек Петри с питательной средой и тест-культурой

Чашки Петри тщательно моют, стерилизуют в <mark>сушильном шкафу в течение 2 ч при температуре 160</mark> °C.

В 6 чашек Петри заливают пипеткой по 15 см³ расплавленной голодной агаровой среды, получая нижний слой. В 100 см³ расплавленной и охлажденной до 60—65 °С питательной агаровой среды вносят 1 см³ (10 международных единиц мутности) тест-культуры Вас. subtilis 6633 и разливают в чашки Петри на застывший нижний слой голодной агаровой среды по 7—8 см³.

После застывания агара в чашках делают по 6 лунок буром, которые располагают по радиусам на расстоянии 2,8 см от центра чашки с интервалом около 60 °C. В 6 лунок каждой из двух подготовленных чашек Петри вносят капельницей около 0,1 см³ рабочего стандартного раствора лизин. Чашки помещают в термостат при температуре 37 °C и выдерживают в течение 16—18 ч, а затем измеряют диаметры зон задержки роста тест-микроба.

Для проведения испытаний препарата на содержание в них лизин используют партию питательной агаровой среды, обеспечивающей после действия рабочего стандартного раствора лизин зоны задержки диаметром от 17 до 21 мм. В случае получения зон задержки диаметром менее 17 мм или более 21 мм готовят новую партию среды, подбирая новые серии компонентов, или увеличивают (уменьшают) количество тест-микроба, вносимого в питательную среду, с целью достижения оптимального размера диаметра зон задержки роста тест-микроба.

5.5.2.3 Построение градуировочного графика для определения активности лизин

Для построения градуировочного графика из раствора, содержащего 10 ЕД в 1 см³, готовят 5 растворов концентрациями 1,8; 2,4; 3,0; 3,8; 4,5 ЕД в 1 см³. Раствор, содержащий 3 ЕД в 1 см³, является контрольным.

Полученные стандартные растворы, за исключением контрольного, капельницей вносят в 3 лунки (по 3 чашки на каждую концентрацию). Контрольный раствор вносят в остальные 3 лунки всех 15 чашек. Объем вносимых растворов (стандартного и контрольного) должен быть равным и составлять около 0,1 см³. Перед работой капельницу тщательно ополаскивают буферным раствором, а затем раствором, который следует вносить в каждую лунку. Чашки выдерживают в течение 16—18 ч в термостате при температуре 37 °C, затем измеряют диаметры зон задержки роста тест-культуры.

Для каждой концентрации рассчитывают среднее арифметическое диаметров зон задержки роста по 3 чашкам. Для контрольной концентрации подсчитывают среднее арифметическое диаметров зон задержки роста отдельно по 3 чашкам и по всем 15 чашкам, находят поправку, которая представляет собой разность между средними арифметическими контрольных зон задержки роста, вычисленных по 15 и по 3 чашкам.

Полученные поправки прибавляют к средним значениям диаметра зон задержки роста стандартных растворов концентрации 1,8; 2,4; 3,0; 3,8; 4,5 ЕД в 1 см³, вычисленных по 3 чашкам.

По полученным данным на полулогарифмической сетке строят градуировочный график. На ось абсцисс наносят средние значения диаметра зон задержки роста стандартных растворов, полученных после внесения поправки, а также среднее значение диаметра зоны контрольного раствора, вычисленное по всем 15 чашкам. На оси ординат наносят соответствующие концентрации растворов.

Градуировочным графиком пользуются в течение двух месяцев, периодически проверяя угол наклона кривой по двум концентрациям на 3—5 чашках.

5.5.3 Проведение испытания

На каждую пробу испытуемого препарата используют не менее 3 чашек.

Капельницей в три лунки каждой из чашек вносят рабочий стандартный раствор, а в три другие лунки — один из растворов испытуемого препарата. Объем вносимых растворов рабочего стандартного раствора и испытуемого препарата должен быть равным и составлять около 0,1 см³. Чашки выдерживают в течение 16—18 ч в термостате при температуре 37 °C, затем измеряют диаметр зон задержки роста

тест-культуры. При этом в расчет берут одну концентрацию, при которой диаметр зоны роста тест-культуры в испытуемых образцах ближе к диаметру зон задержки стандартного раствора.

5.5.4 Обработка результатов

Измеряют зоны задержки роста тест-культуры, образуемые контрольным раствором стандарта и испытуемым раствором. Находят среднее арифметическое результатов диаметра зон задержки роста по 3 чашкам. Вычитают разность значений диаметров зон задержки роста контрольной концентрации стандартной кривой и контрольной концентрации в испытании. Эту разность прибавляют к среднему значению диаметра зон задержки испытуемого раствора препарата, если она положительная, или вычитают, если она отрицательная.

Затем по кривой находят концентрацию, соответствующую найденной величине зон. Умножая полученную концентрацию на степень разбавления, получают содержание антибиотика в ЕД в 1 см³.

1 условная ЕД лизин соответствует 1 мкг антибиотика в товарном препарате.

Содержание лизин (X_A) в г в 1 кг препарата определяют по формуле:

$$X_4 = \frac{N \cdot V}{m_7 \cdot 10^3} \,, \tag{4}$$

где N — содержание лизин в испытуемом растворе, мкг/см³;

V — объем соляной кислоты, используемой для приготовления взвеси препарата, см 3 ;

 m_7 — навеска препарата, г; 10^3 — переводной коэффициент мкг/г в г/кг.

За результат испытания принимают среднее арифметическое результатов двух параллельных определений, которые не должны отличаться от среднего значения более чем на 10 % (отн.).

5.6 Определение подлинности (идентичности)

Сущность метода заключается в хроматографическом разделении на бумаге лизин на компоненты и проявлении хроматограммы нингидриновым красителем и биоавтографическим методом и последующем сравнении полученной хроматограммы с хроматограммой стандартного образца лизин, проявленной аналогичным способом.

5.6.1 Аппаратура, материалы, реактивы, растворы

Весы лабораторные общего назначения 1-го и 2-го классов точности с наибольшим пределом взвешивания 200 г — по ГОСТ Р 53228.

Аппарат для встряхивания жидкостей.

Камера или эксикатор для хроматографии диаметром 2832 см.

Электровентилятор бытовой — по ГОСТ 7402 или электрофен бытовой — по ГОСТ 22314.

Пипетка исполнения 8, 2-го класса точности вместимостью 0,1 см³ — по ГОСТ 29227.

Колбы конические вместимостью 100 см³ — по ГОСТ 25336.

Цилиндры мерные вместимостью 100 см³ — по ГОСТ 1770.

Ступка фарфоровая — по ГОСТ 9147.

Бумага хроматографическая — по ТУ 13-7308001-778—89 [3] (ИУС 12—89).

Мензурки стеклянные вместимостью 50 см³ — по ГОСТ 1770.

Воронки диаметром 36, 56 мм, высотой 80 мм — по ГОСТ 25336.

Циркуль — по ГОСТ 28950.

Ножницы — по ГОСТ 21239.

Линейка — по ГОСТ 14735.

Лоток стеклянный из оргстекла или чашки Петри — по ГОСТ 25336.

Кислота соляная — по ГОСТ 3118, растворы концентраций 0,01 и 0,2 моль/дм³.

Кислота уксусная — по ГОСТ 61.

Бутанол-1 — по ГОСТ 6006.

Спирт этиловый — по ГОСТ Р 55878 или — по ГОСТ 5962.

Пиридин — по ГОСТ 13647.

Нингидрин, 0,25 %-ный раствор в этаноле, содержащем 1 % уксусной кислоты.

Лизин стандартный образец, раствор с активностью 1000 ЕД в 1 см³ в соляной кислоте концентрации 0,01 моль/дм³.

5.6.2 Подготовка к испытанию

5.6.2.1 Приготовление испытуемой пробы

5 г препарата помещают в ступку и растирают при добавлении 25 см³ раствора соляной кислоты концентрации 0,2 моль/дм³. Суспензию переносят в колбу, ступку обмывают 25 см³ раствора соляной кислоты концентрации 0,2 моль/дм³ и также сливают в колбу. Колбу закрывают пробкой, ставят на аппарат для встряхивания на 30 мин. Затем содержимое колбы фильтруют через бумажный фильтр.

Фильтрат используют для проведения испытания.

5.6.2.2 Подготовка хроматографической камеры

В камеру или эксикатор ставят стаканчик со смесью растворителей, состоящей из бутанола-1, пиридина, уксусной кислоты и воды в соотношении 15:10:3:12. На дно камеры кладут фильтровальную бумагу, смоченную этой же смесью.

5.6.2.3 Подготовка хроматографической бумаги

Из листа хроматографической бумаги вырезают круги диаметром 28—32 см (в зависимости от размера камеры). Из центра круга циркулем проводят окружность радиусом 2 см. Круг делят на шесть разных секторов, в центре круга делают отверстие диаметром 0,5 см для фитиля, который скручивают из кусочка фильтровальной бумаги.

5.6.2.4 Подготовка газона для биоавтографии

В стеклянный лоток наливают 100 см³ голодной агаровой среды x и 80 см³ питательной агаровой среды с тест-культурой Bac. subtilis 6633.

5.6.3 Проведение испытания

5.6.3.1 На два противоположных сектора круга (на отрезок дуги внутренней окружности) микропипеткой наносят раствор стандартного образца лизин в соляной кислоте концентрации 0.01 моль/дм³ в количестве 0.1 см³. Таким же образом наносят растворы двух испытуемых проб. Для кормовой концентрат лизина-40 объем наносимой пробы составляет 0.025 см³, для кормовой концентрат лизина-10-0.1 см³. При нанесении проб хроматограммы периодически просушивают феном. После нанесения проб в отверстие в центре диска вставляют фитиль и хроматограмму помещают в камеру так, чтобы фитиль был погружен в растворитель.

Для лучшего разделения компонентов гризинового комплекса хроматографирование проводят в течение 15—16 ч. После окончания процесса хроматограмму вынимают из камеры и высушивают в вытяжном шкафу. Затем хроматограмму разрезают по диаметру на две части, так чтобы в каждой из них был сектор со стандартным образцом и секторы с двумя исследуемыми образцами.

5.6.3.2 Одну половину хроматограммы проявляют биоавтографическим способом, для чего из каждого сектора хроматограммы в радиальном направлении вырезают полоски шириной 0,5 см и накладывают их на газон с тест-культурой параллельно одна другой на расстоянии 2 см, совмещая их стартовую линию. На обратной стороне лотка отмечают стартовую линию и положение каждой полоски. Через 3—5 мин полоски снимают пинцетом.

Лоток с газоном помещают в термостат с температурой 37 °C на 18—20 ч.

5.6.3.3 Вторую половину хроматограммы опрыскивают 0,25 %-ным раствором нингидрина в эталоне с 1 %-ным раствором уксусной кислоты и высушивают в вытяжном шкафу. Из нингидриноокрашенных полосок хроматограммы стандартного образца и соответствующих им полосок хроматограммы испытуемых проб в радиальном направлении вырезают квадраты размером 0,5 × 0,5 см и накладывают их на газон с тест-культурой. Лоток с газоном помещают в термостат с температурой 37 °C на 18—20 ч.

5.6.4 Обработка результатов

Появление нингидриноокрашенных компонентов на хроматограмме, совпадающих по положению с нингидриноокрашенными компонентами стандартного образца лизин, а также зон задержки роста тест-культуры от испытуемых компонентов пробы свидетельствует о подлинности препарата.

5.7 Определение токсичности

5.7.1 Аппаратура

Ступка фарфоровая по ГОСТ 9147.

Шприц по ГОСТ 22967.

Иглы инъекционные по ГОСТ 25377.

Вода дистиллированная по ГОСТ 6709.

5.7.2 Проведение испытания

Препарат тщательно растирают в ступке при непрерывном добавлении воды с таким расчетом, чтобы 1 см³ суспензии содержал 200 мг препарата.

Отбирают пять мышей массой 18—20 г и вводят перорально каждой мыши по 0,5 см³ суспензии (из расчета 100 мг препарата на мышь) с помощью инъекционной иглы, на которую направляют оливу диаметром не более 1 мм.

5.7.3 Обработка результатов

Препарат считают нетоксичным, если все мыши остаются живыми в течение трех последующих дней наблюдения. При гибели хотя бы одной мыши в повторном опыте препарат бракуют.

Каждую мышь используют в опыте один раз.

- 5.8 Определение зараженности вредителями— по ГОСТ 13496.13.
- 5.9 Определение поваренной соли по ГОСТ 13496.1.

6 Транспортирование и хранение

6.1 Транспортирование

6.1.1 Кормовой концентрат лизина транспортируют всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.

6.2 Хранение

- 6.2.1 Кормовой концентрат лизина хранят в сухих, защищенных от атмосферных осадков помещениях при температуре не выше плюс 28 °C и не ниже минус 28 °C.
 - 6.2.2 Не допускается хранение кормовой концентрат лизина вместе с ядохимикатами.

7 Гарантии изготовителя

- 7.1 Изготовитель гарантирует соответствие кормовой концентрат лизина требованиям настоящего стандарта при соблюдении условий хранения.
- 7.2 Гарантийный срок хранения кормовой концентрат лизина 1 год со дня изготовления препарата.

FOCT P 57198—2016

Библиография

[1] НПАОП 24.4-1.01—79 Правила безопасности для производства микробиологической промышленности [2] ТУ 14-4-1561—89 Сетка тканая, саржевая с квадратными ячейками 056-МУ-П-1. Технические условия

[3] ТУ 13-7308001-778—89 Бумага для медицинских и физико-химических анализов

УДК 579.66.663:006.354 OKC 65.120

Ключевые слова: кормовой концентрат лизина, тест-культура, пробы

Редактор Р.В. Старшинов Технический редактор В.Н. Прусакова Корректор Ю.М. Прокофьева Компьютерная верстка А.Н. Золотаревой

Сдано в набор 10.11.2016. Подписано в печать 08.12.2016. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,68. Тираж 29 экз. Зак. 3049. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта