ГОСУДАРСТВЕННОЕ САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЕ НОРМИРОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

БОРНИК______ МЕТОДИЧЕСКИХ ДОКУМЕНТОВ, НЕОБХОДИМЫХ ДЛЯ ОБЕСПЕЧЕНИЯ ПРИМЕНЕНИЯ ФЕДЕРАЛЬНОГО ЗАКОНА ОТ 12.06,08 №88-ФЗ

«Технический регламент на молоко и молочную продукцию»

Часть 9

MOCKBA 2009

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

Сборник

методических документов, необходимых для обеспечения применения Федерального закона от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию»

Часть 9

ББК 51.23 С23

С23 Сборник методических документов, необходимых для обеспечения применения Федерального закона от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию»:.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—72 с.

ISBN 5--7508--0771--1

В сборник включены методические документы, содержащие правила и методы исследований (испытаний) и измерений, а также правила отбора образцов для проведения исследований (испытаний) и измерений, в соответствии с постановлением Главного государственного санитарного врача Российской Федерации Г. Г. Онищенко от 08.12.2008 № 67.

ББК 51.23

Технический редактор Г. И. Климова

Подписано в печать 14.05.09

Формат 60х88/16

Тираж 200 экз.

Печ. л. 4,5 Заказ 36

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

ISBN 5-7508-0771-1

- © Роспотребнадзор, 2009
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

Содержание

Энзиматическое агар-диффузное определение фосфорорганических инсектицидов в продуктах животного происхождения	1
Определение полихлорпинена и полихлоркамфена в воздухе,	····· -
воде, почве, картофеле и свекле, мясе, молоке, тканях внутренних	
органов животных, крови, моче тонкослойной хроматографией	8
Определение севина в молоке и молочных продуктах	
газожидкостной хроматографией	17
Определение фосфамида в молоке и тканях животных	
газожидкостной хроматографией	20
Определение фталофоса в молоке и мясе тонкослойной хроматографией	22
Методические указания по определению метилнитрофоса	
в мясе, яйцах, молоке методом газожидкостной хроматографии	25
Методические указания по определению абата (дифоса) в мясе	
и молоке методом хроматографии в тонком слое	27
Методические указания по определению кельтана в молоке	20
газохроматографическим методом	30
Методические указания по определению фоксима (валексона) в молоке и тканях животных методом газожидкостной хроматографии	32
Газоадсорбционный метод определения хлорофоса	22
в молоке, органах и тканях животных и яйцах кур	34
Определение фозалона в молоке и тканях животных, траве, свекле,	
картофеле и комбикорме с помощью тонкослойной хроматографии	37
Определение пропоксура и фенеткарба в молоке и мясе методом	
тонкослойной хроматографии	41
Газохроматографический метод определения валексона в молоке,	4.5
органах и тканях животных	45
Хроматографические методы определения остаточных количеств 2,4- дихлорфеноксиуксусной кислоты (2,4-Д) в воде, почве, фураже,	
дихлорфеноксиуксусной кислоты (2,4-д) в воде, почве, фураже, продуктах питания растительного и животного происхождения	48
Методические указания по определению оксамата в молоке и тканях	, 0
животных методом газожидкостной хроматографии	59
Методические указания по определению содержания общей ртути в	
мясе, мясопродуктах, яйцах, рыбе, молочных продуктах, шоколаде, почве	
колориметрическим способом или при помощи тонкослойной	
хроматографии	62

Определение полихлорпинена и полихлоркамфена в воздухе, воде, почве, картофеле и свекле, мясе, молоке, тканях внутренних органов животных, крови, моче тонкослойной хроматографией

Полихлорпинен (ПХП) — продукт хлорирования хлористого борнила до содержания хлора 64—67 %. По внешнему виду ПХП — вязкое бесцветное масло, по консистенции напоминающее мед (плотность 1,5—1,6 г/см³). Химически полихлорпинен представляет собой сложную смесь хлорированных пиненов. Он практически нерастворим в воде, хорошо растворяется в органических растворителях. Выпускаются 20 %-ный и 50 %-ный масляные растворы, а также 65 %-ный концентрат эмульсии.

Полихлоркамфен (ПХК, $C_{10}H_{10}Cl_8$) представляет собой продукт хлорирования камфена до содержания хлора 67—69 %. По внешнему виду ПХК — воскообразное вещество белого цвета с температурой плавления 65—69 °С. Плотность 1,6 г/см³, относительная молекулярная масса 413,8. Химически полихлоркамфен представляет собой сложную смесь полихлоркамфенов и камфенов различного строения. Он практически нерастворим в воде, но хорошо растворяется во многих органических растворителях. Применяют в виде дустов или суспензий, а также в виде эмульсий и растворов.

Принцип метода. Метод основан на извлечении ПХП (ПХК) из пробы *н*-гексаном, очистке экстракта концентрированной серной кислотой и хроматографировании в тонком слое адсорбента.

При наличии ДДТ и других хлорорганических пестицидов в исследуемой пробе применяется микротонкослойная хроматография. В качестве адсорбента используют силикагель с величиной зерен 3—10 мкм, нанесенный на стеклянные пластинки 6×6 см. Подвижным растворителем служит смесь μ -гексана с метиловым спиртом и аммиаком в соотношении 10:4:0,3. При этом достигается разделение ПХП или ПХК и ДДТ.

Если ДДТ и других хлорорганических пестицидов в анализируемой пробе нет, кроме микротонкослойной хроматографии, возможно применение макротонкослойной хроматографии. В качестве адсорбента используют силикагель, просеянный через сито 100 меш и нанесенный на пластинки 9×12 см. В качестве подвижного растворителя служит смесь *н*-гексана с этилацетатом в отношении 5:1. Разделение ПХП или ПХК и ДДТ не достигается.

^{*} Н. И. Киселева, М. А. Клисенко (ВНИИГИНТОКС).

Хроматограммы проявляют двумя способами.

І способ. Раствором азотно-кислого серебра и аммиака в ацетоне с последующим ультрафиолетовым облучением. ПХП, ПХК, ДДТ и другие хлорорганические пестициды проявляются в виде черных пятен на белом фоне. Минимально детектируемое количество ПХП (ПХК) на микропластинках 0,2—0,3 мкг, на макропластинках 0,5—1,0 мкг.

II способ. Раствором дифениламина и хлористого цинка в ацетоне с последующим выдерживанием пластинки при 140—150 °С. ПХП и ПХК проявляются в виде голубовато-зеленых пятен, ДДТ и ДДЭ − в виде красных, ДДД − голубых, гептахлор − синих пятен. ГХЦГ и альдрин не проявляются. Минимально детектируемое количество ПХП (ПХК) на микропластинках 1,0 мкг, на макропластинках 10 мкг.

Чувствительность определения ПХП и ПХК с помощью дифениламина составляет 2 мкг, с помощью азотно-кислого серебра — 0,5—0,6 мкг в пробе. Полнота определения в различных объектах 85—95 %, в жировой ткани 65 %.

Реактивы и растворы

Азотно-кислое серебро.

25 %-ный раствор аммиака х.ч.

Ацетон х.ч.

Вата гигроскопическая, промытая эфиром и высушенная. 0,5 г ваты промывают 5—10 мл диэтилового эфира, упаривают эфир до небольшого объема и наносят на хроматографическую пластинку, которую опускают в камеру с подвижным растворителем. Далее поступают, как при определении препарата. Если нет пятен, аналогичных по величине R_f пятнам определяемого препарата, вата пригодна для отбора проб воздуха.

н-Гексана х.ч.

Кальций серно-кислый ($CaSO_4 \cdot 2H_20$) В течение 1—2 суток кальций серно-кислый прокаливают при температуре 160 °C и просеивают через сито 100 меш. Хранят в склянке с притертой пробкой.

Проявляющий раствор № 1. 0,5 г азотно-кислого серебра растворяют в 2,5 мл дистиллированной воды, прибавляют 3 мл аммиака и доводят ацетоном до метки в мерной колбе на 50 мл.

Проявляющий раствор № 2. 0,5 г дифениламина и 0,5 г хлористого цинка растворяют в 100 мл ацетона. Реактив готовят перед использованием.

Силикагель КСК очищенный. Силикагель заливают на 18—20 ч соляной кислотой (1:1). Кислоту сливают, промывают силикагель водой и кипятят с разведенной азотной кислотой (1:1) в течение 2—3 ч. Про-

мывают сначала горячей водопроводной, а затем дистиллированной водой до нейтральной реакции промывных вод (проба с лакмусовой бумажкой или метилоранжем) и до удаления в промывных водах следов хлоридов (проба с азотно-кислым серебром). Далее силикагель сущат 4—6 ч в шкафу с температурой 130 °С при помешивании. Дробят на шаровой мельнице или электромельнице. Размолотый и просеянный через сито 100 меш силикагель необходим для приготовления пластинок 9 × 12 см.

Силикагель с величиной зерен 3—10 мкм, полученный путем фракционирования (см. ниже), необходим для приготовления пластинок 6×6 см.

Силикагель с величиной зерен 0,5 мм, полученный просеиванием через сита, необходим для отбора проб воздуха.

Спирт метиловый х.ч.

Стандартный раствор. 0.025 г пестицида растворяют в μ -гексане в мерной колбе по 50 мл. Концентрация раствора 500 мкг/мл.

Фильтры беззольные.

Посуда и оборудование

Аспиратор.

Аллонжи стеклянные (длина 100—110 мм, диаметр 17 мм), плотно заполненные гигроскопической ватой (1,0—1,2 г).

Гофрированные стеклянные трубки (длина 90—100 мм, диаметр 10 мм) с меткой у одного конца, плотно заполненные силикагелем КСК с диаметром зерен 0,5 мм (3—4 г). Трубки с обоих концов должны быть закрыты гигроскопической ватой.

Кварцевая лампа ПРК-4 или ПРК-2.

Камера для опрыскивания пластинок (стеклянный колпак). Камеры для хроматографирования. Батарейный стакан высотой 160 мм и диаметром 95 мм и батарейный стакан высотой 130 мм и диаметром 70 мм. Капилляры для нанесения проб. Колба для отгонки растворителя грушевидная.

Крышка стеклянная (рис. 6). Пластинка 60×60 мм с приклеенными с трех сторон стеклянными полосками 5×50 мм. Пластинки стеклянные 6×6 и 9×12 см.

Прибор для отгонки растворителя.

Пульверизатор стеклянный.

Стаканы батарейные высотой 200 мм и диаметром 140 мм для фракционирования силикагеля.

Шкаф сушильный.

Шприц или микропипетка вместимостью 10—20 мкл.

Электрическая мельница для размола силикагеля или шаровая мельница.

Патрон для фильтра.

Фракционирование силикагеля

Гранулы силикагеля КСК промывают проточной, затем дистиллированной водой, подсушивают при температуре 120 °С и грубо размалывают ручной мельницей, а затем в течение 4—5 ч более мелко размалывают шаровой или электрической мельницей.

Суспензию 250 г измельченного силикагеля в 2,5 л дистиллированной воды помещают в батарейный стакан ($h=200\,\mathrm{mm},\,d=140\,\mathrm{mm}$). Высота слоя жидкости в стакане должна быть 19 см. Тщательно перемешивают содержимое стакана и оставляют на 16 мин. После этого надосадочную жидкость переливают во второй стакан аналогичного размера и доливают воду до уровня 19 см. В этом стакане суспензию отстаивают 30 мин, надосадочную жидкость сливают в третий стакан и оставляют на 60 мин. Жидкость переливают в четвертый стакан, отстаивают 120 мин. В четвертом стакане оседают частицы диаметром 3—10 мкм. Надосадочную жидкость выливают, а осадок собирают и высушивают при 130—140 °C в течение суток. Полученную таким образом фракцию силикагеля (3—10 мкм) применяют для приготовления пластинок 6 × 6 см.

Осадок из первых трех стаканов собирают, высушивают, размалывают и используют для седиментации.

Приготовление пластинок

Пластинки 6×6 см тщательно моют раствором хромовой смеси, проточной, затем дистиллированной водой и сущат.

0,3 г силикагеля (3—10 мкм) и 0,015 г гипса растирают в фарфоровой ступке и прибавляют небольшими порциями дистиллированную воду (2,5 мл). Полученную массу осторожно выливают на стеклянную пластинку и оставляют сохнуть до следующего дня на воздухе. Затем пластинку нагревают в сушильном шкафу при 130—140 °С в течение 20 мин. С трех сторон пластинки соскабливают слой силикагеля шириной 0,7—0,8 см. Хранят пластинки в эксикаторе над хлористым кальцием. Перед использованием пластинку нагревают 20 мин при указанной температуре и охлаждают; сразу наносят анализируемую пробу и стандартные растворы.

Пластинки 9×12 см моют, как описано выше. Размолотый на мельнице силикагель просеивают через сито 100 меш. 14 г силикагеля и 1 г гипса смешивают в колбе, приливают 40 мл дистиплированной воды и взбалтывают 20 мин на аппарате для встряхивания. Приготовленную сорбционную массу равномерно наносят на пять пластинок. Сушат их при комнатной температуре 17—20 ч. Пластинки выдерживают 20 мин в сушильном шкафу при 130—140 °C. Хранят в эксикаторе над хлористым кальцием.

Отбор проб воздуха рабочей зоны

- 1. Для отбора препарата в капельно-жидком или пылеобразном состоянии исследуемый воздух со скоростью до 10 л/мин протягивают через вложенный в патрон бумажный фильтр*.
- 2. Для отбора препарата в парообразном состоянии воздух со скоростью 2 л/мин протягивают через гофрированную трубку с силикагелем. Необходимо протянуть 120—200 л воздуха.

Ход анализа. Вынимают фильтр из патрона (или вату из аллонжа), переносят в стакан и извлекают препарат трижды н-гексаном по 5 мл (или диэтиловым эфиром), отжимая последний стеклянной палочкой в цилиндр.

Адсорбированные силикагелем пары ядохимиката извлекают *н*-гексаном или диэтиловым эфиром. Для этого конец гофрированной трубки, который был обращен к аспиратору во время отбора пробы, соединяют встык с воронкой. Другой конец опускают в цилиндр, содержащий гексановый раствор ядохимиката, извлеченного из ваты или фильтра. Для промывания трубки с силикагелем через воронку наливают по каплям 50—60 мл *н*-гексана или диэтилового эфира в течение 15—20 мин.

Высыпают силикагель из гофрированной трубки, приливают к нему n-гексан (10—15 мл) и настаивают 30 мин. Декантируют n-гексан в цилиндр, содержащий гексановые экстракты из ваты и силикагеля. Выпаривают n-гексан досуха. Приливают к сухому остатку 0,05—0,1 мл n-гексана. Отбирают микропипеткой аликвотную часть (10—20 мкл) и наносят на пластинку и хроматографируют.

Вода (речная, озерная, питьевая и др.). 100 мл воды экстрагируют *н*-гексаном трижды (по 50 мл в течение 3 мин каждый раз). Экстракты объединяют и промывают концентрированной серной кислотой порциями

^{*} Вместо бумажных фильтров можно использовать гигроскопическую вату, вложенную в аллонж. Скорость протягивания воздуха 2 л/мин.

по 25 мл до тех пор, пока свежая порция кислоты не перестанет окрашиваться и мутнеть. Слой кислоты отбрасывают, а *н*-гексан промывают дистиплированной водой 2—3 раза по 100—150 мл до нейтральной реакции. Фильтруют экстракт через воронку, заполненную безводным сернокислым натрием, и упаривают досуха. К охлажденному остатку приливают 0,05—0,1 мл *н*-гексана. Микропипеткой отбирают аликвотную часть (10—20 мкл) и наносят на пластинку. Проводят хроматографирование.

Почва. К 50—100 г почвы, просушенной на воздухе и просеянной через сито, добавляют 50 мл дистиллированной воды. К увлажненной почве прибавляют 200 мл смеси н-гексана и ацетона (160 мл н-гексана и 10 мл ацетона). Смесь в колбе энергично перемешивают в течение одного часа на аппарате для встряхивания. После разделения слоев гексановый слой отделить трудно, жидкость переносят в узкий цилиндр и пипеткой отбирают верхний гексановый слой. К оставшейся почве добавляют смесь н-гексана с ацетоном в количестве, которое указывалось выше. Экстракцию повторяют. Гексановые экстракты объединяют и проводят очистку серной кислоты описанным выше способом.

Картофель, свекла, мясо, ткани внутренних органа в животных (сердце, печень, почки, легкие, селезенка, мозг, мышечная ткань). 25—50 г картофеля, свеклы, их ботвы, мяса, тканей внутренних органов крупных животных или 1—2 г тканей мелких животных после измельчения заливают н-гексаном так, чтобы проба была полностью покрыта им. Встряхивают на аппарате в течение часа. После декантации пробу заливают свежей порцией н-гексана и встряхивают еще 1 ч. Декантируют н-гексан. Вытяжки объединяют и очищают концентрированной серной кислотой, как описано выше. Для уменьшения порций кислоты настаивают экстракт над ней в течение часа и периодически встряхивают. Пробы ботвы свеклы и картофеля надо очищать не только кислотой, но и ацетоном. Для этого к упаренному досуха экстракту приливают холодный ацетон и фильтруют через бумажный фильтр. Если требуется, очистку ацетоном повторяют. Упаривают досуха, приливают 0,05—0,01 мл н-гексана, отбирают микропипеткой аликвотную часть и наносят на пластинку.

Жировая ткань. 2 г пробы измельчают, растирают в фарфоровой ступке и переносят в химическую колбу. Прибавляют 10—15 мл концентрированной серной кислоты и периодически встряхивают содержимое колбы в течение часа. Прибавляют н-гексан (20—30 мл) и снова периодически встряхивают в течение часа. Экстракт декантируют и экстракцию повторяют. Объединенные экстракты очищают концентрированной серной кислотой, как описано для воды.

Кровь, моча. 5 мл крови или 30—50 мл мочи экстрагируют трижды порциями диэтилового эфира по 10 мл и 30—50 мл соответственно. Эфирные вытяжки объединяют и фильтруют через слой безводного сернокислого натрия в колбу для отгонки растворителя. Выпаривают на водяной бане досуха. Затем приливают 0,05—0,1 мл н-гексана, отбирают аликвотную часть и наносят на пластинку.

Рис. 6. Стеклянная крышка (слева) и пластинка с тонким слоем силикагеля (справа). Штриховкой показан слой силикагеля, к которому прикладывают крышку (размеры в миллиметрах).

Молоко. К 50 мл молока в делительной воронке приливают 25—30 мл разбавленной серной кислоты (1:1) и взбалтывают. После створаживания молока проводят экстракцию н-гексаном дважды по 50 мл в течение 5 мин каждый раз. Чтобы ускорить разделение слоев, в воронку добавляют несколько капель этилового спирта. Гексановые экстракты объединяют, приливают к ним 20—25 мл концентрированной серной кислоты, осторожно взбалтывают, оставляют воронку. После разделения слоев нижний слой отбрасывают. К гексану приливают свежую порцию кислоты и в течение часа периодически встряхивают. Нижний слой отбрасывают. Дальнейшая очистка возможна двумя способами:

- 1) серной кислотой до тех пор, пока свежая порция кислоты не перестанет окрашиваться и мутнеть (3—6 порций кислоты);
- 2) колоночной хроматографией. Стеклянную колонку высотой 200 мм и диаметром 20 мм заполняют силикагелем марки АСК (объем 70 мл). Предварительно пропускают 50 мл н-гексана и прошедший растворитель отбрасывают. На подготовленную таким образом колонку наносят упаренный до 30 мл экстракт молока. После того как экстракт впитается в сорбент, препараты элюируют 90—100 мл н-гексана. Элюат упаривают досуха, приливают 0,05—0,1 мл н-гексана, отбирают аликвотную часть и наносят на пластинку.

Хроматографирование. Если в анализируемой пробе содержатся совместно полихлорпинен (полихлоркамфен) и ДДТ, экстракт наносят на пластинки 6×6 см. Расстояние точек нанесения от нижнего и бокового края пластинки 8 мм, расстояние между точками нанесения 10 мм.

Стандартные растворы наносят микропипеткой (10—20 мкл), пробы наносят капилляром. Пробы и стандартные растворы наносят так, чтобы диаметр пятна не превышал 3 мм. Стандартный раствор (концентрация 500 мкг/мл) наносят в количестве 5—10 мкг. После нанесения проб и стандартного раствора к пластинке прикладывают стеклянную крышку (рис. 6) так, чтобы она не прикасалась к силикагелю. Пластинку и крышку скрепляют резиновым кольцом и опускают в камеру для хроматографирования.

Подвижным растворителем служит смесь H-гексана с метиловым спиртом и аммиаком (10 : 4 : 0,3). После поднятия подвижного растворителя на высоту 4 см пластинку с крышкой вынимают из камеры, крышку снимают, пластинку сушат и опрыскивают 0,5 %-ным раствором дифениламина и хлористого цинка в ацетоне. Далее пластинку выдерживают в сушильном шкафу 10—15 мин при 140—150 °С. При наличии полихлорпинена или полихлоркамфена появляется голубоватозеленое пятно. Пятна ДДТ и ДДЭ окрашиваются в красный цвет, ДДД — в голубой, пятна альдрина и ГХЦГ не окрашиваются. Значения R_f хлорорганических пестицидов приведены в таблице 7.

Таблице 7 Значения R, хлорорганических пестицидов и чувствительность определения их с помощью азотно-кислого серебра и дифениламина+хлорисгый цинк

Пестицид	R_f	Чувствительность, мкг	
		азотно-кислое серебро	дифениламин + хлористый цинк
Полихлорпинен	$0,55 \pm 0,05$	0,5	1,0
Полихлоркамфен	$0,55 \pm 0,05$	0,5	1,0
ддт	$0,65 \pm 0,4$	0,2	1,0-2,0
ддэ	0.73 ± 0.02	0,5	80,0
ДДД	$0,47 \pm 0,04$	0,5	0,5
Гептахлор	$0,68 \pm 0,03$	0,3	40,0
Альдрин	$0,76 \pm 0,02$	0,3	не обнаруживается
ГХЦГ (ү-изомер)	$0,30 \pm 0,02$	0,3	то же

Возможно проявление пятен пестицидов с помощью азотнокислого серебра (проявляющий реактив № 1). Хотя чувствительность определения с помощью азотно-кислого серебра высокая, более надежная идентификация достигается при использовании дифениламина + хлористый цинк.

Если в пробах не содержатся ДДТ и другие хлорорганические пестициды, возможно хроматографирование экстрактов на пластинках

 9×12 см. Микропипеткой на пластинку наносят исследуемую пробу в одну точку так, чтобы диаметр пятна не превышал 1 см. На расстоянии 2 см от пробы на пластинку наносят стандартный раствор ПХП (ПХК) и проводят хроматографирование в смеси n-гексана с этилацетатом (5:1). После окончания хроматографирования пластинку сушат на воздухе и опрыскивают раствором азотно-кислого серебра и аммиака в ацетоне. Пластинку сушат и подвергают ультрафиолетовому облучению до проявления пятен (10—15 мин). При наличии ПХП (ПХК) и других хлорорганических пестицидов появляются черные пятна на белом фоне.

 R_f для ПХП (ПХК) составляет 0,83 ± 0,05, для ДДТ - 0,85 ± 0,05. Определению мешают также другие хлорорганические пестициды. Количественное определение осуществляется путем сравнения площадей пятен пробы и стандартного раствора.

Расчет. Концентрацию препаратов в воздухе (мг/м³) вычисляют по формуле:

$$X = \frac{A \cdot C}{B \cdot V_a}$$
, где

А - количество препарата, найденное сравнением со стандартом, мкг;

В - количество исследуемого раствора, взятое для анализа, мл;

С – общий объем исследуемого раствора пробы, мл;

 V_o – объем исследуемого воздуха приведенный к нормальным условиям, л.

Расчет содержания препаратов в пробах воды, почвы, продуктов растительного и животного происхождения, крови, моче производится по формуле:

$$X = \frac{A \cdot C}{P \cdot B}$$
, где

Х - содержание препарата, мг/кг или мг/л;

A – количество пестицида, найденное путем сравнения со стандартом, мкг;

Р - масса пробы, г;

В - количество исследуемого раствора, взятое для анализа, мг;

С – общий объем исследуемого раствора пробы, мл.

Если проба содержит менее 10 мкг (ПХП, ПХК), па пластинку количественно наносят весь остаток экстракта после упаривания. Для расчета используют формулу:

$$X = \frac{A}{P}$$