ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ FOCT P 57160— 2016/ EN 12512:2001+A1: 2005

КОНСТРУКЦИИ ДЕРЕВЯННЫЕ

Методы циклических испытаний узлов с механическими креплениями

(EN 12512:2001+A1:2005, Holzbauwerke — Prüfverfahren — Zyklische von Anschlüssen mit mechanischen Verbindungsmitteln, IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Центральным научно-исследовательским, проектно-конструкторским и технологическим институтом им. В.А. Кучеренко (ЦНИИСК им. В.А. Кучеренко), отделением Акционерного общества «Научно-исследовательский центр «Строительство» (АО «НИЦ «Строительство») на основе официального перевода на русский язык немецкоязычной версии указанного в пункте 4 европейского стандарта, который выполнен Федеральным государственным унитарным предприятием «Российский научно-исследовательский центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 октября 2016 г. № 1404-ст
- 4 Настоящий стандарт идентичен европейскому стандарту EH 12512:2001+A1:2005 «Конструкции деревянные. Методы испытаний. Циклические испытания соединений с механическими крепежными элементами» (EN 12512:2001+A1:2005 «Holzbauwerke Prüfverfahren Zyklische von Anschlüssen mit mechanischen Verbindungsmitteln», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного европейского стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочного европейского стандарта соответствующий ему национальный стандарт, сведения о котором приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Термины и определения	1
4	Обозначения	2
5	Требования	2
6	Метод испытаний	3
	6.1 Общие положения	3
	6.2 Аппаратура	3
	6.3 Подготовка образцов для испытаний	5
	6.4 Методы испытаний	5
7	Результаты испытаний	6
8	Протокол испытаний	7
П	риложение ДА (справочное) Сведения о соответствии ссылочного европейского стандарта	
	национальному стандарту Российской Федерации	8

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОНСТРУКЦИИ ДЕРЕВЯННЫЕ

Методы циклических испытаний узлов с механическими креплениями

Timber structures.

Methods for cyclic testing of joints with mechanical fasteners

Дата введения — 2017—05—01

1 Область применения

Настоящий стандарт устанавливает методы испытаний для определения пластичности, уменьшения прочности и диссипации (рассеяния) энергии для соединений с механическими крепежными элементами при циклической нагрузке.

П р и м е ч а н и е — В настоящем стандарте рассматриваются только прямые осевые нагрузки и их воздействие. Настоящий стандарт также допускается использовать для определения характеристик крепежных элементов, связанных с восприятием момента.

2 Нормативные ссылки

Настоящий стандарт содержит датированные и недатированные ссылки на стандарты и положения других документов. Нормативные ссылки, перечисленные ниже, приведены в соответствующих разделах настоящего стандарта. Для датированных ссылок последующие изменения к упомянутым стандартам или их пересмотры применяют к настоящему стандарту только в случае, когда они включены в него путем уточнения или переработки. Для недатированных ссылок применяют последнее издание ссылочного стандарта (включая все изменения).

EN 26891, Holzbauwerke — Verbindungen mit mechanischen Verbindungsmitteln — Allgemeine Grundsätze für die Ermittlung der Tragfähigkeit und des Verformungsverhaltens (Конструкции деревянные. Соединения механические деревянных конструкций. Общие принципы определения прочности и деформации) ISO 6891:1983, Timber structures — Joints made with mechanical fasteners — General principles for the determination of strength and deformation characteristics

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 циклическая нагрузка (cyclic load*, zyklische Belastung**): Знакопеременная осевая нагрузка.
- 3.2 **предельная нагрузка** (maximum load*, Höchstlast**): Максимальная нагрузка F_{max} , которая прикладывается к соединению во время испытания (см. рисунок 2).
- 3.3 нагрузка на пределе текучести (yield load*, Flielast**): Нагрузка, которая соответствует переходу в зону пластических деформаций.

^{*} en.

^{**} de.

FOCT P 57160—2016

П р и м е ч а н и е — Если кривая зависимости «нагрузка — деформация» четко показывает две линейные части, то значения текучести определяются от точки пересечения этих двух прямых [см. рисунок 1a)]. Если кривая зависимости «нагрузка — деформация» не имеет двух четких линейных частей, то значения текучести определяются от точки пересечения двух следующих прямых: первую прямую следует определить как прямую, которая на кривой зависимости «нагрузка — деформация» проходит через точки $0.1F_{\max}$ и $0.4F_{\max}$; вторая прямая является касательной, которая имеет подъем, равный 1/6 подъема первой прямой [см. рисунок 1b)].

- 3.4 разрушающая нагрузка (ultimate load*, Bruchlast**): Нагрузка на соединение, которая соответствует:
 - а) разрушению;
 - b) 80 % предельной нагрузки при деформации соединения менее чем на 30 мм;
 - с) деформации соединения на 30 мм в зависимости от того, что произошло раньше (рисунок 2).
- 3.5 деформации при текучести (yield slip*, Fließverschiebung**): Деформации соединения, которые соответствуют нагрузке на пределе текучести [см. рисунки 1a) и 1b)].
- 3.6 предельные деформации (maximum slip*, Grenzverchiebung**): Деформации соединения, соответствующие разрушающей нагрузке (см. рисунок 2).
- 3.7 пластичность (ductility*, Duktilität**): Способность соединения подвергаться в пластической области деформациям большей амплитуды, не показывая существенного уменьшения прочности. Она определяется по соотношению предельной деформации к деформации при текучести $D = V_{\rm u}/V_{\rm w}$.

П р и м е ч а н и е — Вышеприведенные определения даны для циклических кривых зависимости «нагрузка — деформация», однако их также допускается применять для статических кривых зависимости «нагрузка деформация».

3.8 уменьшение прочности (impairment of strength*, Festigkeitsminderung**): Снижение прилагаемой нагрузки между первым и третьим циклами одинаковой амплитуды, чтобы достичь заданной деформации соединения (см. рисунок 3).

Примечание — Уменьшение прочности измеряют как ΔF , с помощью $\Delta F = |\Delta F_a|$ на стороне сжатия и $\Delta F = |\Delta F_{\rm t}|$ на стороне растяжения.

3.9 диссипация (рассеяние) энергии (energy dissipation*, Energiedissipation**): Характеристика соединения, которая, согласно настоящему стандарту, измеряется как эквивалентное пропорциональное относительное затухание через гистерезис. Это безразмерный параметр, который выражает смягчаемые гистерезисом характеристики соединения и определяется как отношение распределенной энергии полуцикла к имеющейся потенциальной энергии, умноженное на 2π (см. рисунок 4); эквивалентное пропорциональное относительное затухание определяется как $v_{\rm eq} = E_{\rm d}(2\pi E_{\rm p})$.

4 Обозначения

D — пластичность;

 $E_{
m d}$ — диссипация (рассеяние) энергии, Н/м; $E_{
m p}$ — существующая потенциальная энергия, Н/м;

F — прилагаемая нагрузка, H;

 F_{max} — предельная нагрузка, H;

— разрушающая нагрузка, H;
— нагрузка на пределе текучести, H;

V_u— предельные деформации, мм;

 V_{v} — деформация при текучести, мм;

 $V_{
m v.\,est}$ — определенная деформация при текучести, мм;

 ΔF — уменьшение прочности, H;

 $v_{\rm eq}$ — эквивалентное относительное затухание.

5 Требования

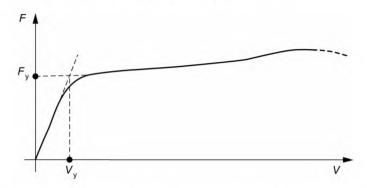
В настоящем стандарте требования отсутствуют.

^{*} en.

^{**} de.

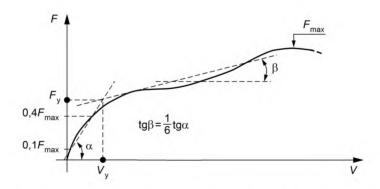
6 Метод испытаний

6.1 Общие положения


Пластичность, эквивалентное относительное затухание и уменьшение прочности соединений определяются стандартным квазистатическим (очень медленным, практически не меняющимся) испытанием под нагрузкой.

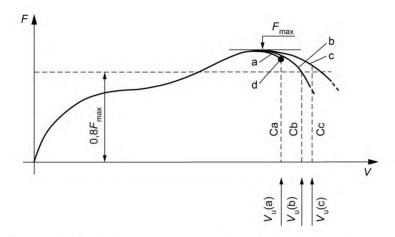
6.2 Аппаратура

Дополнительно к приборам для измерения геометрии испытуемых образцов и измерения влажности образцов необходимо применять следующее оборудование:


- а) универсальные испытательные машины (на растяжение и сжатие) с регулированием хода:

 - с точностью измерения высоты хода $\pm 1~\%~V_{\rm y,\,est}$ или выше, с точностью измерения высоты хода $\pm 1~\%~F_{\rm max,\,est}$ или выше.

F — нагрузка; $F_{
m V}$ — нагрузка на пределе текучести; V — деформация; $V_{
m V}$ — деформация при текучести


а) Определение значений текучести для кривой зависимости «нагрузка — деформация» с двумя четкими линейными частями

F — нагрузка; F_{\max} — предельная нагрузка; F_{y} — нагрузка на пределе текучести; V — деформация; V_{y} — деформация при текучести

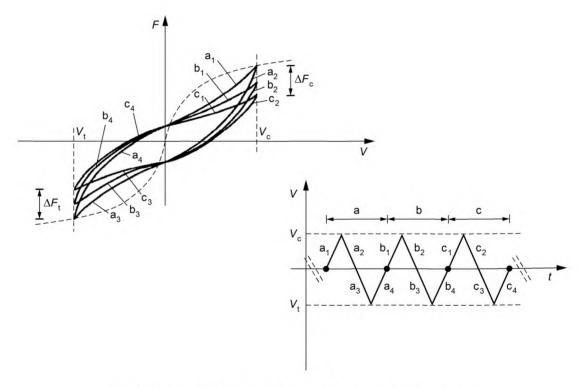

b) Определение значений текучести для кривой зависимости «нагрузка — деформация» без двух четких линейных частей

Рисунок 1 — Определение значений текучести для кривой зависимости «нагрузка — деформация»

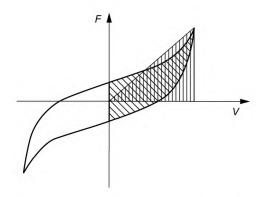

 F — нагрузка; F_{\max} — предельная нагрузка; C_{a} — случай «а»; V — деформация

Рисунок 2 — Определение предельных значений V, соответствующих разрушению (случай «а») или деформации при $0.8F_{\rm max}$ (случай «b»), или деформации на 30 мм (случай «с»)

V — деформация; а, b, c — циклы; t — время; c — сжатие; t — растяжение

Рисунок 3 — Определение уменьшения прочности

 \bigcirc — диссипация (рассеяние) энергии E_d каждый полуцикл;

Рисунок 4 — Определение эквивалентного пропорционального относительного затухания для петлевого цикла

b) устройство для непрерывного измерения деформаций соединения с точностью измерения $\pm 1\,\%$ или выше.

6.3 Подготовка образцов для испытаний

6.3.1 Общие положения

Образец для испытаний должен соответствовать эксплуатируемому, реально применяющемуся на практике соединению.

6.3.2 Кондиционирование

Испытания проводят на образцах для испытаний, которые выдерживались при нормальных климатических условиях: температура (20 ± 2) °C и относительная влажность воздуха (65 ± 5) %. Дополнительная информация приведена в EH 26891.

6.3.3 Испытательная лаборатория

В испытательной лаборатории должны поддерживаться нормальные климатические условия. Возникающие отклонения следует фиксировать в протоколе испытаний.

6.3.4 Влажность образцов

Следует определить содержание влаги в изготовленных образцах.

6.4 Методы испытаний

6.4.1 Общие положения

Испытание следует проводить при постоянной скорости нагружения от 0,02 до 0,2 мм/с. Следует предусмотреть боковые опоры во избежание выхода образца из заданной плоскости. Нагрузку и деформации следует измерять непрерывно.

6.4.2 Полноценный метод испытаний

Для построения полной определяющей огибающей кривой зависимости «нагрузка — деформация» следует применять полноценный метод испытаний под нагрузкой по рисунку 5.

1-й цикл:

- 1) Прикладывают сжимающую нагрузку, пока деформация не составит 25 % установленного значения при текучести $V_{y, \text{est.}}$ Значение $V_{y, \text{est.}}$ может быть определено расчетом, опытным путем или с помощью ранее проведенных статических испытаний по EH 26891.
- 2) Образец разгружают и прикладывают растягивающую нагрузку до получения нулевых деформаций.
 - 3) Прикладывают растягивающую нагрузку до получения деформаций, составляющих 25 % $V_{\rm v.est}$.
- 4) Образец снова разгружают и прикладывают сжимающую нагрузку до получения нулевых деформаций.

FOCT P 57160-2016

2-й цикл:

- 1) Прикладывают сжимающую нагрузку до получения деформаций, составляющих 50 % $V_{\rm v \ est}$.
- Образец разгружают и прикладывают растягивающую нагрузку до получения нулевых деформаций.
 - 3) Прикладывают растягивающую нагрузку до получения деформаций, составляющих 50 % $V_{\rm v.est}$.
- 4) Образец снова разгружают и прикладывают сжимающую нагрузку до получения нулевых деформаций.

3-й, 4-й, 5-й циклы (серия из трех циклов):

Второй цикл повторяют трижды, но до получения деформаций, составляющих 75 % $V_{y, est}$.

6-й, 7-й, 8-й циклы (серия из трех циклов):

Второй цикл повторяют трижды, но до получения деформаций $V_{\mathrm{v.est}}$

Следующие серии из трех циклов:

Второй цикл повторяют трижды согласно значениям $2V_{y,est}$, $4V_{y,est}$, $6V_{y,est}$ до разрушения образца либо до получения деформаций, равных 30 мм.

Испытание повторяют, если $V_y < 0.5 V_{y, est}$.

6.4.3 Упрощенный метод испытаний

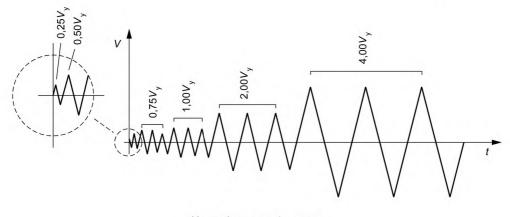
Для определения только основных характеристик ΔF и $V_{\rm eq}$ при заранее установленной степени пластичности D допускается применять следующий упрощенный метод:

1-й цикл:

- 1) Равномерно прикладывают сжимающую нагрузку, пока деформации не достигнут значений $V_{\rm c} = DV_{\rm y}$, где $V_{\rm y}$ представляет собой деформации при текучести, которые определены в предшествующих статических испытаниях по EH 26891 или непосредственно во время текущих испытаний.
- 2) Образец разгружают и прикладывают сжимающую нагрузку до получения нулевых деформаций.
 - 3) Продолжают прикладывать растягивающую нагрузку до получения деформаций $V_* = DV_{v}$.
- 4) Образец разгружают и прикладывают сжимающую нагрузку до получения нулевых деформаций.

2-й цикл:

Повторяют первый цикл.


3-й цикл:

Повторяют первый цикл.

7 Результаты испытаний

Дополнительно к диаграммам зависимостей «нагрузка — деформация» и «деформация — время» следует оценивать и заносить в протокол испытаний следующие величины:

- для полноценного метода испытаний:
- а) уменьшение прочности для каждой серии из трех циклов при каждой испытуемой степени пластичности как при растяжении, так и при сжатии;
- b) относительное затухание для каждой испытуемой степени пластичности, рассчитанное по третьему циклу каждой серии из трех циклов;
- с) как при сжатии, так и при растяжении наибольшая полученная степень пластичности для каждой испытуемой степени пластичности относительно огибающей кривой зависимости «нагруз-ка деформация» для 1-го цикла каждой серии из трех циклов. Далее следует занести в протокол значения $V_{\rm u}$ и $V_{\rm v}$ с соответствующими значениями $F_{\rm u}$ и $F_{\rm v}$ (а также $F_{\rm max}$);
 - для упрощенного метода испытаний:
- а) уменьшение прочности при установленной степени пластичности как при растяжении, так и при сжатии;

V — деформация; t — время

Рисунок 5 — Метод для циклического испытания (полноценный метод)

b) эквивалентное пропорциональное относительное затухание, которое соответствует третьему циклу при установленной степени пластичности.

8 Протокол испытаний

В протоколе испытаний следует указать:

- а) породу и плотность древесины;
- b) тип и характеристики крепежных элементов, включая размеры и покрытия;
- с) размеры соединенных частей, число крепежных элементов, расположение и расстояния, указания о возможных зазорах между строительными элементами;
- d) предварительную обработку древесины и испытуемого образца до и после изготовления, влажность древесины при изготовлении и при испытании, наличие трещин и т. п.;
 - е) расположение и тип измерительной аппаратуры;
 - f) расположение и тип испытательной машины и ее системы управления;
- g) примененный метод испытания (со ссылкой на 6.4) и указание на имеющиеся при определенных условиях отклонения; выбранную скорость нагружения;
- h) отдельные результаты для каждого соединения (со ссылкой на раздел 7), а также определяющие сведения о характере разрушения.

Приложение ДА (справочное)

Сведения о соответствии ссылочного европейского стандарта национальному стандарту Российской Федерации

Таблица ДА.1

деревянных кон- прочностных и де-

УДК 624.011.1:006.354

OKC 91.080.30

ОКПО 53 6660

Ключевые слова: конструкции деревянные, соединения механические, методы циклических испытаний узлов

Редактор *Т.Т. Мартынова*Технический редактор *В.Ю. Фотиева*Корректор *Л.С. Лысенко*Компьютерная верстка *И.А. Налейкиной*

Сдано в набор 18.10.2016. Подписано в печать 02.11.2016. Формат $60 \times 84\frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,12. Тираж 28 экз. Зак. 2721. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта