министерство геологии ссср

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МИНЕРАЛЬНОГО СЫРЬЯ (ВИМС)

Научный совет по аналитическим методам

Ядерно-физические методы

Инструкция № 122-ЯФ

МАРГАНЕЦ И ЖЕЛЕЗО

Выписка из приказа ГГК СССР № 229 от 18 мая 1964 года.

- 7. Министерству геологии и охрани недр Казахской ССГ, главным управлениям и управлениям геологии и охраны недр при Советах Министров союзных республик, научно-исследовательским институтам, организациям и учреждениям Госгеолкома СССР:
- а) обязать лаборатории при выполнении количественных анализов геологических проб применять методы, рекомендованные ГОСТами, а также Научным советом, по мере утверждения последних БИМСом.

При отсутствии ГОСТов и методов, утвержденных ВИМСом, разредить временно применение методик, утвержденных в по-рядке, предусмотренном приназом от I ноября 1954г. У 998;

в) выделить лиц, ответственных за выполнение лабораториями установленных настоящим приказом требований к применению наиболее прогрессивных методов анализа.

ПРИЛОЖЕНИЕ № 3 § 8. Размножение инструкций на местах во избежение возможных искажений разрешается только фотографическим лутем.

МИНИСТЕРСТВО ГЕОЛОГИИ СССР Научный Совет по аналитическим методам при ВИМСе

Ядерно-физические методы Инструкция № 122-ЯФ

ФЛУОРЕСЦЕНТНЫЙ РЕНТГЕНОРАДИОМЕТРИ— ЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАРГАНЦА И ЖЕЛЕЗА В МАРГАНЦЕВЫХ И ЖЕЛЕЗОМАРГАН- ЦЕВЫХ РУДАХ И В ПРОДУКТАХ ИХ ОБОГА- ПЦЕНИЯ

Всесованый научно исследовательский институт минерального сырья (ВИМС)

Москва, 1974

В соответствии с приказом Госгеодкома № 229 от 18 мая 1964г. инструкция № 122-ЯФ рассмотрена и рекомендована Научным советом по анадитическим методам к применению для анадиза рядовых проб — Ш категория.

(Протокол № 24 от 29 ноября 1973г.)

Председатель НСАМ

В.Г.Сочеванов

А.Л. Якубович

Ученый секретарь

Р.С. ФРИЛМАН

Инструкция № 122-ПФ рассмотрена в соответствии с приказом Государственного комитета СССР № 229 от 18 мая 1964г. Научным советом по аналитическим методам (протокол № 24 от 29.XI.73г.) и утверждена ВИМСом ст введением в действие с 1 мая 1974г.

ФЛУОРЕСЦЕНТНЫЙ РЕНТГЕНОРАДИОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАРГАНЦА И ЖЕЛЕЗА В МАРГАНЦЕВЫХ И ЖЕЛЕЗОМАРГАНЦЕВЫХ РУДАХ И В ПРОДУКТАХ ИХ ОБОГАШЕНИН^X)

Сущность метода

в основе метода лежит зависимость интенсивности характеристического рентгеновского излучения определяемого алемента $3_{X_{00}}$ от его концентрации C_{00}

$$\mathfrak{I}_{\mathsf{xnp}} = \mathsf{K} \frac{\mathsf{C}_{\mathsf{np}} \left(1 - e^{-\overline{\mathcal{U}}_{\mathsf{np}} \cdot \mathsf{1} \mathsf{n}_{\mathsf{np}}} \right)}{\overline{\mathcal{U}}_{\mathsf{np}}} \quad , \quad \mathsf{rme} \qquad (1)$$

 К - коэффициент, который является постоянной величиной при неизменных геометрических условиях измерений и интенсивности возбуждающего излучения;

(Ппр — приведенный массовый коэффициент поглощения, см²/г; жарактеризует абсорбционные свойства пробы для первичного (возбуждающего) и вторичного (аналитических линий) излучений. В сощем случае зависит от состава наполнителя пробы и от концентрации определяемото заемента;

тпр- поверхностная плотность пробы, г/см2.

Методика определения марганца и железа в марганцевых и железомарганцевых рудах разработана Г.В.Остроумовым, Д.В.Тока-ревой, А.А.Архиповым и Е.А.Киръяновым в 1971 г.

внесена в НСАМ лабораторией ядерных и изотопных методов анадиза ВИМСа. 1972г.

Характеристическое излучение марганца ($Mn \mathrel{K}_{\lambda} \simeq 5.9$ кав) и железа ($Fe \mathrel{K}_{\lambda} \simeq 6.4$ кав) возбуждают с помощью радмо-изотопного источника туллий—170 (0,1—0,5 г—акв. Re.) двух—ступенчатым способом с использованием кадмиевой мищени.

Рентгеновское излучение измеряют пропорциональным счетчиком. Аналитические $K_{2,1,2}$ — линии марганца выделяют с помощью дифференциальных фильтров, изготовленных из хрома в ванадия или из их ссединений. $K_{2,1,2}$ — динии железа выделяют с помощью фильтров, изготовленных из марганца и хрома или из их соединений. Фильтр из хрома является общим для линий марганца и железа.

Анализ выполняют по методике измерений в насыщенных слоях при повержностной илотности > 0,5 г/см 2 . При этом

$$\Im_{\mathsf{Xnp}} = \mathsf{K} \cdot \frac{\mathsf{Cnp}}{\bar{\mu}_{\mathsf{np}}} \tag{2}$$

Из формуди видно, что на ийтенсивность рентгеновокого издучения существенно влияют абсорбционные свойства исследуемого материала, обусловление его химическим составом. Вдияние химического состава учитывают на основании дополнительных измерений интенсивности отраженного β -издучения $\mathbb{J}_{\beta \, np}$ при облучении пробы бета-источником стронций — 90; β — издучение регистрируется двумя гозоразрядными счетчиками СБТ-II. Величина $\mathbb{J}_{\beta \, np}$, характеризурщая эффективний атомный номер рассеивающей среды \overline{Z} , при неизменном химическом составе наполнителя (и) пробы пропорциональна концентрации определяемого элемента: $\mathbb{J}_{\beta \, np} = \mathbb{K}_0 \left[\overline{Z}_H \, (1-c) + Z \cdot C \right]^{2/3} = \mathbb{K}_0 \cdot \overline{Z}_{np}^{2/3} , (2)$

где \overline{Z}_H и Z — эффективные атомные номера наполнитоля про-

Для раздельного определения марганда и железа использовано то обстоятельство, что каждый из этих элементов можно рассматривать как внутренный стандарт для другого элемента, в отношение интенсивностей характеристического излучения отмарганда и железа, содержащихся в пробе, пропорционально отмошению их весовых концентраций:

$$\frac{\Im_{x_{np}}^{Fe}}{\Im_{np}^{Mrb}} = \xi_{x} \frac{C_{np}^{Fe}}{C_{np}^{Mrb}} = \xi_{x} \cdot \alpha_{np} \quad , \tag{4}$$

где ξ_X — так называемый переходный коэффициент, постоян-

При этом

$$C_{np}^{Mn} = \frac{C_{np}^{\Sigma}}{1 + \xi_{x} \cdot \Omega_{np}}$$
 (5)

$$C_{np}^{Fe} = \frac{C_{np}^{\Sigma} - C_{np}^{Mn}}{\xi_{X}}, \qquad (6)$$

The $C_{np}^{\Sigma} = C_{np}^{Mn} + \xi_{\dot{x}} C_{np}^{Fe}$.

При неизменном составе наполнителя исследуемых проб суммарное содержание марганца и железа C_{np}^{Σ} , выраженное в процентах марганца, находят относительным методом, сравнився интенсивность $J_{X_{np}}^{\Sigma} = J_{X_{np}}^{Mn} + J_{X_{np}}^{FS}$ с интенсивностью флуоресценции марганца от этолонных образцов, не содержащих желении сопоставления величин $J_{X_{np}}^{\Sigma} \bowtie J_{X_{np}} \bowtie J_{X_{np}}$ содержание $C_{X_{np}}^{\Sigma}$ соответствует C_{np}^{Σ} . Если сопоставить интенсивности отраженного β излучения от пробы и от этолонов, то величине $J_{\beta_{np}}^{\Sigma}$ будет соответствовать иное, чем C_{np}^{Σ} , содержание $C_{\beta_{np}}^{\Sigma}$

$$C_{\beta np}^{\Sigma} = C_{np}^{Mn} + \frac{z_{Fe} - \overline{z}_{H}}{z_{Mn} - \overline{z}_{H}} \cdot C_{np}^{Fe} = C_{np}^{Mn} + \xi_{\beta} C_{np}^{Fe}$$

Для того, чтобы свидетельством идентичности вмещающей основы проб и эталонов служило равенство содержаний $C_{\mathsf{Xnp}}^{\Sigma}$ и $C_{\mathsf{Gnp}}^{\Sigma}$, нужно уравнять коэффициенты ξ_{X} и ξ_{S} . Это достигается специальными приемами балансировки дифференциальных фильтров.

При соблюдении последнего условия расхождение между $C_{\text{X np}}^{\Sigma}$ и $C_{\text{B np}}^{\Sigma}$ свидетельствует о различном составе наполнителя пробы и эталонов, и в этом случае значение C_{np}^{Σ} может быть рассчитано на основании зависимости:

$$C_{np}^{\Sigma} = C_{xnp}^{\Sigma} \frac{C_{\beta np}^{\Sigma} + \delta}{C_{xnp}^{\Sigma} + \delta}$$
 (7)

гле δ — постоянная величина, определяемая экспериментально. Для удобства работы и простоты нахождения ведичин $C_{X\,np}^{\Sigma}$ и $C_{\partial\,np}^{\Sigma}$ условия анализа предполагают линейний жарактер зависимостей $J_{X\,3T} = f(C_{3T})$ и $J_{\partial\,3T} = f'(C_{3T})$.

Линейность первой функции обеспечивается нодбором наполнителя эталонных образцов, линейность второй - фильтрованием отраженного² (3 -излучения источника ⁹⁰ Sz.

Таблица І

Определять содержание марганда и железа описываемым способом можно в том случае, если исследуемый материал содержит не более 0,n % хрома и элементов с атомным номером 2 > 25 (в сумме).

Нижний предел определяемых содержаний составляет I% Fe (или ма), верхний предел- 60-70% Fe (или ма).

Метод опробован при анадизе Никопольских марганцевых руд и продуктов их обогащения, Каражельских марганцевых руд и некоторых стандартных образцов руд и концентратов.

Метод рекомендуется для определения марганца по П категории при содержании его от 7 до 20% (см. табл.1) и железа по IV категории при содержании его от 2 до 70%.

По данным авторов инструкции точность рентгенорациометрического определения марганца и жедеза (экспериментальная ореднеквадратичная погрешность при повторных анализах) составляет \pm (0,2-0,8)% абс. определяемого элемента при суммарном содержании марганца и железа < 10% абс. и \pm (0,3 - 0,5)% абс. при суммарном содержании марганца и железа > 10% абс. (табл. 2).

Допустимые расхождения⁵

Допустимые расхождения, отн. % ге₂0₃ Ка Содержание Резодамъж 60-69,93 2,0 50-59.99 2.8 40-49.99 2.6 30-39.99 3,0 20-29.99 4.0 10-19,99 6.0 5-9,99 12 5.5

20

2-4.99

Таблина 2

Расхождения по данным авторов

Среднеквалратичная погредность Содержание. % 07H. % Fe₂03, Mn Pe Fe Mn 42 - 48.99 60-69.99 0.7 0.6 35 - 41.9950-59.99 0.7 0.7 28 - 34,99 40-49,99 0.8 0,8 21 - 27, 99 1,2 30-39,99 0.9 14 - 20.9920-29.99 I.4 1,2 7 - 18.99IO-I9.99 I,9 1.6 3.5 - 6.99 5- 9.99 6-3 4-2 I.4 - 3.492- 4.99 I0-6 IO-4

Реактивы и материалых)

- І. Кальций углекислый х.ч.
- 2. Натрий углекислый кислый х.ч.
- 3. Хром авотнокислий х.ч.
- 4. Двускись кремния сп.ч., х.ч.
- 5. Двускись титана х.ч.
- 6. Окись жедеза ж.ч.
- 7. Окись маргания х.ч.
- 8. Окись хрома безводная х.ч.
- 9. Четчрехокись ванадия х.ч.
- 10. Чистый кварцевый песск, не содержащий алементов с атомным номером Z > 28.
- II. Полистирол в виде пудры или суспензионный марки Б (Кусковский завол Московской обл.).
- 12. Стандартные образцы состава (СОС) железных и марганцевых руд и концентратов (ВНИИСО, г. Свердловск).

х) Реактивы 2, 6, 7,8 необходимы для приготовления дифференциальных фильтров и эталонных проб; реактивы 1-9 и 11-для приготовления и балансировки дифференциальных фильтров,

Аппаратура и сборудование

- I. Рентгенорадиометрическая установка типа "феррит" или другая установка, позволяющая одновременно определять интексивность характеристического рентгеновского излучения марганца и железа исследуемой пробы и интенсивность отраженного В-излучения.
- 2. Радиоизотопные источники Tm^{170} активностью 0,1-0,5 гажь. $Ro. n^{90}Sz$. тип ENC-I.
- 3. Пресс гидравлический на 150-200 кг/см² (школьный пресс завода "Физприбор № 2").
 - 4. Весы аналитические АЛВ-200.
 - 5. Ступка ядмовая с пестиком диаметром 10-12 см.
 - 6. Ступка фарфоровая с пестиком диаметром 15-17 см.
- Прессформа (такая же, как в комплекте прибора "Минераж-8").

Подготовка к анадизу

Подготовка дифференциальных фильтров

Марганцевий, хромовий и ванаджевий дифференциальные фильтры готовят из окисных соединений марганца, хрома и ванадия. Поверхностная плотность фильтрующего влемента в каждом фильтре должна быть ~ 10 мг/см². Необходимое для этого количество фильтрующего соединения тщательно перемешивают с

 \sim 200 мг полистирода и из полученной смеси прессурт плоско-паравлельные диски-таблетки. Пару фильтров для выделения карактеристического издучения марганца — ванадиевый и хромовий — встируют в канале измерения рентгеновского издучения марганца по первичному издучению, рассеянному на ${\rm Al}_2{\rm O}_3$ или ${\rm Sio}_2$ и по ${\rm K}_{\rm A}$ — диниям железа и титана. Относительный разбаланс данной пары фильтров по энергиям рассеянного издучения ${\rm A}_{\rm O}$ допускается не более 4% отн., а по ${\rm K}_{\rm A}$ — диниям железа и титана он должен быть практически равен нулю ${\rm A}_{\rm O}$. При этом обычные

х) При этом разностный эффект результатов измерения с данной парой фильтров реактивов S102 и Ре₂03 должен быть одинаков по энаку и близок по величине.

приемы балансировки фильтров^{х)} можно сочетать с диафрагмированием хронового фильтра (уменьшением его поверхности). Это позволяет снижать разбаланс фильтров за счет различия в флуоресценции самих фильтрующих элементов (большей от хрома, чем от ванадия).

В паре фильтров для выделения характеристического излучения железа (хромовый и марганцевый фильтры) хромовый фильтр, сбалэнсированный ранее указанным способом, более не юстируется. Марганцевый фильтр истируют по Када- линиям марганца таким образон, чтобы разбаланс по этим линиям данной пары фильтров был практически равен нулю и чтобы переходный коэффициент $\xi_{\rm x}$ гариался коэффициенту $\xi_{\rm B}$. Это осуществляют, изменяя поверхностную плотность марганцевого фильтра и вводя в этот фильтр хром. Практически поверхностную плотность уменьшают, снимая равномерно небольшой слой фильтра наждачной бумагой. Хром вводят в фильту следующим образом: концентрированный водный раствор азотнокислого хрома наносят равномерно ватным тампоном на папиросную бумагу и эту бумагу после ее высыхания накладывают на марганцевый фильтр. Марганцевый фильтр юстирурт после приготовления эталонных прос, подбора необходимой толщины медной фольги для фильтрования отраженного бета-излучения и определения нараметра & в.

2. Подготовка аппаратуры

В соответствии с указаниями инструкции к анализирующей аппаратуре определяют положение дискриминатора, при котором наблюдается максимум интенсивности рентгеновского издучения марганца, и устанавливают оптимальную ширину окна амплитудного анализатора.

Расстояния между источником 470 Тм и мишенью, между пробой и детектором рентгеновского издучения, а также между пробой и бета-источником 90 SZ выбирают такие, чтобы для содер-жаний 60-70% Мп утроенная величина статистической точности измерений рентгеновского и отраженного (3-излучений составлява соответственно $\pm 0,7-0,8\%$ Мп и $\pm 0,8-0,9\%$ Мп при продолжительности наблюдения I мин.

путем изменения повержностной плотности и частично состава фильтра при введении алюминиевой или иной фольги.

₩ I22-8Φ

Статистические средне квадратичные опибки \mathfrak{S} рассчитывают по формулам: $\mathfrak{S}_{1} = \frac{C_{mp}}{N'_{np} - N''_{np}}; \; \mathfrak{S}_{2} = \frac{C_{np}}{N_{\mathfrak{S}_{np}} - N_{\mathfrak{S}_{0}}}$

где N'_{np} , N''_{np} — скорости счета от пробы при измерении с хромо—
вым и ванадмевым дифференциальными фильтрами, имп/мин; $N_{\beta np}$, $N_{\beta o}$ — скорости счета β — излучения, отраженного
от исследуемой пробы и пробы, не содержащей
марганца и железа (кварцевый песок), имп/мин.
Для оценки этих ощибок можно использовать эталонные пробы.

З. Приготовление эталоник проб

Исходным материалом для приготовления эталонных проб служат:

- а) проба с максимально возможным (60-70% мл) и надежно установленным содержанием марганца (С) и практически нулевым содержанием железа и влементов с атомным номером Z > 26 (или реактив Mn_2O_3); эта проба используется в качестве исходного эталона.
- б) кварцевый песси (или легкая фракция вмещающих пород), практически не содержащая марганца, железа и алементов с $Z>\infty$.
 - в) кальний угложислый ч.д.а.
 - г) натрый угдекислый кислый (бикарбонат) к.ч.

Подготовка вталонных проб заключается в подборе "наполнителя" с такими же абсорбционными параметрами, как и в меходном вталоне, и в приготовлении на основе этого наполнителя и исходного эталона промежуточной по содержанию марганца смеси.

Практически нужний наподнитель подбирают следующим образом. Из кварцевого песка и ноходного эталона приготовляют промежуточную смесь с отношением исходных компонентов I:I. Измеряют интенсивность рентгеновского излучения марганца от смеси
и от исходного эталона и разбаланс хромового и ванадиевого
фильтров по рассединому излучению на кварцевом песке (или
на реактиве SiO₂). Результаты измерений наносят на график. отклалывая по оси ординат интенсивность излучения, по

оси абоцисс- содержание марганца, и соединяет прямой точку исходного эталона с точкой разбеданса фильтров. Если при этом точка смеси располагается ниже этой прямой, в исходный наполнитель вносят добавку "легкой" фракции (сода)^{X)}. Затем на основе этого нового наполнителя (с добавкой) и исходного эталона готовят новую смесь с тем же отношением исходных компонентов (I:I) и измеряют интенсивность рентгеновского излучения марганца от этой смеси.

Таким образом поступают до тех пор, пока точки смеси и конечного наполнителя не попадут на заданную прямую, соединяющую точку исходного эталона с точкой разбаланса фильтров.
Конечный наполнитель и конечная промежуточная смесь
также принимаются за эталоны. Если в качестве исходного наполнителя используют легкую фракцию вмещающих пород, в которой присутствуют значимые количества марганца и железа (допускается не более 1-2% бе и столько же марганца), то их содержание учитывается в процессе подготовки эталонных проб.

4. Фильтрование отраженного бета-излучения источника $^{90}{
m Sr}$

Отраженное (3-излучение 90 sr фильтруют, перекрывая окна счетчиков СБТ-II медной фольгой. Толщину фольги (\sim 50 микрон) подбирают экспериментально по результатам измерения интенсивности (3-излучения источника 90 sr, отраженного от эталонных проб (3 де). Оптимальной является наименьшая толщина, при ксторой график 3 де 4 (с) для данных эталонных проб прямолинеен. Практически фольгу нужной толщины получают из более толстой, частично растворяя ее в разбавленной авотной хислоте.

Если в эталонных пробах присутствует железо, то при построении графика $N_g = f'(c)$ принимают, что С представляет суммарное содержание марганца и железа: $C_{np}^{\Sigma} = C_{np}^{MrL} + \xi_{\beta} C_{np}^{Fe}$ (ориентировочиая ведичина параметра ξ_{β} составляет I,05).

Чтобы исключить случайные ошибки как при изготовлении эталонных проб, так и при подборе толщины фольги, необходимые измерения повторяют 3-5 раз.

к) В противном случае в исходный наполнитель вносят добавку "тяжелой" фракции— реактив сасо $_{\mathfrak{I}}$.

5. Определение переходных коэффициентов $\xi_{\mathcal{S}}$ и $\xi_{\mathcal{X}}$

Переходный коэффициент ξ_{β} определяют следующим образом: на основании измерений интенсивности β — излучения 90_{Sr} , отраженного от пробы чистого реактива Mn_2O_3 ($\Im_{\beta_{Mn_2O_3}}$), находят значение корфонциента Ко выдажении (3).

$$K_0 = \frac{\Im_{\beta Mn_2 O_3}}{\overline{Z}_{Mn_2 O_3}} = \frac{\Im_{\beta Mn_2 O_3}}{19,83}$$

На графике $\mathfrak{I}_{\mathfrak{S}}= \xi'(\mathtt{C})$, построенном по результатам измерения Зв от эталонных проб (так называецый эталонировочный , вабирают произвольную точку $^{n}P^{n}$ с координатами C_{P}^{Mn} , \Im_{QP} и рассчитывают величину \Im'_{QP} для случая полной замены марганца в этой гипотетической пробе железом. На основании выражения (3)

$$J_{\beta p}' = J_{\beta p} + K_o Z_{Mn} \left(\frac{Z_{Fe}}{Z_{Mn}} - 1\right) C_p^{Mn}$$
 где Z_{Mn} , Z_{Fe} — атомные номера марганца и железа.

Далее, на том же эталонировочном графике находят содержание марганца Срмп соответствующее рассчитанному значе-

Коэффициент ξ в определяют как отношение $\frac{C_p^{\text{IMn}}}{C_p^{\text{Mn}}}$, то есть, $\xi_B = \frac{C_p^{\text{IMn}}}{C_p^{\text{Mn}}}$.

Переуодный коэффициент $\xi_{\mathbf{x}}$ определяют по результатам измерений интенсивностей рентгеновского излучения железа $\mathfrak{I}^{Fe}_{\mathsf{x}_{\mathsf{np}}}$ и марганца $\mathfrak{I}^{\mathsf{Mn}}_{\mathsf{x}_{\mathsf{np}}}$ от пробы с надежно установленными содержаниями этих компонентов (порядка 20-30% каждого):

$$\xi_{X} = \frac{J_{X \text{ np}}^{Fe}}{C_{DD}^{Fe}} : \frac{J_{X \text{ np}}^{Mr}}{C_{DD}^{Mr}}$$

Для этого может быть использована также искусственная смесь, приготовляемая из эталонного наполнителя, реактива Mn_2O_3 и магнетитового концентрата.

При балансировке марганцевого лифференциального фильтра (см. выше) добиваются равенства переходного коаффициента ξ_X и коэффициента ξ_B : $\xi_X = \xi_B = \xi$

6. Определение константы 5

Константу δ определяют по результатам измерений интенсивности рентгеновского издучения марганца $\mathfrak{I}_{\mathsf{X}\,\mathsf{np}}^\mathsf{MR}$ и интенсивности $\mathfrak{S}-\mathsf{издучения}$ $\mathfrak{I}_{\mathsf{S}\,\mathsf{np}}^\mathsf{FS}$ и интенсивности $\mathfrak{S}-\mathsf{издучения}$ $\mathfrak{I}_{\mathsf{S}\,\mathsf{np}}^\mathsf{FS}$, отраженно-го от нескольких проб различного состава с известным содержанием марганца ($\mathsf{C}_\mathsf{np}^\mathsf{MR} \approx 10-40\%$) и железа ($\mathsf{C}_\mathsf{np}^\mathsf{FS} \approx 0-5\%$).

нием марганца ($C_{np}^{Mn} \approx 10$ —40%) и железа ($C_{np}^{Fe} \approx 0$ —5%). С помощью эталонировочных графиков $\Im_{\kappa}^{Mn} = f(c)$ и $\Im_{\mathcal{E}} = f'(c)$ находят величины $C_{\kappa np}^{Mn}$, $\xi C_{\kappa np}^{Fe}$, $C_{\mathcal{E}}^{\mathcal{E}}$ пр выраженные в процентах карганца и соответствующие измеренным от пробы значениям $\Im_{\kappa np}^{Kn}$, $\Im_{\kappa np}^{Fe}$, \Im_{κ

 $S = C_{x np}^{\Sigma} \cdot \frac{\left(C_{\theta np}^{\Sigma} - C_{np}^{Mn} - \xi C_{np}^{Fe}\right)}{\left(C_{np}^{Mn} + \xi C_{np}^{Fe} - C_{x np}^{\Sigma}\right)},$

The $C_{X\,\eta\rho}^{\Sigma}=C_{X\,\eta\rho}^{Mn}+\xi\cdot C_{X\,\eta\rho}^{Fe}$.

Для определения константы δ используют пробы, существенно отличающаеся от эталонных проб по химическому составу. Таковыми ивляются пробы, для которых $C_{X\,np}^{\Sigma} > C_{Q\,np}^{\Sigma}$ и наоборот, $C_{X\,np}^{\Sigma} < C_{Q\,np}^{\Sigma}$.

Правильность приготовления эталонных проб и определения констант ξ_{x} , ξ_{z} и δ контролируется результатами раздельного рентгенорадиометрического определения марганца и железа в стандартных образцах марганцевых и железных руд и их концентратов по рекомендуемому ходу анализа.

Хол анализа

I. Подготовка проб к анализу

Пробу, измельченную до ~ 200 меш, насыпают в две установленные на специальной подставке тарелочки (кассеты) несколько выше их бортиков и чистой стеклянной пластинкой уплотняют и разравнивают поверхность пробы с одинаковым усилием, чтобы насыпная плотность была приблизительно постоянной. Навеска пробы для заполнения одной тарелочки составляет 7-14 г в зависимости от состава пробы. 2. Измерение интенсивности рентгеновского излучения марганца и железа и отраженного В – излучения источника 90 Sz

При рентгеноралиометрическом анализе непосредственно измеряемой ведичиной является скорость счета импульсов N , обусловленная попаданием на детектор соответствующего излу-RUH SP

Одну тарелочку с пробой устанавливают в зону облучения рентгеновским издучением мишени (рр-канал), вторую - в вону облучения бета-источником (В-канал). С выбранной экспозицией наблюдений (~ І мин.) измеряют скорость счета от пробы в первой тарелочке в рр-канале поочередно с марганцевым (N_{UD}) жhомовым (N_{UD}) и ванадмевым (N_{UD}) Одновременно измеряют скорость счета от пробы во второй даре- β - каналу (n_{np}). лочке по

Ваписав результаты измерений в журнале наблюдений, меняют местами тарелочки с пробой и снова измеряют скорости счета по обоим каналам.

Интенсивностью рентгеновского излучения марганца считают среднюю разность скоростей счета, измеренных по рр-каналу с ванадиевым и хромовым фильтрами: $N_{X_{\mathsf{NP}}}^{\mathsf{Mn}} = (N_{\mathsf{np}}' - N_{\mathsf{np}}'')_{\mathsf{CP}}$.

Интенсивностью рентгеновского излучения железа считают среднюю разность скоростей счета, измеренных по рр- каналу с хромовым и марганцевым фильтрами:

 $N_{\text{x np}}^{\text{Fe}} = (N_{\text{np}}^{"} - N_{\text{np}}^{""})_{\text{cp}}$ Интенсивностью отреженного θ – издучения источнике ^{90}Sp от пробы считают среднее значение скорости счета по вканалу: $N_{Bno} = (n_{np})_{CP}$.

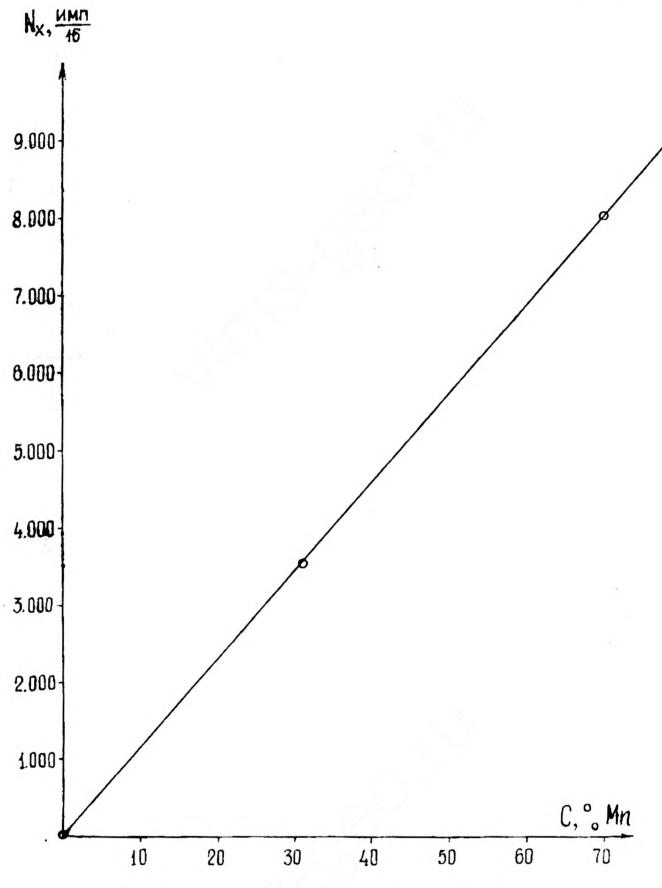
Если количество исследуемого материала непостаточно пля заполнения двух тарелочек, то измерение в рр-канале и в В канале выполняют последовательно с одной тарелочкой.

Под излучение мишени и бета-источника устанавливают тарелочки с разными пробами. После двукратных измерений скоростей счета от каждой пробы тарелочки MCHRDT MCCTAMM. Таким образом осуществляют одновременные измерения двух разных проб последовательно в одном и в другом канадах.

Все измерения интенсивности рентгеновского излучения марганца и желега выполняют в "пике" марганца, то есть, при теком положении дискриминатора, при котором наблюдается максимум жарактеристического излучения марганца от исходного эталона. Положение пика в процессе анадиза контролируют по показаниям соответствующего индикатора прибора от исходного эталона. Изменение показаний свидетельствует о смещении пика. Его возвращают в исходное положение, изменяя высокое напряжение или коэффициент усиления.

Измерение партии исследуемых проб начинают и заканчивают измерением эталонных проб.

3. Построение эталонировочных графиков $N_x^{Mn} = f(C), N_{\beta} = f'(C)$


Эталонировочные графики строят ежедневно по средним результатам измерения $N_{\rm x}^{\rm Min}$ и $N_{\rm g}$ от аталонных проб. Коор-динатами служат содержание маргенца и интенсивнсоти излучения $N_{\rm x}^{\rm Min}$ и $N_{\rm g}$. Через полученные точки проводят прямую (рис. I,2).

При тщательно подобранном по абсорбционным свойствем эталонном наполнителе для построения эталонировочного графика рр-канала $N_X^{Mr_L} = f(C)$ достаточно соединить прямой точку $(N_X^{Mr_L}, C)$ исходного эталона с точкой разбаланса фильтров $(N_X = \Delta_O, C = O)$.

При построении эталонировочного графика бета-канала прямую проводят через две точки (Ne, C) исходного эталона и наполнителя.

Если в эталонных пробах присутствует желево, то при построении графика $N_{e}=f'(C)$ ва величину С принимают суммарное содержание марганца и желева: $C_{np}^{\Sigma}=C_{np}^{Mn}+\xi_{e}C_{np}^{Fe}$

- 4. Определение содержания марганца и железа
- а) по этадонаровочным графикам $N_X^{Mn}=f(C)$ и $N_{\xi}=f'(C)$ находят величиви $C_{X\,np}^{Mn}$, $(C_X^{Fe}\cdot\xi_X)_{np}$ и $C_{\xi\,np}^{E}$, соответствующие измеренным от пробы значеняям $N_{X\,np}^{Mn}$, $N_{X\,np}^{Fe}$ и $N_{\xi\,np}$.
- б) На основе величин $C_{\mathsf{S}\,\mathsf{np}}^{\Sigma}$ и $C_{\mathsf{X}\,\mathsf{np}}^{\Sigma} = C_{\mathsf{X}\,\mathsf{np}}^{\mathsf{Mn}} + (C_{\mathsf{X}}^{\mathsf{Fe}} \cdot \xi_{\mathsf{X}})_{\mathsf{np}}$ по формуле (7) рассчитывают искомое суммарное содержание в пробе мар-гамца и желева C_{np}^{Σ} в % Mn.

Puc.I. Эталонировочный график pp-канала $N_{\mathsf{X}} = \mathsf{f}\left(\mathsf{C}\right)$

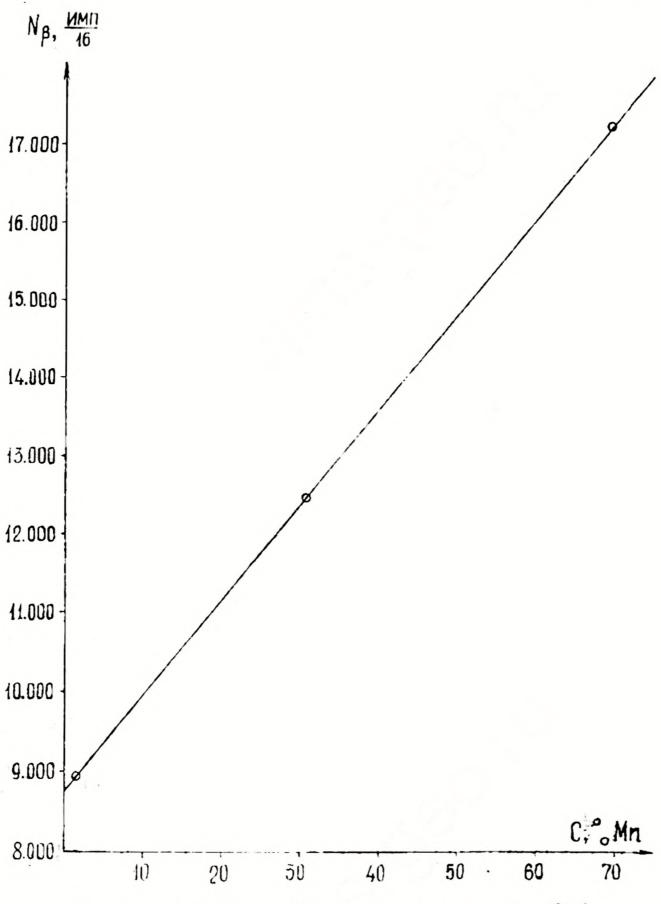


Рис.2. Эталонировочный график бета-канала $N_{\beta} = f'(C)$.

-		РР-канал									Gota-Kanax				Результаты расчотов			
תע		Скорости счета с фильтромя (ф) от двух порций просых) І-я порция 2-я порция			Ср. ведичиве янтенсві ноств сруборесцеяция		Cie. Ex CMn. % Mn. % Mn.	% Mm	C. =	(a { _x }-	CEOPOOTE OT REYE TO BLOOM	T optre	Средное	C _Q Hardent	C, -	CMn =	Crp =	
		Mag-N' Czm-N"		MnN' Cz-K"		Nx - Nx -		HAYOURE NO	ROUBLE	·Cfe.5.+Com	Cre Ex		Nopqua	No-	DOB. TDada-	-ريم ريم و المريم و ا	CΣ	CE -CHP
		Czm-N"	Von N-	CZ = N"	V ₀ = N"	wfe wfo wan.	- Mx1 + Nx		120	% Mr.	CX	ns n	$\frac{n_1}{n_2}$ $N_{\beta_2} = \frac{n_1 + n_2}{2}$	- Np.+Mp2	No-f'(c), % Mr.	% Mn	1+(a.ξ _x) ₁₀ % Mn	ξ _x %Fe
I_	2	8	4	5	6	7	В	9	10	II	12	. 18	14	15	16	. 17	18	19
1.	Исходимя эт-н (ревктяв м ₂ 0 ₃) 5°, 7% Мл.		10518 2316 2008		10385 2324 8011		8006					17277 17253 p.17265		17210		•		-
٤.	HORBTE.BONGILL		4853 1869		4877 1377							12512 1245	I2483 I2487	-				
S.	0,84% Fe		3484 938		2500 941		34 92				(p. 12482 8911		12471				
	нитель 07Mn;I,43%Fe		899		<u>905</u> 36		35				(89 2 0	8947	8928				
4.	CL-90 B DBOROUT: 4.1% Mn 14,58% Fe	2071 1193 878	1193 <u>886</u> 307	2110 1200 906	1204 899 305	892	306	7,6	2,5	10,1	3,04	13811 1968 18747	13732 19698 13715	13731	41,1	20,4	5,I	14,7
5	. CO 440 HICHOLT: 47,5% Mn	7139 6919 220	6919 1757 5162	7102 6930 172	6980 1755 5175	196	5169	I,55	44,95	46,5	0,0845	1466 Cp 1471	14753 14789 14772	14741	49,4	48,5	46,9	1,5
,	,					Пример	IND DERY	The Park	балата	COME	R DERLY	COD						
6	Mit203	10531 10518 + 13	-	10325 10385 -10														
7	Fe . C3		8473 8425 +50		3405 + 12													
8	SiO ₂	-	824 785 + 39	-	800 775 + 8													
ç	TiO2		1063 1050 + 4		1064 1070 - 6													

ПРИМЕЧАНИЕ: I) В таблице дамы результаты измерений на установке "феррит" в мип/I6 (без учета козффициента пересчета прибора I:I6) при экспозиции наблюдений ∼ 64 сек.

²⁾ Этадолими наполнитель представляет смесь из двух весовых частей кварцевого песка и одной части двууглекислого нагрия 3) Значения C_{np}^{Σ} рассчитывание при условии, что S=20.

в) По найденным для проби значениям $C_{X,np}^{Mr}$, $(C_X^{Fe} \cdot \xi_X)_{np}$ спределяют условное отномение содержатия железа и маргазду

(
$$\xi_{x}$$
 a) ξ_{x} a

г) на основе величин C_{np}^{Σ} и $(\xi_X^{\alpha})_{np}^{np}$ по формунам (5) и (6) рассчитывают истинное содержание в пробе марганца C_{np}^{Mn} (в %% Mn) и мелеза C_{np}^{Fe} (в %% Fe).

Для расчетов достаточно логарифиической динейки.

Техника безопасности

При выполнении анализа необходимо соблюдать вравила техники безопасности, предусмотренные при работе с радиоактивными источниками. Подробно эти вопросы изложены в инструкции по работе с прибором $^{\eta}\Phi$ еррит $^{\eta S}$.

Литература

- I. Бложен М.А. Методы рентгеноспектральных исоледований. Из-во физ.-мат. лит. Москва, 1969.
- 2. Долгирев В.И., Николаев В.Н. Прибор для измерения эффективного атомного номера образцов гориых пород, руд и минералов. Сб. "Геофизическое приборостроение" вып.14, 1962, МГ и ОН СССР.
- 3. Инструкция по работе с прибором "Феррит". Москва, ВИМС. 1967.
- 4. Методические указания по проведению флуоресцентногорентгено- раднометрического анализа. Методические указания НСАМ № 3. Москва, ВИМС, 1968.
- 5. Методы лабораторного контроля качества аналитических работ. Москва, ВИМС, 1973.
- 6. Ядерно-физические методы анализа вещества. М., Атомиздат, 1971.
- 7. Якубович А.Л., Зайцев Е.И., Пржиниговский С.М. Ядернофизические методы анализа минерального сырья. Атомиздат, 1978.

Катыне из употребления инструкции	Заменяющие их инструкции
# 52 - X # 53 - X	# 103 - X
№ 92 – X	⅓ II3 – X
№ 90 – X	№ II5 – X
№ 9 – ЯФ	# 116 – HΦ
№ I3 - X	Б II9 – X

класси фикация

лабораторных методов анализа минерального сырья по их назначению и достигаемой точности

Кате- гория анали- за		іазначение внализа	Точность по сравне - Коэффинию с допусками вну цмент в трилабораторного допускам контроля
ı.	Особо точный вилья	Арбитражный анализ, анализ эталонов	Средняя ошибка в 3 0,33 раза меньше допус- ков
Π.	lioлный анализ	Полные анализы гор- ных пород и минера- лов.	Точность анализа должна обеспечивать получение суммы элементов в преде- лах 99,5-100,5%
ш.	Анализ рядо- вых проб	Массовый анализ гео- логических проб при разведочных работах и подсчете запасов, а также при контроль- ных анализах.	жны укладываться в допуски
Iy.	Анализ техноло- гических продук- тов	Текущий контроль тех- нологических процес- сов	- Ошибки анализа могут I-2 укладываться в рас- ширенные допуски по особой договорен- ности с заказчиком.
¥.	Особо точный анализ геохи- мических проб	Определение редких и рассеянных элементов и "элементов-спутим-ков" при близких к кларковым содержани-	Ошибка определения не 0,5 должна превышать поло- вины допуска; для низ- ких содержаний, для которых допуски от- сутствуют, - по дого- воренности с заказчи-
УІ.	Анализ рядовых геохимических проб	Анализ пробири гео- химических и других исследованиях с повы- шенной чувствитель- ностью и высской про- изводительностью.	содержаний, для которых
УП.	Полуколичестьен- ный анализ	Качественная харак- теристика минераль- ного сырья с орген- тировочным указани- ем содержания элемен- тов, применяемая пря металлометрической съемке и др. поисковых геологи- ческих работах	При определении содер- жания элемента до- пускаются отклонения на 0 5-1 порядки
уш.	Качест зонный анализ	Качественное опседе- ленио присутствен элемента в минераль- ном сырье.	Точность определения не нормируется