ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 56770— 2015 (ИСО 717-2:2013)

ЗДАНИЯ И СООРУЖЕНИЯ

Оценка звукоизоляции ударного шума

(ISO 717-2:2013,

Acoustics — Rating of sound insulation in buildings and of building elements — Part 2: Impact sound insulation, MOD)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН федеральным государственным бюджетным учреждением «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» (НИИСФ РААСН) на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 26 ноября 2015 г. № 1987-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 717-2:2013 «Акустика. Оценка звукоизоляции в зданиях и элементами зданий. Часть 2. Изоляция ударного шума» (ISO 717—2:2013 «Acoustics Rating of sound insulation in buildings and of building elements Part 2: Impact sound insulation») путем внесения технических отклонений, объяснение которым приведено во введении к настоящему стандарту. При этом дополнительные слова и фразы, включенные в текст стандарта для учета потребностей национальной экономики Российской Федерации и особенностей российской национальной стандартизации, выделены курсивом.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5 (пункт 3.5)

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	١
2 Нормативные ссылки	1
3 Термины и определения	2
4 Метод вычисления одночисловых параметров для оценки изоляции ударного шума	3
4.1 Общие требования	3
4.2 Оценочные значения	3
4.3 Метод сравнения	3
4.4 Представление результатов	5
5 Метод вычисления индекса снижения уровня ударного шума покрытиями полов	
на плитах тяжелых перекрытий	ò
5.1 Общие требования	3
5.2 Эталонное перекрытие	3
5.3 Расчет	7
5.4 Представление результатов	7
6 Метод вычисления индекса снижения уровня ударного шума покрытиями полов	
на легких перекрытиях	7
6.1 Общие требования	7
6.2 Оценочные кривые для эталонных легких перекрытий, используемые	
при вычислении $\Delta L_{t,w}$	3
6.3 Расчет	3
6.4 Представление результатов	3
Приложение А (справочное) Метод дополнительной коррекции	9
Приложение В (справочное) Метод вычисления эквивалентного индекса приведенного уровня	
-ударного шума на плитах тяжелых перекрытий1	1
Приложение С (справочное) Примеры вычисления одночислового параметра	3

Введение

Методы измерения изоляции ударного шума в зданиях и элементами зданий стандартизованы ГОСТ Р ИСО 10140-3 и ГОСТ 27296. Эти методы дают параметры изоляции ударного шума в полосах частот. Цель настоящего стандарта — установить метод, посредством которого параметры изоляции ударного шума могут быть представлены одним числом, дающим интегральную оценку способности конструкции изолировать ударный шум.

Данный метод широко применяется с 1968 года. Однако в процессе его практического применения накоплены определенные данные, свидетельствующие что он может быть улучшен посредством добавления члена спектральной адаптации. Рекомендуется накопить опыт применения усовершенствованного метода.

Ссылки на стандарты, в соответствии с которыми определяют исходные данные для одночисловой оценки, приведены в качестве примеров и поэтому не полны.

Настоящий стандарт имеет следующие отличия от примененного в нем международного стандарта ИСО 717-2:2013:

- в соответствии с требованиями ГОСТ Р 1.5—2012 (подраздел 4.3) ссылки на международные стандарты ИСО 10140-1, ИСО 10140-3 и ИСО 10140-5 заменены ссылками на идентичные им национальные стандарты Российской Федерации ГОСТ Р ИСО 10140-1, ГОСТ Р ИСО 10140-3 и ГОСТ Р ИСО 10140-5, ссылка на не введенный в Российской Федерации международный стандарт ИСО 140-7, устанавливающий методы измерения изоляции ударного шума полов в натурных условиях, заменена ссылкой на ГОСТ 27296, действующий в качестве национального стандарта Российской Федерации;
- раздел 2 и текст стандарта дополнены ссылкой на ГОСТ 17187, вводящий частотную коррекцию в соответствии с характеристикой А шумомера;
- уточнено наименование второй графы таблиц 1 и 2 в соответствии с характером приведенных в графе величин, ссылки на международные стандарты заменены ссылками на ГОСТ 27296 и ГОСТ Р ИСО 10140-3, при этом поскольку в ГОСТ 27296 определения приведенных во втором столбце величин и формулы, используемые для их расчета, приведены в разных структурных элементах стандарта, даны ссылки на структурный элемент, содержащий определение величины, и на формулу, используемую для ее расчета; ссылки выполнены в соответствии с требованиями ГОСТ 1.5 (подпункт 4.8.3.2);
- термин «стандартизованный уровень ударного шума» приведен в соответствие с термином, установленным ГОСТ 27296 «стандартизованный приведенный уровень ударного шума»; аналогично изменено наименование соответствующего ему одночислового параметра;
- из текста стандарта исключены пояснения со ссылками на не введенный в Российской Федерации ИСО 80000, пояснение, ссылающееся на более раннюю редакцию примененного международного стандарта ISO 717-2:1982, источники периодической печати и элемент «Библиография»;
- обозначения снижений уровня звукового давления ударного шума покрытиями полов и соответствующих им индексов в разделе 6 приведены в соответствие с данными примечания 2 определения 3.3; исправлено также обозначение члена спектральной адаптации в формуле (А.5) приложения А;
- кроме того, внесены незначительные изменения путем замены отдельных слов и добавления фраз, более точно раскрывающих смысл отдельных положений.

Указанные изменения выделены в тексте курсивом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЗДАНИЯ И СООРУЖЕНИЯ

Оценка звукоизоляции ударного шума

Buildings and constructions. Rating of impact sound insulation

Дата введения — 2016—06—01

1 Область применения

Настоящий стандарт:

- а) определяет одночисловые параметры изоляции ударного шума в зданиях, перекрытиями;
- b) устанавливает правила определения этих параметров по результатам измерений, выполненных в третьоктавных полосах *частот* в соответствии с *ГОСТ Р ИСО 10140-3* и *ГОСТ 27296* и в октавных полосах *частот* в соответствии с методом *ГОСТ 27296*, предназначенным для измерений в натурных условиях;
- с) определяет одночисловые параметры для оценки снижения ударного шума покрытиями полов и плавающими полами, вычисляемые по результатам измерений, выполненных по ГОСТ ИСО 10140-3 и ГОСТ 27296;
- d) устанавливает метод вычисления индекса снижения уровня ударного шума покрытиями полов на легких перекрытиях.

Одночисловые параметры в соответствии с настоящим стандартом предназначены для оценки изоляции ударного шума и упрощения формулировки акустических требований в нормативных документах. Дополнительную одночисловую оценку, определяемую с точностью 0,1 дБ, принимают для выражения неопределенности (за исключением членов спектральной адаптации). Необходимые численные значения одночисловых параметров задают в соответствии с различными потребностями.

Оценка результатов по измерениям, выполненным в расширенном диапазоне частот, описана в приложении A.

. Метод определения одночисловых параметров для плит тяжелых перекрытий совместно с покрытиями полов описан в приложении В.

Пример вычисления одночислового параметра приведен в приложении С.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 17187 (IEC 61672-1:2002). Шумомеры. Часть 1. Технические требования ГОСТ 27296—2012 Здания и сооружения. Методы измерения звукоизоляции ограждающих ко

ГОСТ 27296—2012 Здания и сооружения. Методы измерения звукоизоляции ограждающих конструкций

ГОСТ Р ИСО 10140-1. Акустика. Лабораторные измерения звукоизоляции элементов зданий. Часть 1. Правила испытаний строительных изделий определенного вида

ГОСТ Р ИСО 10140-3—2012. Акустика. Лабораторные измерения звукоизоляции элементов зданий. Часть 3. Измерение звукоизоляции ударного шума

ГОСТ Р ИСО 10140-5—2012 Акустика. Лабораторные измерения звукоизоляции элементов зданий. Часть 5. Требования к испытательным установкам и оборудованию

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 одночисловой параметр для оценки изоляции ударного шума, определяемый из измерений в третьоктавных полосах частот (single-number quantity for impact sound insulation rating derived from one-third-octave band measurements): Значение оценочной кривой на частоте 500 Гц после сдвига ее в соответствии с методом, установленным настоящим стандартом.

Примечание — Данную величину выражают в децибелах.

3.2 одночисловой параметр для оценки изоляции ударного шума, определяемый из измерений в октавных полосах частот (single-number quantity for impact sound insulation rating derived from octave band measurements): Значение соответствующей оценочной кривой на частоте 500 Гц после сдвига ее в соответствии с методом, установленным настоящим стандартом, уменьшенное на 5 дБ.

Примечания

- 1 Термины и обозначения одночисловых параметров зависят от способа измерения. Примеры приведены в таблице 1 для изоляции ударного шума элементами зданий и в таблице 2 для изоляции ударного шума между помещениями в зданиях.
- 2 Для явного различения между значениями с наличием и отсутствием косвенной передачи звука для первых (фактических по Γ OCT 27296) используют обозначения со штрихом (например, L'_n).
 - 3 Данную величину выражают в децибелах.
- 3.3 индекс снижения уровня ударного шума (weighted reduction in impact sound pressure level): Разность между индексами приведенного уровня ударного шума для эталонной несущей части тяжелого или легкого перекрытия без покрытия и с покрытием пола, определенными в соответствии с методом, установленным настоящим стандартом.

Примечания

- 1 Данный параметр, полученный для эталонной несущей части тяжелого перекрытия, обозначают через $\Delta L_{\mathbf{w}}$ и выражают в децибелах.
- 2 Данный параметр, полученный для эталонной несущей части легкого перекрытия, обозначают через $\Delta L_{\mathsf{t},\mathsf{w}}$ и выражают в децибелах. В соответствии с типом эталонного пола он может быть обозначен как $\Delta L_{\mathsf{t1},\mathsf{w}}$, $\Delta L_{\mathsf{t2},\mathsf{w}}$, $\Delta L_{\mathsf{t3},\mathsf{w}}$
- 3.4 **член спектральной адаптации** (spectrum adaptation term) **С**_I: Значение (в децибелах), прибавляемое к одночисловому параметру в целях учета *частотно* не корректированного уровня ударного шума, для представления характеристик типичных спектров шума шагов.
- 3.5 эквивалентный индекс приведенного уровня ударного шума для плиты тяжелого перекрытия (equivalent weighted normalized impact sound pressure level of a bare heavy floor): Сумма индекса приведенного уровня ударного шума для плиты испытуемого *тяжелого* перекрытия с эталонным покрытием пола и индекса снижения уровня ударного шума эталонного покрытия пола, определенных в соответствии с методом, установленным настоящим стандартом.

П р и м е ч а н и е — Данную величину обозначают как $L_{\mathsf{n},\mathsf{eq},\mathsf{0},\mathsf{w}}$ и выражают в децибелах.

Таблица 1 — Параметры, характеризующие изоляцию ударного шума перекрытиями

Получаемые из значений т	ретьоктавного спектра	Определяют по <i>стандарту</i>		
Одночисловой параметр	Параметр в полосах частот			
Индекс приведенного уровня ударного шума $L_{ m n,w}$	Приведенный уровень ударного шума $L_{\rm n}$	ГОСТ Р ИСО 10140-3—2012 [(пункт 1, формула (1)] ГОСТ 27296-2—12 [пункт 3.4, формула (5)]		

Таблица 2 — Параметры, характеризующие изоляцию ударного шума между помещениями в зданиях

Получаемые из значений третьокта	0		
Одночисловой параметр	Параметр в полосах частот	Определяют по <i>стандарту</i>	
Индекс фактического приведенного уровня ударного шума $L'_{\sf nw}$	Φ актический приведенный уровень ударного шума L_n'	ГОСТ 27296—2012 [(пункт 3.5, формула (5)]	
Индекс стандартизированного приведенного уровня ударного шума $\mathcal{L}'_{nT,w}$	Стандартизированный <i>приведен- ный</i> уровень ударного шума \mathcal{L}'_{nT}	ГОСТ 27296—2012 [пункт 3.6, формула (10])	

4 Метод вычисления одночисловых параметров для оценки изоляции ударного шума

4.1 Общие требования

Полученные в соответствии с *ГОСТ Р ИСО 10140-3* и *ГОСТ 27296* значения сравнивают с оценочными значениями (см. 4.2) на *среднегеометрических* частотах в диапазоне от 100 до 3150 Гц для третьоктавных полос и в диапазоне 125 до 2000 Гц для октавных полос.

Сравнение следует выполнять, как указано в 4.3.

4.2 Оценочные значения

Набор оценочных значений, используемых для сравнения с результатами измерений, приведен в таблице 3.

Оценочные кривые показаны на рисунках 1 и 2.

Примечание — Оценочные значения для октавных полос со среднегеометрическими частотами от 125 до 1000 Гц равны энергетическим суммам (округленным до целого децибела) соответствующих значений в третьоктавных полосах частот. Оценочное значение для октавной полосы со среднегеометрической частотой 2000 Гц уменьшено в целях учета третьоктавной полосы со среднегеометрической частотой 3150 Гц, которая (для плит тяжелых перекрытий) может давать значительный вклад в неблагоприятные отклонения.

4.3 Метод сравнения

4.3.1 Измерения в третьоктавных полосах

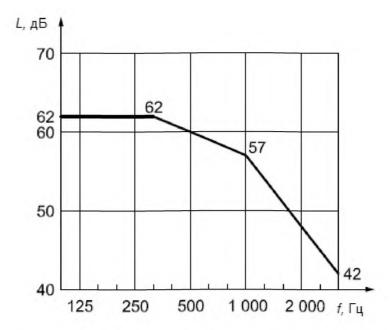
Для оценивания результатов измерения $L_{\rm n}$, $L_{\rm n}'$ или $L_{\rm nT}'$ в третьоктавных полосах частот данные измерений должны быть представлены с точностью до одной десятой децибела¹⁾. Оценочную кривую сдвигают с шагом 1 дБ (0,1 дБ для выражения неопределенности) к измеренной кривой до тех пор, пока сумма неблагоприятных отклонений не станет как можно большей, но не превышающей 32,0 дБ.

Неблагоприятным отклонением *считают отклонение вверх от оценочной кривой, т. е.* отклонение, при котором результат измерения в конкретной *полосе частот* превышает оценочное значение.

¹⁾ Если октавные или третьоктавные уровни представлены с более чем одной десятичной цифрой, перед использованием их для вычисления одночислового параметра они должны быть сведены к значению с одной десятичной цифрой. Это делается принятием десятичных значений децибела, ближайших к представленным значениям: XX,XYYZZ... округляется до XX,X если Y меньше 5, или до XX,X+0,1, если Y равен или больше 5. Разработчики программного обеспечения должны гарантировать, что указанное округление применимо к введенным значениям, а не только к выводимой точности результатов расчета (как показано на экране или при выводе на печать). Обычно это может быть выполнено с помощью такой последовательности операций: умножить (положительное) число XX,XYYZZ... на 10 и прибавить к результату 0,5, взять целую часть и разделить ее на 10.

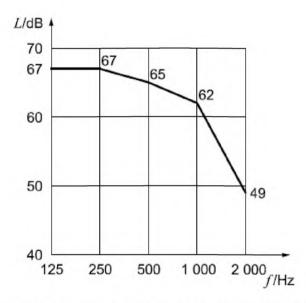
ГОСТ Р 56770—2015

При оценке результатов измерений должны быть учтены только неблагоприятные отклонения. Значение в децибелах оценочной кривой на частоте 500 Гц после указанного сдвига принимают за \mathcal{L}_{nw} , \mathcal{L}'_{nw} или $\mathcal{L}'_{\text{nT,w}}$ соответственно.


Таблица 3 — Оценочные значения для ударного шума

0	Оценочное значен	ие, дБ, в полосе
Среднегеометрическая частота, Гц	третьоктавной	октавной
100	62	67
125	62	
160	62	
200	62	67
250	62	
315	62	
400	61	65
500	60	
630	59	
800	58	62
1000	57	
1250	54	
1600	51	49
2000	48	
2500	45	
3150	42	_

4.3.2 Измерения в октавных полосах


Для оценивания результатов измерения L_n' или L_{nT}' в октавных полосах частот данные измерений должны быть представлены с точностью до одной десятой децибела *(см. сноску*¹⁾ *к первому предложению 4.3.1)*. Опорную кривую сдвигают с шагом 1 дБ (0,1 дБ для выражения неопределенности) к измеренной кривой до тех пор, пока сумма неблагоприятных отклонений не станет как можно большей, но не превышающей 10,0 дБ.

Значение в децибелах оценочной кривой на частоте 500 Гц после указанного сдвига, уменьшенное на 5 дБ, принимают за \mathcal{L}'_{nw} или $\mathcal{L}'_{nT,w}$ соответственно.

L — оценочное значение; f — среднегеометрическая частота (третьоктавные полосы)

Рисунок 1 — Оценочная кривая для ударного шума (третьоктавные полосы)

L — оценочное значение; f — среднегеометрическая частота октавной полосы

Рисунок 2 — Оценочная кривая для ударного шума (октавные полосы)

Неблагоприятным отклонением *считают отклонение вверх от оценочной кривой*, *т. е.* отклонение, при котором результат измерения в конкретной *полосе частот* превышает оценочное значение. При оценке результатов измерения следует учитывать только неблагоприятные отклонения.

4.4 Представление результатов

Соответствующий одночисловой параметр должен быть представлен со ссылкой на настоящий стандарт.

Может быть указана также неопределенность одночисловых параметров. В этом случае числа должны быть даны с точностью до 0,1 $\partial 5$.

Пример — $L_{n,w}$ = 53,2 $\partial E \pm 0.8 \ \partial E$.

Для членов спектральной адаптации неопределенность приводимых значений не устанавливают. Для измерений в натурных условиях в соответствии с ГОСТ 27296 должно быть указано, как именно вычислен одночисловой параметр: из результатов измерений в третьоктавных или октавных полосах частот. Различия между значениями одночисловых параметров, рассчитанных из измерений в третьоктавных или октавных полосах, могут составлять около ± 1 дБ. Предпочтительна оценка, основанная на измерениях в третьоктавных полосах частот.

5 Метод вычисления индекса снижения уровня ударного шума покрытиями полов на плитах тяжелых перекрытий

5.1 Общие требования

Снижение уровня звукового давления ударного шума (улучшение изоляции ударного шума) ΔL покрытиями полов, уложенными при испытаниях на железобетонных сплошных плитах перекрытий, как описано в *ГОСТ Р ИСО 10140-1* и *ГОСТ 27296*, не зависит от приведенного уровня ударного шума несущей части перекрытия L_{n0} . Однако индекс приведенного уровня ударного шума ΔL_{w} с покрытиями и без покрытий полов зависит частично от L_{n0} . Поэтому для получения сравнимых значений ΔL_{w} при межлабораторных испытаниях необходимо измеренные значения ΔL приводить к эталонному перекрытию.

5.2 Эталонное перекрытие

Эталонное перекрытие определяется значениями приведенного уровня ударного шума $L_{\rm n,r,0}$, приведенными в таблице 4.

Индекс приведенного уровня ударного шума эталонного перекрытия $L_{\rm n,r,0,w}$, вычисленный в соответствии с 4.3.1, равен 78 дБ.

Таблица 4 — Значения приведенного уровня ударного шума эталонного перекрытия

Среднегеометрическая частота третьоктавной полосы, Гц	<i>L</i> _{n,r,0} , дБ
100	67
125	67,5
160	68
200	68,5
250	69
315	69,5
400	70
500	70,5
630	71
800	71,5
1000	72
1250	72
1600	72
2000	72
2500	72
3150	72

Примечание — Значения, приведенные в таблице 4, представляют собой прямолинейную линеаризацию приведенного уровня ударного шума 120 мм для однородной бетонной плиты перекрытия, выровненную в соответствии с практикой на частотах выше 1 000 Гц.

5.3 Расчет

Индекс снижения уровня ударного шума $\Delta L_{\rm w}$ вычисляют по формулам (1) и (2):

$$L_{\mathbf{n},\mathbf{r}} = L_{\mathbf{n},\mathbf{r},\mathbf{0}} - \Delta L,\tag{1}$$

$$\Delta L_{\mathbf{w}} = L_{\mathbf{n}, \mathbf{r}, \mathbf{0}, \mathbf{w}} - L_{\mathbf{n}, \mathbf{r}, \mathbf{w}} = 78 - L_{\mathbf{n}, \mathbf{r}, \mathbf{w}}, \tag{2}$$

где $L_{\mathsf{n},\mathsf{r}}$ — рассчитанный приведенный уровень ударного шума эталонного перекрытия с испытуемым покрытием пола, $\partial \mathcal{B}$;

 $L_{\rm n,r,0}$ — заданный приведенный уровень ударного шума эталонного перекрытия, $\partial \mathcal{B}$ (см. таблицу 4);

 ΔL — снижение уровня звукового давления ударного шума, ∂E , измеренное по ГОСТ Р ИСО 10140-1;

 $L_{
m n,r,0,w}$ — индекс приведенного уровня ударного шума эталонного перекрытия, дБ, рассчитываемый из $L_{
m n,r,0}$ в соответствии с 4.3.1;

 $L_{
m n,r,w}$ — индекс приведенного уровня ударного шума эталонного перекрытия с испытуемым покрытием пола, $\partial \mathcal{B}$, рассчитываемый из $L_{
m n,r}$ в соответствии с 4.3.1.

5.4 Представление результатов

Одночисловой параметр $\Delta L_{\rm w}$ должен быть представлен со ссылкой на настоящий стандарт. Результаты измерения должны быть приведены также в виде диаграммы согласно ГОСТ Р ИСО 10140-1.

Дополнительно может быть заявлена неопределенность $\Delta L_{\rm w}$. В этом случае значения должны быть заданы с точностью до 0,1 ∂E .

Пример —
$$\Delta L_{w} = 18,9 \ \partial E \pm 0,8 \ \partial E$$
.

Для членов спектральной адаптации неопределенность приводимых значений не устанавливают. Снижения уровней звукового давления ударного шума ΔL , измеренные на бетонной плите перекрытия в соответствии с *ГОСТ Р ИСО 10140-1* или *ГОСТ 27296*, и соответствии с *ГОСТ Р ИСО 10140-1* или *ГОСТ 27296*, и соответствующее им значение одночислового параметра $\Delta L_{\rm w}$ допускается применять только для таких типов тяжелых перекрытий, как бетон, полый бетон, полые кирпичи и им подобных. Они не подходят для других типов перекрытий.

6 Метод вычисления индекса снижения уровня ударного шума покрытиями полов на легких перекрытиях

6.1 Общие требования

Снижение уровня звукового давления ударного шума (улучшение изоляции ударного шума) ΔL_{t1} , ΔL_{t2} , ΔL_{t3} покрытиями полов, уложенными при испытаниях на одном из трех легких эталонных перекрытий в соответствии с *ГОСТ Р ИСО 10140-5*, не зависит от приведенного уровня ударного шума несущей части эталонного перекрытия $L_{n.t1.0}$, $L_{n.t2.0}$ и $L_{n.t3.0}$, соответственно.

Однако индекс приведенного уровня ударного шума легкого перекрытия с покрытиями и без покрытий полов зависит частично от значения $L_{\rm n,t,0}$ несущей части перекрытия, на котором покрытие пола применяется. Поэтому для получения сравнимых значений $\Delta L_{\rm t,w}$ в межлабораторных испытаниях и особенно при использовании для вычисления приведенного уровня ударного шума легких перекрытий с покрытием пола необходимо измеренные значения $\Delta L_{\rm t1}$, $\Delta L_{\rm t2}$, $\Delta L_{\rm t3}$ соотносить с соответствующими оценочными кривыми для легких перекрытий по $\Gamma OCT\ P\ UCO\ 10140$ -5.

6.2 Оценочные кривые для эталонных легких перекрытий, используемые при вычислении $\Delta L_{\mathrm{t.w}}$

В ГОСТ Р ИСО 10140-5 установлены три типа эталонных легких перекрытий, поэтому необходимо задать различные оценочные кривые для расчета $\Delta L_{\rm t,w}$. Оценочные кривые задают посредством значений $L_{\rm n,t,r,0}$. В таблице 5 приведены оценочные значения $L_{\rm n,t,r,0}$ и индексы уровня ударного шума для различных типов эталонных легких перекрытий.

Таблица 5 — Значения приведенного уровня ударного шума для эталонных легких перекрытий

Среднегеометрическая частота, Гц	L _{n,t,r,0} для перекрытий типов № 1 и № 2 по <i>ГОСТ Р ИСО 10140-5—2012</i> , дБ	L _{n,t,r,0} для перекрытий типа № 3 по <i>ГОСТ Р ИСО 10140-5</i> —2012, дБ
100	78	69
125	78	72
160	78	75
200	78	78
250	78	78
315	78	78
400	76	78
500	74	78
630	72	78
800	69	76
1 000	66	74
1 250	63	72
1 600	60	69
2 000	57	66
2 500	54	63
3 150	51	60
Индекс приведенного уровня ударного шума	72	75

Значения $\Delta L_{\rm t,w}$, рассчитанные для эталонного перекрытия типа № 1 или № 2, должны быть обозначены как $\Delta L_{\rm t1,w}$ или $\Delta L_{\rm t2,w}$; значения $\Delta L_{\rm t,w}$, рассчитанные для эталонного перекрытия типа № 3, должны быть обозначены как $\Delta L_{\rm t3,w}$.

6.3 Расчет

Расчет следует выполнять согласно 5.3, используя данные таблицы 5, а не таблицы 4.

6.4 Представление результатов

Значение одночислового параметра $L_{t1,w}$, $\Delta L_{t2,w}$ или $\Delta L_{t3,w}$ следует приводить со ссылкой на раздел 6 *настоящего стандарта*. Результаты измерений представляют в форме диаграммы согласно *ГОСТ Р ИСО 10140-1*.

Приложение А (справочное)

Метод дополнительной коррекции

А.1 Общие положения

Настоящее приложение представляет метод дополнительной оценки посредством введения члена *частотной* адаптации, определяемого на основе *частотно* не корректированного линейного уровня ударного шума.

Специальными исследованиями показано, что оценка посредством $L_{\rm n,w}$ вполне адекватна для описания воздействия шума, подобного ходьбе, для деревянных и бетонных перекрытий с эффективными покрытиями, такими как ковры или плавающие полы. Тем не менее, она не является достаточной для учета пиковых уровней на одиночных (низких) частотах, например для деревянных балочных перекрытий или голых бетонных перекрытий. Установлено, что частоти не корректированный уровень ударного шума от ударной машины более адекватно описывает шум шагов для всех типов полов, чем уровни ударного шума, частотно корректированные в соответствии с характеристикой A шумомера по FOCT 17187, которые имеют также более ограничительный характер для отдельных шумовых пиков.

Для учета этого эффекта вводят член спектральной адаптации $C_{\rm I}$ как отдельное число, которое не может быть спутано со значением для $L_{\rm n,w}$. Этот член определяется так, что для массивных перекрытий с эффективными покрытиями полов его значение близко к нулю, в то время как для деревянных балочных перекрытий с доминирующими пиками на низких частотах он имеет небольшое положительное значение. Для бетонных перекрытий без покрытия или с менее эффективным покрытием он будет в диапазоне от минус 15 до 0 дБ.

Если эти особенности необходимо учитывать в требованиях, они могут быть записаны в виде суммы $L'_{n,w}$ и C_1 .

А.2 Расчет члена спектральной адаптации

А.2.1 Член спектральной адаптации для уровня ударного шума

Результаты измерения $L_{\rm n}$, $L'_{\rm n}$ или $L'_{\rm nT}$ в третьоктавных полосах частот в диапазоне от 100 до 2500 Гц или в октавных полосах в диапазоне от 125 до 2000 Гц должны быть представлены с точностью до десятой децибела, затем должны быть вычислены и округлены до целого числа¹⁾. энергетические суммы $L_{\rm nsum}$ $L'_{\rm nsum}$ или $L'_{\rm nT.sum}$.

 Π р и м е ч а н и е — Энергетическое суммирование, дБ, проводят для k частотных полос по формуле

$$L_{\text{sum}} = 10 \lg \sum_{i=1}^{k} 10^{L_i/10}$$

В результате член спектральной адаптации C_1 , дБ, рассчитывают как целую часть одной из формул

$$C_{\rm I} = L_{\rm n, sum} - 15 - L_{\rm n, w'} \tag{A.1}$$

$$C_1 = L'_{\text{n.sum}} - 15 - L'_{\text{n.w}}$$
 (A.2)

$$C_1 = L'_{nT \text{ sum}} - 15 - L'_{nT \text{ w}}$$
 (A.3)

 Π р и м е ч а н и е — Вычисление члена спектральной адаптации может быть выполнено дополнительно для расширенного диапазона частот (включая *третьоктавные полосы со среднегеометрическими частотами* от 50 до 80 Гц). В этом случае член спектральной адаптации обозначают $C_{1,50-2500}$ или $C_{1,63-2000}$.

Пример вычисления одночислового параметра и члена спектральной адаптации приведен в приложении С.

¹⁾ XX,YZZ... округляют до XX, если Y меньше 5, и XX + 1, если Y больше или равен 5. Разработчики программного обеспечения должны учитывать, что расчет членов спектральной адаптации включает в себя вычисления с плавающей запятой, которые не являются точными и могут приводить к ошибкам округления. В отдельных редких случаях это может приводить к различию в конечном результате в +1 дБ или –1 дБ. Для исключения ошибок округления настоятельно рекомендуется использовать при представлении значений с плавающей запятой и выполнения математических операций наивысшую возможную машинную точность.

А.2.2 Член спектральной адаптации для снижения ударного шума покрытиями полов

Для накопления опыта применения некорректированного уровня ударного шума в дополнение к расчету индекса снижения уровня ударного шума $\Delta L_{\rm w}$ на основе оценочной кривой (рисунок 1) может быть введен член спектральной адаптации в качестве расширенной характеристики снижения ударного шума. Этот член спектральной адаптации $C_{\rm IA}$ рассчитывают по формуле

$$C_{|\Delta} = C_{|,r,0} - C_{|,r}$$
 (A.4)

где $C_{l,r,0}$ — член спектральной адаптации для эталонного перекрытия с $L_{n,r,0}$ (см. таблицу 4), ∂E (в соответствии с A.2.1 $C_{l,r,0}$ = -11 дE);

 $C_{\rm I}$, — член спектральной адаптации для эталонного перекрытия с испытуемым покрытием пола, ∂E .

Одночисловое снижение ΔL_{lin} на основе некорректированного линейного уровня звукового давления ударного шума может быть рассчитано по формуле

$$\Delta L_{\text{lin}} = L_{\text{n, r,0,w}} + C_{\text{l,r,0}} - \left(L_{\text{n,r,w}} + C_{\text{l,r}}\right) = \Delta L_{\text{w}} + C_{\text{l}\Delta}, \tag{A.5}$$

где $L_{\rm n,r,0,w}$ — индекс приведенного уровня ударного шума эталонного перекрытия, ∂E , рассчитываемый из $L_{\rm n,r,0,w}$ в соответствии с 4.3.1 ($L_{\rm n,r,0,w}$ = 78 дБ);

 $L_{
m n,r,w}$ — *индекс* приведенного уровня ударного шума эталонного перекрытия с испытуемым покрытием пола, $\partial \mathcal{B}$.

А.2.3 Член спектральной адаптации для снижения ударного шума покрытиями полов на легких перекрытиях

Для накопления опыта применения некорректированного уровня ударного шума для легких перекрытий может быть рассчитан член спектральной адаптации в качестве расширенной характеристики снижения ударного шума для покрытий полов на легких перекрытиях. Член спектральной адаптации $C_{\text{IA},t}$ рассчитывают по формуле

$$C_{lA,t} = C_{l,t,r,0} - C_{l,t,r} \tag{A.6}$$

где $C_{l,t,r,0}$ — член спектральной адаптации для эталонного перекрытия с $L_{n,t,r,0}$, принимающий значение 0 дБ *при использовании* оценочной кривой для перекрытий типа № 1 и № 2 и значение –3 дБ при использовании оценочной кривой для перекрытий типа № 3;

 C_{1+r} — член спектральной адаптации для эталонного перекрытия с испытуемым покрытием пола, $\partial \mathcal{B}$.

Значения $C_{\text{I}\Delta,t^1}$, рассчитанные для эталонного перекрытия типа № 1 или № 2, или № 3, следует обозначать $C_{\text{I}\Delta,t^1}$, $C_{\text{I}\Delta,t^2}$ и $C_{\text{I}\Delta,t^3}$ соответственно.

Приложение В (справочное)

Метод вычисления эквивалентного индекса приведенного уровня ударного шума на плитах тяжелых перекрытий

В.1 Общие положения

Для оценки параметров ударного шума перекрытий в целом используют индекс приведенного уровня ударного шума $L_{n,w}$. Однако плита бетонного перекрытия редко используется без напольного покрытия. Поэтому в настоящем приложении дан метод расчета эквивалентного индекса приведенного уровня ударного шума плит бетонных перекрытий для описания звукоизоляции ударного шума плиты перекрытия с учетом влияния наличия на нем напольного покрытия.

Эквивалентный индекс приведенного уровня ударного шума плиты тяжелого перекрытия $L_{\rm n,eq,0,w}$ (см. 3.5) может быть использован для расчета индекса приведенного уровня ударного шума $L_{\rm n,w}$ плиты этого перекрытия с покрытием пола с известным $\Delta L_{\rm w}$ по формуле

$$L_{n,w} = L_{n,eq,0,w} - \Delta L_{w'}$$
 (B.1)

Примечание — Можно показать, что $L_{\rm n,eq,0,w}$ может быть заменен ($L_{\rm n,0,w}$ + $C_{\rm l,0}$ + 11) и что $L_{\rm n,w}$ для плиты перекрытия, характеризуемой $L_{\rm n,0,w}$ с покрытием, характеризуемым $\Delta L_{\rm w}$ и $\Delta L_{\rm lin}$ рассчитывают по формуле

$$L_{n,w} = L_{n,0,w} + C_{l,0} + 11 - \Delta L_{w}, \tag{B.2}$$

или

$$L_{n,w} + C_{l} = L_{n,0,w} + C_{l,0} - \Delta L_{lin} = L_{n,0,w} + C_{l,0} - (\Delta L_{w} + C_{l\Delta}),$$
(B.3)

где $C_{1,0}$ — член спектральной адаптации для плиты перекрытия, ∂E .

В.2 Эталонное покрытие пола

Эталонное покрытие пола определяется значениями снижения уровня звукового давления ударного шума (улучшение изоляции ударного шума) $\Delta L_{\rm r}$ приведенными в таблице В.1.

Таблица В.1 — Снижение уровня звукового давления ударного шума эталонным покрытием пола

Среднегеометрическая частота третьоктавной полосы, Гц	Δ <i>L</i> _г , дБ
100	0
125	0
160	0
200	2
250	6
315	10
400	14
500	18
630	22
800	26
1000	30

Окончание таблицы В.1

Среднегеометрическая частота третьоктавной полосы, Гц	Δ <i>L</i> _г , дБ
1250	30
1600	30
2000	30
2500	30
3150	30

Индекс снижения уровня ударного шума эталонным покрытием пола $\Delta L_{\rm r,w}$, рассчитанный в соответствии с разделом 5, составляет 19 дБ.

Примечание — Значения, приведенные в таблице В.1, представляют собой прямолинейную идеализацию общей конфигурации снижения уровня звукового давления ударного шума покрытием пола с наклоном 12 дБ на октаву.

В.3 Расчет

Эквивалентный индекс приведенного уровня ударного шума плит массивных перекрытий, $L_{\mathsf{n},\mathsf{eq},\mathsf{0}\cdot\mathsf{w}}$ рассчитывают по формулам

$$L_{n,1} = L_{n,0} - \Delta L_{r}, \tag{B.4}$$

$$L_{n,eq,0,w} = L_{n,1,w} + \Delta L_{r,w} = L_{n,1,w} + 19,$$
 (B.5)

- где $L_{\rm n,1}$ рассчитываемый приведенный уровень звукового давления ударного шума испытуемого перекрытия с эталонным покрытием пола, $\partial \mathcal{B}$;
 - $L_{\rm n,0}$ приведенный уровень звукового давления ударного шума испытуемой плиты перекрытия, $\partial \mathcal{B}$, измеренный в соответствии с ГОСТ Р ИСО 10140-3;
 - $\Delta L_{\rm r}$ снижение уровня звукового давления ударного шума эталонным покрытием пола, $\partial \mathcal{B}$, заданное в соответствии с таблицей В.1;
 - $L_{
 m n,1,w}$ индекс уровня звукового давления ударного шума испытуемого перекрытия с эталонным покрытием пола, ∂E , определяемый по значениям $L_{
 m n,1}$ в соответствии с 4.3.

Приложение С (справочное)

Примеры вычисления одночислового параметра

Приведенные примеры расчета одночислового параметра основаны на результатах:

- а) измерений в лаборатории с определением:
- уровня ударного шума плиты тяжелого перекрытия и этой же плиты с покрытием пола (таблица С.1),
- снижения уровня звукового давления ударного шума покрытием пола (таблица С.2);
- б) натурных измерений с определением уровня ударного шума пола (таблица С.3).

Примечание — В этих примерах суммирование выполнено с включением *третьоктавной полосы со среднегеометрической частотой* 3150 Гц, что не соответствует *А.2.1*, где в качестве максимальной указана *третьоктавная полоса со среднегеометрической частотой* 2500 Гц.

Таблица С.1 — Измерения в лабораторных условиях (в третьоктавных полосах частот) на плите тяжелого перекрытия и на этой же плите с покрытием пола, вычисление $L_{\text{n.w}}$ и C_{l}

	Плит	а тяжелого перекр	ытия		С покрытием пол	па
Среднегео- метрическая частота, Гц	<i>L</i> _n , дБ	Оценочное значение, сдвинутое на +19 дБ, дБ	Неблагоприят- ные отклоне- ния, дБ	<i>L</i> _n , дБ	Оценочное значение, сдвинутое на +4 дБ, дБ	Неблагоприят- ное отклонение, дБ
100	62,1	81	_	59,1	66	_
125	63,2	81	_	59,5	66	_
160	63,5	81	_	61,6	66	_
200	66,2	81	_	63,2	66	_
250	68,5	81	_	65,3	66	_
315	70,0	81	_	66,5	66	0,5
400	71,7	80	_	67,7 66		2,7
500	73,1	79	_	67,0	64	3,0
630	73,8	78	_	67,1	63	4,1
800	73,5	77	_	66,5 62		4,5
1000	73,8	76	_	66,1	61	5,1
1250	73,3	73	0,3	62,5 58		4,5
1600	73,1	70	3,1	57,9 55		2,9
2000	73,0	67	6,0	52,7 52		0,7
2500	72,4	64	8,4	47,0 49		_
3150	71,2	61	10,2	48,0	46	2,0
		1 3 = 83 дБ; - 79 = -11 дБ	Sum = $28 < 32$; $L_{n,w} = 79$	11,54111		Sum = 30,0 < 32; L _{n,w} = 64 дБ

Таблица С.2 — Пример. Измерения в лабораторных условиях (в третьоктавных полосах частот) на стандартном перекрытии с покрытием пола, вычисление $L_{\mathsf{n,w}}$ и ΔL_{lin}

0	L	-n	11,44				
Среднеге- ометри- ческая частота, Гц	Плита пере- крытия <i>L</i> _{n,0} , дБ	С покрытием <i>L</i> _n , дБ	Снижение Δ <i>L</i> = <i>L</i> _{n,0} - <i>L</i> _n , дБ	Эталонное перекрытие $L_{\rm n,r,0}$, дБ	Снижение -∆L _п (L _{п,r}), дБ	Оценочное значение +3 дБ, дБ	Неблаго- приятное отклонение, дБ
100	65,2	62,2	3,0	67,0	64,0	65	_
125	66,3	62,6	3,7	67,5	63,8	65	_
160	68,0	66,1	1,9	68,0	66,1	65	1,1
200	68,5	65,5	3,0	68,5	65,5	65	0,5
250	68,0	64,8	3,2	69,0	65,8	65	0,8
315	69,0	65, 5	3,5	69,5	66,0	65	1,0
400	69,3	65,3	4,0	70,0	66,0	64	2,0
500	70,2	64,1	6,1	70,5	64,4	63	1,4
630	70,7	64,0	6,7	71,0	64,3	62	2,3
800	71,2	64,2	7,0	71,0	64,5	61	3,5
1000	71,5	63,8	7,7	72,0	64,3	60	4,3
1250	72,1	61,3	10,8	72,0	61,2	57	4,2
1600	73,0	57,8	15,2	72,0	56,8	54	2,8
2000	74,0	53,7	20,3	72,0	51,7	51	0,7
2500	73,5	48,1	25,4	72,0	46,6	48	_
3150	73,1	49,9	23,2	72,0	48,8	45	3,8
_	_	_	$L_{n,sum} = 75,710 \ 4 = 76 \ дБ;$ $C_{l} = 76 - 15 - 63 = -2 \ дБ;$ $\Delta L_{lin} = 78 - 11 - (63 - 2) = 6 \ дБ$			Sum = 2 $L_{n,r,w} = \Delta L_{w} = 78 - 1$	•

Таблица С.3 — Пример. Измерения в натурных условиях (в октавных полосах частот), вычисление $L_{\sf n,w}$ и $C_{\sf l}$

Среднегеометрическая частота, Гц	<i>L</i> _n , дБ	Оценочное значение, сдви- нутое на -6 дБ, дБ	Неблагоприятное отклоне- ние, дБ
125	65,3	61	4,3
250	64,5	61	3,5
500	58,0	59	_
1000	55,8	56	_
2000	43,0	43	_
_	L _{n,sum} = 68,596 14 = 69 дБ; C _I = 69 – 15 – 54 = 0 дБ		Sum = 7,8 < 10,0; L _{n,w} = 54 дБ

УДК 66.018.64.001.4:006.354

OKC 91.120.20

Ключевые слова: звукоизоляция в зданиях, звукоизоляция элементами зданий, изоляция ударного шума, изоляция в полосах частот, индекс изоляции, одночисловой параметр звукоизоляции, член спектральной адаптации

Редактор *И.Е. Цукерников* Корректор *М.В. Бучная* Компьютерная верстка *Е.А. Кондрашовой*

Подписано в печать 08.02.2016. Формат $60\times84^1/_8$. Гарнитура Ариал. Усл. печ. л. 2,32. Тираж 37 экз. Зак. 165

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru