ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ПРЕДВАРИТЕЛЬНЫЙ НАЦИОНАЛЬНЫЙ СТАНДАРТ ПНСТ 45— 2015 (ИСО 9553:1997)

Возобновляемая энергетика

ЭНЕРГИЯ СОЛНЕЧНАЯ

Методы испытаний предварительно отформованных резиновых уплотнителей и герметиков, применяемых в коллекторах

ISO 9553:1997
Solar energy — Methods of testing preformed rubber seals and sealing compounds used in collectors (MOD)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении (ВНИИНМАШ) и Открытым акционерным обществом «Научно-исследовательский институт энергетических сооружений» (ОАО «НИИЭС») на основе собственного аутентичного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 330 «Процессы, оборудование и энергетические системы на основе возобновляемых источников энергии»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 июня 2015 г. № 20-пнст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 9553:1997 «Энергия солнечная. Методы испытаний предварительно отформованных резиновых уплотнителей и герметиков, применяемых в коллекторах» (ISO 9553:1997 «Solar energy Methods of testing preformed rubber seals and sealing compounds used in collectors») путем изменения отдельных слов, ссылок, которые выделены в тексте курсивом.

Внесение указанных технических отклонений направлено на учет особенностей объекта и аспекта стандартизации, характерных для Российской Федерации

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта и проведения его мониторинга установлены в ГОСТ Р 1.16—2011 (разделы 5 и 6).

Федеральное агентство по техническому регулированию и метрологии собирает сведения о практическом применении настоящего стандарта. Данные сведения, а также замечания и предложения по содержанию стандарта можно направить не позднее, чем за девять месяцев до истечения срока его действия, разработчику настоящего стандарта по адресу: 123007, г. Москва, ул. Шеногина, д. 4 и в Федеральное агентство по техническому регулированию и метрологии по адресу: Ленинский проспект, д. 9, Москва В-49, ГСП-1, 119991.

В случае отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты» и журнале «Вестник технического регулирования». Уведомление будет размещено также на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения						
2	Классификация	. 1					
	2.1 Уплотнение	. 1					
	2.2 Тип уплотнителя	. 1					
	2.3 Степень твердости уплотнителя	. 2					
	2.4 Класс уплотнителя	. 2					
3	Материалы	. 2					
4	Размеры и допуски						
5	Физические требования						
6	Методы испытаний	. 3					
	6.1 Подготовка образца для испытаний	. 3					
	6.2 Жесткость	. 4					
	6.3 Предел прочности и растяжение при разрыве	. 4					
	6.4 Испытание на сжатие	. 4					
	6.5 Устойчивость к нагреву	. 4					
	6.6 Устойчивость к озону	. 5					
	6.7 Устойчивость к низкой температуре	. 5					
	6.8 Потери на адгезию	. 5					
7	Протокол испытания	. 5					
П		. 6					
Б	Библиография	. 7					

ПРЕДВАРИТЕЛЬНЫЙ НАЦИОНАЛЬНЫЙ СТАНДАРТ

Возобновляемая энергетика

ЭНЕРГИЯ СОЛНЕЧНАЯ

Методы испытаний предварительно отформованных резиновых уплотнителей и герметиков, применяемых в коллекторах

Renewable power engineering. Solar energy.

Methods of testing preformed rubber seals and sealing compounds used in collectors

Срок действия — с 2016—07—01 по 2019—07—01

1 Область применения

Настоящий стандарт устанавливает методы испытаний резин, используемых в качестве уплотнителя в солнечных коллекторах.

Технические требования настоящего стандарта относятся только к допустимым отклонениям в структуре резины при тепловом расширении или стягивании уплотнителя при использовании и к допускам по размерам формованного и выдавленного уплотнителя.

Настоящий стандарт не включает требования, предъявляемые к геометрическим формам, изготовлению и установки уплотнителей.

Настоящий стандарт применим в сочетании с длительными испытаниями на старение и погодными испытаниями. Если проводят долгосрочные испытания, рекомендуется, чтобы испытания на старение выполнялось в соответствии с [1], ускоренное погодное испытание и испытание на воздействие окружающей среды на материалы в соответствии с [2].

П р и м е ч а н и е — Условия окружающей среды, конфигурация испытательного образца и любые изменения в испытании должны быть согласованы между заинтересованными сторонами. Также, если проводят долгосрочное испытание, то указанные в настоящем стандарте испытания должны быть проведены до и после долгосрочного испытания.

2 Классификация

2.1 Уплотнение

Уплотнение может быть выполнено при помощи:

- предварительно отформованного резинового уплотнителя;
- герметика

Примечание — Не следует использовать герметик в коллекторах, находящихся под механической нагрузкой.

2.2 Тип уплотнителя

Следующая классификация типов уплотнителей выполнена в соответствии с [3]. Выбор типа уплотнителя должен быть основан на максимальной температуре эксплуатации коллектора, когда он находится в равновесных условиях и принимает максимально допустимый поток излучения.

Максимальные рабочие температуры и температуры испытания, указанные в таблицах 3 и 4, для уплотнителей различных типов приведены в таблице 1.

ПНСТ 45—2015

Т а блица 1 — Максимальные рабочие температуры и температуры испытания уплотнителей

Тип уплотнителя	Температура испытания, °С	Максимальная рабочая температура, °С
В	100	70
С	125	100
D	150	125
E ¹⁾	175	150
F ¹⁾	200	175
G ¹⁾	225	200
H ¹⁾	250	225

2.3 Степень твердости уплотнителя

Степень твердости уплотнителя в соответствии с [4] и [5] приведена в таблице 2. Какая степень будет использоваться в конкретном случае зависит от конструкции уплотнителя и устанавливается проектировщиком.

Таблица 2 — Обозначение для различных степеней твердости

Степень	Твердость
3	30 ± 5
4	40 ± 5
5	50 ± 5
6	60 ± 5
7	70 ± 5
8	80 ± 5

2.4 Класс уплотнителя

Классы уплотнителя, указанные в таблице 3, созданы на основе устойчивости уплотнителей к низким температурам. Выбор класса должен основываться на значении наименьшей температуры, при которой будет эксплуатироваться коллектор.

Т а б л и ц а 3 — Классы уплотнителя, температуры испытания и наименьшие рабочие температуры

Класс	сс Климат Температура испытания, °С		Минимальная рабочая температура, °C
W	Теплый	0	-10
M	Умеренный	-25	-35
С	Холодный	-40	-50
F	Полярный	-60	–70

3 Материалы

- 3.1 Уплотнитель должен быть изготовлен из резиновой смеси, которая устойчива к воздействию ультрафиолетового света и, при вулканизации по 6.1, должен соответствовать требованиям раздела 4.
- 3.2 Уплотнитель не должен содержать дефектов, которые отрицательно влияют на работоспособность изделия. Текстура поверхности предварительно отформованного уплотнителя должна соответствовать методу производства, выбранному заинтересованными сторонами.

4 Размеры и допуски

4.1 Особое внимание необходимо уделить такому явлению как тепловое расширение уплотнителя. По этой причине размеры в солнечных коллекторах будут значительно меняться из-за большого диапазона достигаемых температур.

П р и м е ч а н и е — Если не известен тепловой коэффициент линейного расширения для резины, то для проектных целей может быть принято значение $0,0003~{
m K}^{-1}$.

- 4.2 Допуски на размеры должны соответствовать следующим обозначениям в соответствии с [6]:
- а) формованный уплотнитель:
- формовка хорошего качества (класс М3);
- формовка высокого качества (класс М3),
- b) выдавленное уплотнение:
- хорошее качество экструзии (класс Е2).

Примечание — Также следует учитывать усадку.

5 Физические требования

5.1 Предварительно отформованный уплотнитель должен соответствовать требованиям, указанным в таблице 4, при испытаниях — указанным в разделе 6.

П р и м е ч а н и е — Требования для гибкости при низких температурах и устойчивость к озону относятся к структуре вулканизированной резины; эти испытания требуются только если структура изменилась.

5.2 Герметики должны соответствовать требованиям, указанным в таблице 5, при испытаниях — указанным в разделе 6 (см. примечание в 4.1).

6 Методы испытаний

6.1 Подготовка образца для испытаний

Необходимо подготовить образцы для испытаний из предварительно отформованных уплотнителей в соответствии с [7] и провести испытание в соответствии с методами, приведенными в таблице 4.

Таблица 4 — Требования для предварительно отформованных уплотнителей

Chayana	Степень				Метод		
Свойство		5	6	7	8	испытания	
Твердость IRHD, +5 -4		50	60	70	80	По 7.2	
Удлинение при разрыве, %, не менее		25 0	200	50	100	По 7.3	
Остаточная деформация при сжатии, %, не более После 24 $_{-2}^0$ ч при высокой температуре После 166 $_0^{-2}$ ч при низкой температуре	30 60	30 60	30 60	30 60	30 60	По 7.4	
Устойчивость к нагреву ¹⁾ Изменение твердости, IRHD, не более Удлинение при разрыве, %, не более Предел прочности при растяжении, %, не более Летучие потери, %, не более Летучие потери, %, не более	10 30 20 1 0,1	10 30 20 1 0,1	10 30 20 1 0,1	10 30 20 1 0,1	10 30 20 1 0,1	По 7.5 По 7.2 По 7.3 По 7.3 По 7.5.2 По 7.5.3	
Устойчивость к озону	Нет трещин		По 7.6				
Устойчивость к низким температурам ²⁾ (только классы M, C, и P)	о Нет разломов или трещин П		По 7.7				

¹⁾ Температура зависит от типа.

²⁾ Температура зависит от класса.

ПНСТ 45—2015

Для герметиков необходимо подготовить пять листов приблизительно 150 × 150 × 2 мм в соответствии с инструкциями изготовителя. Также необходимо подготовить пять комплектов для адгезии в соответствии с приложением А. Необходимо проверить листы и комплекты для адгезии в течение 14 дней при стандартных лабораторных условиях, приведенных в [8].

Проводят испытания материалов в соответствии с методами испытаний, приведенными в таблице 5.

Таблица 5 — Требования к герметикам

0	Сте		
Свойство	3	5	— Метод испытания
Твердость IRHD, +5 -4	30	40	По 7.2
Удлинение при разрыве, %, не менее	150	100	По 7.3
Устойчивость к нагреву ¹⁾ Изменение жесткости, IRHD, не более Удлинение при разрыве, %, не более Предел прочности при растяжении, %, не более Летучие потери, %, не более Летучие потери, %, не более	10 30 20 1 0,1	10 30 20 1 0,1	По 7.5 По 7.2 По 7.3 По 7.3 По 7.5.2 По 7.5.3
Устойчивость к озону	чивость к низким температурам ²⁾ Нет разломов или трещин		По 7.6
Устойчивость к низким температурам ²⁾ Только классы М, С, и Р			По 7.7
Потери на адгезию ³⁾	9	9	По 7.8

¹⁾ Температура зависит от типа (см. таблицу 1).

6.2 Жесткость

Испытания в соответствии с [4] или [5].

6.3 Предел прочности и растяжение при разрыве

Испытание в соответствии с [9] (тип 2: гантелевидный образец для испытаний).

6.4 Испытание на сжатие

Испытание в соответствии с [10] при высоких температурах и [11] — при низких температурах.

6.5 Устойчивость к нагреву

- 6.5.1 Необходимо нагреть образцы для испытаний в пробирке в соответствии с [12] в течение 14 дней при соответствующей температуре для типа уплотнителя, приведенной в таблице 1. Пробирка должна быть приблизительно 38×300 мм и должна быть снабжена двумя отверстиями с термостойкими заглушками (9×420 мм входной трубкой длинной 25 мм от дна, 9×380 мм выходной трубкой длиной около 320 мм выше заглушки).
- 6.5.2 После нагрева необходимо привести образцы испытания к условиям стандартной температуры в лаборатории не менее чем через 16 ч и выполнить требуемые испытания в течение 96 ч.
- 6.5.3 Определяют массовые изменения через разницу масс образцов испытания до и после старения.
- 6.5.4 Определяют конденсат, который оказывается летучим при $23\,^{\circ}$ С, через разницу масс на выходной трубке до и после нагрева образцов испытания. Необходимо убедиться, что открытые части отводной трубки выдерживают при температуре $(23\pm2)\,^{\circ}$ С. Если летучие вещества конденсируются на входной в трубке или других частях устройства, то они должны быть добавлены к массе материала на отводной трубке.

²⁾ Температура зависит от класса (см. таблицу 3).

³⁾ Общие потери в узлах и сцеплениях для трех испытательных образцов не должны превышать 9 см².

6.6 Устойчивость к озону

Устойчивость к озону необходимо определить в соответствии с методом по A [13] 20 % растяжения, концентрацию озона в воздухе $200 \cdot 10^{-8}$, для 96^{+2}_{0} ч при 40 °C.

6.7 Устойчивость к низкой температуре

Устойчивость к низкой температуре необходимо определить в соответствии с [14]. После испытания проверить образцы на ломкость (трещины и разломы).

6.8 Потери на адгезию

Потери на адгезию определяют в соответствии с приложением А.

7 Протокол испытания

Протокол испытания должен содержать, как минимум, следующую информацию:

- полная идентификация испытуемого уплотнителя;
- используемые методы и условия испытания, включая любые отклонения от указанных методов/условий;
 - результаты испытания;
 - наименования организации и ответственного лица, выполняющего испытание.

Приложение A (обязательное)

Определение адгезии герметиков

А.1 Область применения

Данный метод является ускоренной лабораторной процедурой для определения характеристик герметиков, используемых в солнечных коллекторах, которые совместно подвергают воздействию воды, циклическим движениям и изменениям температуры.

А.2 Оборудование

- А.2.1 Оборудование сжатия—растяжения, предназначенное для сжатия и растяжения комплекта для адгезии с 12,5 мм герметика на 25 % (то есть от 75 % до 125 % от ширины шва) с постоянной скоростью 4 ч в цикле (который включает в себя 2 ч сжатия и 2 ч растягивания).
- А.2.2 Печь, способная регулировать температуру в пределах $\pm 2\,^{\circ}$ С от температуры, приведенной в таблице 1 для типа испытуемого уплотнителя.
- А.2.3 Холодильная камера, способная регулировать температуру в пределах ± 2 °C от температуры, приведенной в таблице 3 для класса испытуемого уплотнителя
 - А.2.4 С-зажимы.
 - А.2.5 Разделительные блоки и подложки.

А.3 Комплект для адгезии

А.3.1 Подложки

Подложки являются материалами в солнечном коллекторе, которые должны быть уплотнены. Алюминиевая и стеклянная подложки должны быть использованы для испытания, если не указаны конкретные подложки. Размер подложки должен составлять по крайней мере 75 × 25 × 6 мм.

А.3.2 Грунтовка

Если изготовитель герметика рекомендует использовать грунтовку, то поверхность подложки, соприкасаемой с герметиком, должна быть обработана грунтовкой в соответствии с рекомендациями.

А.3.3 Комплект

Необходимо подготовить пять комплектов для каждой комбинации подложка/герметик. Закрытая упаковка герметика доводится до условий стандартной лабораторной температуры не менее 24 ч, в соответствии с инструкциями изготовителя, при условии, что они не противоречат следующим требованиям:

- два разделительных блока 12,5 мм располагают между двумя параллельными подложками для образования полости формы размерами $12,5 \times 12,5 \times 50$ мм;
- чтобы предотвратить прилипание разделительных блоков к герметику, применяют полиэтиленовую липкую ленту или любое другое разделительное покрытие. Форму удерживают вместе с помощью липкой ленты, резиновой ленты или зажимов. Для многокомпонентных герметиков необходимо перемешать (около 5 мин) 250 г основного соединения с соответствующим количеством затвердевающего агента;
- необходимо наполнить полость формы с герметиком для испытания. Испытуемый комплект доводят до стандартных лабораторных условий в течении 21 дня в соответствии с [8];
- как только необходимая жесткость достигается в процессе выдерживания, разделительные блоки отделяют таким образом, чтобы избежать повреждения герметика.

А.4 Метод испытания

- А.4.1 Испытуемый комплект погружают в дистиллированную воду на семь дней. За данный период необходимо дважды проверить комплект на качество соединения, вытащив его из воды и изогнув на 60°.
- А.4.2 Если соединение прочное, то необходимо сжать комплект на 25 % его ширины и закрепить зажимами. Далее необходимо поместить комплект в печь на семь дней при температуре испытания, соответствующей той, что указана в таблице 1 для данного типа герметика. Затем комплект убирают из печи, снимают зажимы и охлаждают до стандартной лабораторной температуры.
- А.4.3 Комплект помещают в оборудование для сжатия—растяжения и проводят 10 циклов сжатия—растяжения при длительности одного цикла порядка 4 ч. Амплитуда растяжения и сжатия составляет 25 % длины комплекта. По завершении 10 циклов разделительные блоки помещают между подложками, комплект убирают из оборудования и осматривают на предмет разрывов и повреждений. Испытания прекращают для комплектов с разрывами или с повреждениями.
- А.4.4 Комплект в сжатом состоянии (на 25 % ширины) помещают в печь на 16 или 20 ч при температуре испытания, приведенной в таблице 1. Затем убирают из печи, охлаждают в несжатом состоянии до стандартной лабораторной температуры не менее 2 ч.

А.4.5 Комплект помещают в оборудование для растягивания внутри холодильной камеры с температурой, соответствующей классу герметика (см. 3.4). Зажимы устройства располагают на расстоянии 9,5 мм и растягивают на 15,5 мм, затем комплект охлаждают в камере в течение 2 ч. Разделительные блоки помещают между подложками на максимальное растяжение, далее комплект извлекают из устройства. Далее комплект нагревают до температуры окружающего воздуха, и осматривают на предмет разрывов и повреждений. Данный цикл повторяют 9 раз. Испытание останавливают, если появляются разрывы и повреждения.

А.4.6 Для трех комплектов определяют суммарную площадь разрывов и повреждений, см².

А.5 Протокол испытания

Протокол испытания должен содержать, как минимум, следующую информацию:

- идентификация герметика;
- тип и класс герметика;
- используемые подложки;
- идентификация используемой грунтовки;
- итоговая площадь повреждения;
- описание повреждения;
- наименования организации и ответственного лица, выполняющего испытание.

Библиография

[4]	ИСО 4892-2:1994	Пластмассы. Методы испытаний на воздействие лабораторных источников
[1]	VICO 4092-2.1994	света. Часть 2. Ксеноновые дуговые лампы
	(ISO 4892-2:1994)	(Plastics — Method of exposure to laboratory light sources. Part 2: Xenon-arc sources)
[2]	ИСО 877:1994	Пластмассы. Методы воздействия прямого света, дневного света через стекло
[-]	7,00 0,7.,001	и дневного света, интенсифицированного с помощью зеркал Френеля
	(ISO 877:1994)	(Plastics — Methods of exposure to direct weathering, to weathering using glass-filtered
	(,	daylight, and to intensified weathering by daylight using Fresnel 1 mirrors)
[3]	ИСО 4632-1:1982	Резина. Классификация. Часть 1. Описание системы классификации
	(ISO 4632-1:1982)	(Rubber, vulcanized — Classification system — Part 1: Description of the classification
	,	system)
[4]	И С О 48:1994	Резина вулканизированная или термопластичная. Определение твердости
		(om 10 IRHD ðo 100 IRHD)
	(I S O 48:1994)	[Rubber, vulcanized or thermoplastic — Determination of hardness (hardness between
		10 IRHD and 100)]
[5]	ИСО 7619:1997	Резина. Определение твердости на вдавливание с помощью карманных твердо-
		меров
	(ISO 7619:1997)	(Rubber — Determination of indentation hardness by means of pocket hardness meters)
[6]	ИСО 3302-1:1996	Резина. Допуски на изделия. Часть 1. Допуски на размеры
[7]	(ISO 3302-1:1996)	(Rubber — Tolerances for products — Part 1: Dimensional tolerances)
[7]	ИСО 4661-1:1993	Резина. Приготовление образцов и проб для испытаний. Часть 1. Физические
	(ISO 4661-1:1993)	испытания (Rubber, vulcanized or thermoplastic — Preparation of samples and test pieces — Part 1:
	(130 4001-1.1333)	Physical tests)
[8]	ИСО 471:1995	Каучук. Стандартные значения температуры, влажности и времени при конди-
[o]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ционировании и испытании образцов
	(ISO 471:1995)	(Rubber — Temperatures, humidities, and times for conditioning and testing)
<i>[</i> 91	ИСО 37:1994 [°]	Резина вулканизированная или термопластичная. Определение характеристик
		зависимости деформации от напряжения при растяжении
	(ISO 37:1994)	(Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties)
[10]	ИСО 815:1991	Резина вулканизированная и термопластичная. Определение остаточной дефор-
		мации сжатия при нормальных, повышенных и низких температурах
	(ISO 815:1991)	(Rubber, vulcanized or thermoplastic — Determination of compression set at ambient,
		elevated or low temperatures)

ПНСТ 45—2015

[11] ИСО 1653:1975	Каучук вулканизованный или термопластичный. Определение остаточной деформации сжатия при стандартной, повышенной или низкой температурах
(ISO 1653:1975)	(Vulcanized rubbers — Determination of compression set under constant deflection at low temperatures)
[12] ИСО 188:1982	Pesuна вулканизированная или термопластичная. Испытания на ускоренное старение и теплостойкость
(ISO 188:1982)	(Rubber, vulcanized — Accelerated ageing and heat-resistance tests)
[13] UCO 1431-1:1989	Каучук вулканизованный и термопластичный. Сопротивление озонному растрескиванию. Часть 1. Статические механические испытания
(ISO 1431-1:1989)	(Rubber, vulcanized or thermoplastic — Resistance to ozone cracking — Part 1: Static strain test)
[14] ИСО 812:1991	Метод определения температуры хрупкости резины
(ISO 812:1991)	(Rubber, vulcanized — Determination of low-temperature brittleness)

УДК 620.91:615.477.8:006.354

OKC 27.160 83.140.50

Ключевые слова: энергия солнечная, уплотнитель, солнечный коллектор, резина, методы испытания

Редактор А.П. Корпусова
Технический редактор В.Н. Прусакова
Корректор Ю.М. Прокофьева
Компьютерная верстка И.А. Налейкиной

Сдано в набор 22.10.2015. Подписано в печать 19.11.2015. Формат $60 \times 84 \frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,10. Тираж 32 экз. Зак. 3721.