ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56294— 2014

Интеллектуальные транспортные системы

ТРЕБОВАНИЯ К ФУНКЦИОНАЛЬНОЙ И ФИЗИЧЕСКОЙ АРХИТЕКТУРАМ ИНТЕЛЛЕКТУАЛЬНЫХ ТРАНСПОРТНЫХ СИСТЕМ

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Московский автомобильно-дорожный государственный технический университет (МАДИ)»
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 57 «Интеллектуальные транспортные системы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 декабря 2014 г. № 1966-ст

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

В мировой практике интеллектуальные транспортные системы признаны как общая транспортная идеология интеграции достижений телематики во все виды транспортной деятельности для решения проблем экономического и социального характера — сокращения аварийности, повышения эффективности общественного транспорта и грузоперевозок, обеспечения общей транспортной безопасности, улучшения экологических показателей.

Определение требований к функциональной и физической архитектурам интеллектуальных транспортных систем позволяет обеспечивать их построение в соответствии с реальными потребностями пользователей ИТС, снизить капитальные затраты и повысить эффективность системы в целом, определить оптимальный набор необходимых решений для первоначального внедрения и разработать план последующего развития или модернизации системы. Настоящий стандарт входит в комплекс стандартов «Интеллектуальные транспортные системы» и находится во взаимосвязи с другими стандартами комплекса.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Интеллектуальные транспортные системы Требования к функциональной и физической архитектурам интеллектуальных транспортных систем

Intelligent transport systems. Requirements for functional and physical architectures of intelligent transport systems

Дата введения — 2015—07—01

1 Область применения

Настоящий стандарт устанавливает требования к физической и функциональной архитектурам интеллектуальных транспортных систем.

Настоящий стандарт распространяется на проекты интеллектуальных транспортных систем, созданных на основе взаимодействия систем управления наземными транспортными средствами в городе и за его пределами.

2 Термины, определения и сокращения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 интеллектуальная транспортная система; ИТС: Система, интегрирующая современные информационные, коммуникационные и телематические технологии, технологии управления и предназначенная для автоматизированного поиска и принятия к реализации максимально эффективных сценариев управления транспортно-дорожным комплексом региона, конкретным транспортным средством или группой транспортных средств с целью обеспечения заданной мобильности населения, максимизации показателей использования дорожной сети, повышения безопасности и эффективности транспортного процесса, комфортности для водителей и пользователей транспорта.
- 2.2 **локальный проект**; ЛП: Проект, имеющий определенные территориальные границы функционирования ИТС.
- 2.3 режим управления: Совокупность сценариев управления, реализуемых при определенных условиях.
- 2.4 сценарий управления: Последовательность выполнения действий, требующихся для реализации определенного режима управления.
- 2.5 штатный режим управления: Управление системой в соответствии с запланированной схемой работы, направленное на реализацию целей заказчика.
- П р и м е ч а н и е Под словом штатный понимается управление ЛП ИТС в случае невозникновения конфликтных режимов, вызванных планируемым или внезапным изменением условий движения.
- 2.6 **нештатный режим управления**: Управление системой, требующее внесения изменений в штатный режим управления с учетом сложившейся ситуации.
- П р и м е ч а н и е Примером нештатного управления может служить обеспечение проезда специализированного транспорта, экстренное реагирование на дорожно-транспор-тные происшествия и чрезвычайные ситуации. Нештатное управление делят на оператив-ное и ситуационное в соответствии с реализуемыми функциями.
- 2.7 **оперативное управление**: Управление системой, требующее запланированного вмешательства в штатную работу системы.
- П р и м е ч а н и е Примером оперативного управления является выделение приоритетного проезда специализированному транспорту в соответствии с заранее опре-деленным маршрутом движения и временем проезда.
- 2.8 **ситуационное управление**: Управление системой, требующее незапланированного вмешательства в штатную работу системы.

FOCT P 56294—2014

П р и м е ч а н и е — Примером ситуационного управления является реагирование на возникновение дорожно-транспортного происшествия или чрезвычайной ситуации.

- 2.9 идеалистическая модель локального проекта интеллектуальной транспортной системы: Упрощенная модель ЛП ИТС, включающая предварительные физическую и функциональную архитектуры и архитектуру индикаторов эффективности ЛП ИТС.
- 2.10 уточненная модель локального проекта интеллектуальной транспортной системы: Детальная модель ЛП ИТС, включающая физическую и функциональную архитектуры локального проекта ИТС, структуру субъектов, иерархию компетенции органов исполнительной власти и регламенты межсубъектного взаимодействия.

П р и м е ч а н и е — Детальная модель ЛП ИТС основана на применении специальных методик определения технологий и подсистем, а также методик технико-экономического обоснования.

2.11 предварительная физическая архитектура локального проекта интеллектуальной транспортной системы: Предварительная модель иерархически организованной совокупности подсистем ИТС и взаимосвязи между ними.

П р и м е ч а н и е — Предварительная физическая архитектура ЛП ИТС служит исходными данными для формирования физической архитектуры ЛП ИТС.

2.12 физическая архитектура локального проекта интеллектуальной транспортной системы: Иерархически организованная совокупность морфологических описаний подсистем ИТС и взаимосвязей между ними, а также взаимосвязей программного обеспечения и оборудования, входящих в их состав.

П р и м е ч а н и е — Физическая архитектура определяет основные требования к функционированию, взаимодействию и размещению элементной базы ИТС.

2.13 предварительная функциональная архитектура локального проекта интеллектуальной транспортной системы: Предварительная модель иерархически организованной совокупности функций и задач подсистем ИТС.

П р и м е ч а н и е — Предварительная функциональная архитектура ЛП ИТС служит исходными данными для формирования функциональной архитектуры ЛП ИТС.

- 2.14 функциональная архитектура локального проекта интеллектуальной транспортной системы: Иерархически организованная совокупность функциональных описаний подсистем, субъектов и объектов ИТС, а также их взаимодействий.
- 2.15 цель управления локального проекта интеллектуальной транспортной системы: Совокупное представление о некоторой модели работы ИТС, представленной заказчиком или оцененной на основании анализа и способной удовлетворять имеющуюся потребность в транспортно-дорожном комплексе.
- 2.16 основные функции локального проекта интеллектуальной транспортной системы: Относительно самостоятельные, специализированные и обособленные виды деятельности, отличающиеся однородностью содержания выполняемых работ и их целевой направленностью.
- 2.17 основные задачи локального проекта интеллектуальной транспортной системы: Конкретные действия или ряд действий, необходимых для изменения проблемной ситуации и достижения желаемых результатов.

3 Последовательность разработки функциональной и физической архитектур локального проекта интеллектуальной транспортной системы

- 3.1 Функциональная и физическая архитектуры ЛП ИТС следует разрабатывать в два этапа:
- создание предварительных функциональной и физической архитектур:
- создание функциональной и физической архитектур.
- 3.2 Предварительные функциональная и физическая архитектуры создаются в рамках идеалистической модели ЛП ИТС.
 - 3.3 Функциональная и физическая архитектуры создаются в рамках уточненной модели ЛП ИТС.

П р и м е ч а н и е — Уточненная и идеалистическая модели ЛП ИТС разраба-тываются в рамках обоснования целесообразности разработки и внедрения ЛП ИТС (обоснование ЛП ИТС). Обоснование ЛП ИТС включает в себя мероприятия по разработке задания на создание ЛП ИТС, разработке идеалистической модели ЛП ИТС и разработке уточненной модели ЛП ИТС. На основании анализа уточненной модели ЛП ИТС принимается заключение о целесообразности разработки и внедрения ЛП ИТС.

- 3.5 Функциональную архитектуру ЛП ИТС следует разрабатывать на основе предварительной функциональной архитектуры с высоким уровнем детализации функций ЛП ИТС.
- 3.5 Физическую архитектуру ЛП ИТС следует разрабатывать на основе предварительной физической архитектуры с высоким уровнем детализации подсистем ЛП ИТС.

4 Требования к функциональной и физической архитектурам интеллектуальных транспортных систем

- 4.1 Обобщенная функциональная архитектура ИТС приведена в приложении А.
- 4.1.1 Функциональная архитектура ЛП ИТС должна включать в себя уровни:
- режимов управления ЛП ИТС;
- сценариев управления ЛП ИТС:
- целей управления ЛП ИТС;
- основных функций ЛП ИТС;
- основных задач ЛП ИТС;
- дополнительных задач ЛП ИТС.
- 4.1.2 Уровень режимов управления ЛП ИТС должен включать в себя:
- штатное управление:
- нештатное управление, включающее в себя оперативное и ситуационное режимы управления.
- 4.1.3 Каждый из режимов управления ЛП ИТС должен включать в себя один или несколько сценариев управления ЛП ИТС.
- 4.1.4 Каждый сценарий управления ЛП ИТС должен отражать одну или несколько целей управления ЛП ИТС:
 - обеспечение безопасности дорожного движения;
 - обеспечение номинальной пропускной способности:
 - оптимизацию транспортного процесса:
- поддержание заданного уровня содержания дорожного полотна и элементов дорожной инфраструктуры;
 - предоставление различных сервисных услуг пользователям транспортной системы;
 - формирование заданного поведения участников дорожного движения и культуры вождения.
- 4.1.5 При достижении каждой из целей управления ЛП ИТС необходимо реализовать одну или несколько основных функций управления ЛП ИТС.
- 4.1.6 Для реализации каждой из функций управления ЛП ИТС необходимо решение одной или нескольких основных задач управления ЛП ИТС.
- 4.1.7 Каждая задача управления ЛП ИТС может содержать одну или несколько дополнительных задач различного уровня.
 - 4.2 Обобщенная физическая архитектура ИТС приведена в приложении Б.
 - 4.2.1 Функциональная архитектура ИТС должна включать в себя уровни:
 - интеграционной платформы ЛП ИТС;
 - комплексных подсистем ЛП ИТС;
 - инструментальных подсистем ЛП ИТС;
 - элементов подсистем ЛП ИТС;
 - оборудования.
- 4.2.2 Интеграционная платформа должна обеспечивать управление всеми комплексными подсистемами ЛП ИТС в штатном и нештатном режимах за счет накопления входящих первичных и обработанных данных от подсистем ИТС.
 - 4.2.3 Интеграционная платформа должна выполнять функции:
 - координации работы всех комплексных подсистем ИТС;
- предоставления вариантов принятия решения персоналу ЛП ИТС в штатных и нештатных режимах;
- предоставления предварительно обработанных данных от комплексных подсистем ИТС персоналу ЛП ИТС;
- принятия решений из существующего набора сценариев по управлению транспортной системой в штатном режиме;

FOCT P 56294—2014

- обеспечения взаимодействия с внешними информационными системами.
- 4.2.4 Интеграционная платформа ИТС должна обеспечивать:
- агрегирование и обработку текущих и ретроспективных данных;
- визуализацию текущего состояния транспортной системы;
- корректировку работы подсистем ИТС;
- определение режима функционирования транспортной системы;
- представление данных в установленной отчетной форме;
- сбор и хранение данных от всех подсистем ИТС:
- управление транспортной системой.
- 4.2.5 Локальный проект ИТС может состоять из одной или нескольких комплексных подсистем:
- автоматизированная система управления дорожным движением, включающая в себя подсистему директивного управления транспортными потоками и подсистему косвенного управления транспортными потоками.
 - автоматизированная система управления маршрутизированным транспортом.
 - подсистема контроля соблюдения правил дорожного движения (ПДД) и контроля транспорта.
 - подсистема управления состоянием дорог.
 - подсистема пользовательских сервисов.
- 4.2.6 Комплексная подсистема должна обеспечивать решение общих задач, выполнение которых позволяет достичь комплексной цели в рамках транспортной стратегии и принятия решений в сфере оказания транспортных услуг.
 - 4.2.7 Комплексная подсистема должна состоять из следующих компонентов:
 - одна или несколько инструментальных подсистем, как исполнительные элементы;
- центр обработки данных, выполняющий задачи по принятию решений, включающий в себя персонал и оборудование для хранения, обработки и передачи данных.
 - 4.2.8 Инструментальная подсистема ИТС должна обеспечивать решение следующих задач:
- осуществление управляющего воздействия на транспортный поток, на участников дорожного движения и объекты дорожной и транспортной инфраструктуры;
- сбор, передача, обработка и хранение данных о параметрах объекта мониторинга и/или управления.
- 4.2.9 Инструментальные подсистемы допускается формировать путем объединения нескольких инструментальных подсистем на уровне элементов подсистем ИТС.
- 4.2.10 Уровни элементов ЛП ИТС и оборудования являются физической реализацией инструментальных подсистем.
- 4.2.11 Элементы ЛП ИТС представляют собой объединенное в техническую систему оборудование.
 - 4.2.12 Элементы подсистем ИТС можно классифицировать следующим образом:
 - элементы, относящиеся к транспортному средству;
 - элементы, относящиеся к дорожной инфраструктуре:
 - элементы, относящиеся к среде поддержания их коммуникативного взаимодействия;
 - элементы, относящиеся к центру обработки данных.
 - 4.3 Комплексные подсистемы ЛП ИТС должны реализовывать функции ЛП ИТС.
- 4.3.1 Подсистема директивного управления транспортными потоками должна реализовывать следующие функции:
 - построение планов координации светофорного регулирования;
 - светофорное регулирование транспортного потока;
 - управление транспортным потоком посредством знаков переменной информации.
- 4.3.2 Подсистема косвенного управления транспортными потоками должна реализовывать следующие функции:
 - мониторинг состояния объектов притяжения транспортного потока;
 - построение качественной матрицы корреспонденции;
 - моно- и мультиобъектное маршрутное ориентирование;
 - обеспечение информационного сервиса.
- 4.3.3 Автоматизированная система управления маршрутизированным транспортом должна реализовывать следующие функции:
- оптимизация маршрутов движения с учетом погодно-метеорологических условий, сезона и нештатных ситуаций на транспорте;
 - обеспечение транспортной безопасности;
 - обеспечение безопасности и сохранности грузов;
 - обеспечение безопасности пассажиров наземного пассажирского транспорта;

- оптимизация расписания для общественного городского транспорта с целью гармонизации пассажиропотока.
- 4.3.4 Подсистема контроля соблюдения ПДД и контроля транспорта должна реализовывать следующие функции:
 - сбор данных, являющихся доказательной базой фактов нарушений ПДД;
 - передача данных правоохранительным органам и подсистемам ИТС.
 - 4.3.5 Подсистема управления состоянием дорог должна реализовывать следующие функции:
- обеспечение оперативного реагирования служб содержания дорог на ухудшение эксплуатационных параметров дорожного полотна;
- обеспечение автоматизированного сбора платы за проезд на платных участках улично-дорожной сети.
 - 4.3.6 Подсистема пользовательских сервисов должна реализовывать следующие функции:
- предоставление сервисных услуг пользователям транспортной системы на бесплатной основе;
 - предоставление сервисных услуг пользователям транспортной системы на платной основе.
 - 4.4 Инструментальные подсистемы ЛП ИТС должны реализовывать задачи ЛП ИТС.

Приложение А (обязательное)

Обобщенная функциональная архитектура интеллектуальной транспортной системы

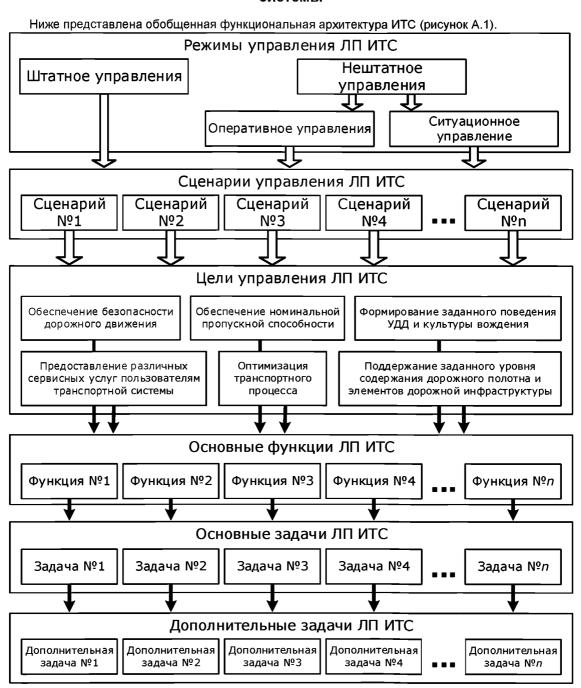


Рисунок А.1 – Обобщенная схема функциональной архитектуры ЛП ИТС

Приложение Б (обязательное)

Обобщенная физическая архитектура интеллектуальной транспортной системы



Рисунок Б.1 – Обобщенная схема физической архитектуры ЛП ИТС

УДК 656.13:006.354

OKC 35.240.60

Ключевые слова: интеллектуальная транспортная система, локальный проект, автомобильный транспорт, организация дорожного движения, функциональная архитектура, физическая архитектура.

Подписано в печать 12.01.2015. Формат $60x84^{1}/_{8}$. Усл. печ. л. 1,40. Тираж 32 экз. Зак. 114.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 **Москва**, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru