ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 8.827 — 2013

Государственная система обеспечения единства измерений

МЕТОД ИЗМЕРЕНИЯ И ОПРЕДЕЛЕНИЯ ИНДЕКСА ЦВЕТОПЕРЕДАЧИ ИСТОЧНИКОВ ИЗЛУЧЕНИЯ

Издание официальное

Предисловие

- 1 PA3PAБOTAH Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы» Подкомитет ПК-10 «Оптические и оптико-физические измерения»
- 3 УТВЕРЖДЕН И ВВЕДЕН в действие Приказом Федерального агентства по техническому регулированию и метрологии от 06 сентября 2013 г. № 1012-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru)

© Стандартинформ, 2014

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

МЕТОД ИЗМЕРЕНИЯ И ОПРЕДЕЛЕНИЯ ИНДЕКСА ЦВЕТОПЕРЕДАЧИ ИСТОЧНИКОВ ИЗЛУЧЕНИЯ

State system for ensuring the uniformity of measurements. Method of measuring and specifying Colour Rendering Index of light sources

Дата введения — 2015—01—01

1 Область применения

Настоящий стандарт распространяется на большинство основных источников излучения (лампы накаливания, трубчатые и компактные люминесцентные лампы, а также газоразрядные электрические лампы других типов, кроме источников монохроматического излучения) и устанавливает методы измерения и определения их индекса цветопередачи.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.205-90 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений координат цвета и координат цветности

ГОСТ 7601-78 Физическая оптика. Термины, буквенные обозначения и определения основных величин

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 26148-84 Фотометрия. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины и обозначения по ГОСТ 7601, ГОСТ 26148, а также следующие термины с соответствующими определениями и обозначениями:

- 3.1 колориметрия: Наука о методах измерения и количественного выражения цвета.
- 3.2 коррелированная цветовая температура: Температура излучателя Планка, воспринимаемый цвет которого наиболее близко характеризует данное цветовое излучение при той же светлоте и тех же стандартных условиях наблюдения.
- 3.3 равноконтрастное цветовое пространство МКО 1964 [1]: Цветовое пространство, получаемое построением ортогональных осей координат, значения которых определяют по формулам:

$$W^* = 25Y^{1/3} - 17; (1)$$

$$U^* = 13W^*(u - u_0); (2)$$

$$V^* = 13W^*(v - v_0); (3)$$

$$1 \le Y \le 100, \tag{4}$$

где u, v - координаты равноконтрастного цветового графика МКО 1960 г. [1]; u_0 , v_0 - значения этих переменных для выбранного ахроматического цвета.

- 3.3 **цветопередача**: Влияние источника излучения на цвет объекта по сравнению с его цветом при освещении эталонным источником излучения, имеющим ту же цветовую температуру.
- 3.4 **индекс цветопередачи; R:** Мера степени отклонения цвета объекта при освещении источником излучения по сравнению с цветом объекта при освещении эталонным источником излучения.
- 3.5 **специальный индекс цветопередачи ;R**_i: Индекс цветопередачи i-го образца цвета.
- 3.6 **цветность:** Качественная характеристика цвета, определяемая его координатами цветности.
- 3.7 спектрорадиометр: Прибор для измерения энергетических величин в узких интервалах длин волн определенного спектрального диапазона.

4 Требования к условиям проведения измерений и оборудованию

4.1 Условия измерений

При выполнении измерений соблюдают следующие условия:

- температура окружающего воздуха $(25 \pm 2)^{\circ}$ C:
- относительная влажность (65 ± 20) %:
- атмосферное давление (101 ±4) кПа:
- напряжение питающей сети (220 ± 22) В.

4.2 Требования к эталонным источникам излучения

Эталонный источник излучения должен соответствовать требованиям ГОСТ 7721.

Эталонный источник излучения должен иметь данные спектрального распределения энергии излучения в пределах длин волн видимого спектра с интервалом не более 10 nm.

Эталонный и исследуемый источники излучения должны иметь различие цветности ΔC не более чем 5.4·10⁻³ [2].

Различие цветности ΔC между исследуемым источником излучения (u_k , v_k) и эталонным источником излучения (u_r , v_r), согласно [2], может быть рассчитано по формуле

$$\Delta C = [(u_r - u_r)^2 + (v_k - v_r)^2]^{1/2} (5)$$

4.3 Требования к образцам цвета

Для измерений применяют набор из восьми основных и шести дополнительных образцов цвета [2].

Цвета основных и дополнительных образцов представлены в таблице А.1 (Приложение А).

Основные образцы покрыты краской различной насыщенности и примерно одинаковой яркости. Спектральный коэффициент яркости β(λ) восьми основных образцов представлен в таблице Б.1 (Приложение Б)

Цвета дополнительных образцов имеют большие различия в яркости и насыщенности . Спектральный коэффициент яркости $\beta(\lambda)$ шести дополнительных образцов представлен таблице В.1 (Приложение В).

Спектральный коэффициент яркости $\beta(\lambda)$ определяются в геометрии освещения/наблюдения 0/45 [1].

5 Определение индекса цветопередачи

5.1 Определение координат цвета образцов

Измеряют относительное спектральное распределение энергии источника излучения S(λ). Рассчитывают координаты цвета Х, Ү, Z и координаты цветности х, у по формулам:

$$X = k \int_{\lambda} S(\lambda) \beta(\lambda) \overline{x}(\lambda) d\lambda \tag{6}$$

$$Y = k \int_{\lambda} S(\lambda) \beta(\lambda) \overline{y}(\lambda) d\lambda \qquad ; \qquad (7)$$

$$Z = k \int_{\lambda} S(\lambda) \beta(\lambda) \overline{z}(\lambda) d\lambda \qquad ; \qquad (8)$$

$$Z = k \int S(\lambda) \beta(\lambda) \overline{z}(\lambda) d\lambda \qquad ; \tag{8}$$

$$x = \frac{X}{X + Y + Z} \tag{9}$$

$$y = \frac{Y}{X + Y + Z} \tag{10}$$

где $\bar{x}(\lambda)$, $\bar{v}(\lambda)$, $\bar{z}(\lambda)$ - функции сложения цветов;

к - нормирующий коэффициент, определяемый по формуле

$$k = \frac{100}{\int\limits_{\lambda} S(\lambda) \overline{y}(\lambda) d\lambda} \quad . \tag{11}$$

Все координаты должны быть представлены значениями с четырьмя десятичными знаками.

5.2 Преобразование координат X, Y, Z и x, у в координаты u,v

Координаты Х, Ү, Z и х, у должны быть преобразованы в координаты и, у равноконтрастного цветового графика МКО 1960 г. [1] по формулам:

$$u = 4X/(X+15Y+3Z); (12)$$

$$v = 6Y/(X+15Y+3Z)$$
; (13)

$$u = 4x/(-2x+12y+3); (14)$$

$$v = 6y/(-2x+12y+3);$$
 (15)

5.3 Учет цветового смещения

Координаты цвета с учетом цветового смещения $u_{k,i}$ и $v_{k,i}$,получаемого вследствие разницы между исследуемым и эталонным излучателями, в результате различной цветовой адаптации при освещении исследуемым и эталонным излучателями рассчитываются по формулам:

$$u_{k,i} = \frac{10,872 + 0,404 \frac{c_r}{c_k} c_{k,i} - 4 \frac{d_r}{d_k} d_{k,i}}{16,518 + 1,481 \frac{c_r}{c_k} c_{k,i} - \frac{d_r}{d_k} d_{k,i}} ;$$
(16)

$$v_{k,i}' = \frac{5,520}{16,518 + 1,481 \frac{c_r}{c_k} c_{k,i} - \frac{d_r}{d_k} d_{k,i}} , \qquad (17)$$

i - номер образца цвета, функции c и d рассчитывают для исследуемого источника излучения и для образцов цвета, освещаемых этим источником излучения, по формулам:

$$c = \frac{1}{v} (4 - u - 10v); \tag{18}$$

$$d = \frac{1}{v}(1,708v + 0,404 - 1,481u). \tag{19}$$

Таким образом, $u_k = u_r$ и $v_k = v_r$.

5.4 Преобразование в координаты равноконтрастного цветового пространства

Полученные координаты цвета (u,v) преобразуют в координаты равноконтрастного цветового пространства [1] по формулам:

$$W_{r,i}^* = 25(\gamma_{r,i})^{1/3} - 17;$$
 (20)

$$U_{r,i}^* = 13 W_{r,i}^* (u_{r,i} - u_r); (21)$$

$$V_{r,i}^* = 13 W_{r,i}^* (v_{r,i} - v_r); (22)$$

$$W_{k,i}^* = 25(Y_{k,i})^{1/3} - 17;$$
 (23)

$$U_{k,i}^* = 13 W_{k,i}^* (u_{k,i}' - u_r); (24)$$

$$V_{k,i}^* = 13 W_{k,i}^* (v_{k,i} - v_r) . {25}$$

5.5 Определение результирующего цветового смещения

Разница ΔE_i между воспринимаемым цветом *i*-го образца цвета при освещении исследуемым и эталонным источниками излучения определяют по формуле

$$\Delta E_i = \sqrt{(U_{r,i}^* - U_{k,i}^*)^2 + (V_{r,i}^* - V_{k,i}^*)^2 + (W_{r,i}^* - W_{k,i}^*)^2} = \sqrt{(\Delta U_i^*)^2 + (\Delta V_i^*)^2 + (\Delta W_i^*)^2} . \tag{26}$$

5.6 Расчет индекса цветопередачи

Специальный индекс цветопередачи для каждого образца цвета рассчитывается по формуле:

$$R_i = 100 - 4.6 \, \Lambda E_i$$
 (27)

Результат округляется до ближайшего целого числа. Индекс цветопередачи R рассчитывают по формуле

$$R = \frac{1}{8} \sum_{i=1}^{8} R_i . {28}$$

Приложение А (Обязательное)

Образцы цвета для определения индекса цветопередачи

Таблица А.1 Образцы цвета для определения индекса цветопередачи [2]

Номер образца	Обозначения цветов в цветовой системе Мансела	Цвет образца при дневном свете			
1	7,5 R 6/4	Светлый серо-красный			
2	5 Y 6/4	Темный серо-желтый			
3	5 GY 6/8	Насыщенный желто-зеленый			
4	2,5 G 6/6	Средний желто-зеленый			
5	10 BG 6/4	Светлый голубовато-зеленый			
6	5 PB 6/8	Светлый синий			
7	2,5 P 6/8	Светлый фиолетовый			
8	10 P 6/8	Светлый красновато-пурпурный			
9	4,5 R 4/13	Насыщенный красный			
10	5 Y 8/10	Насыщенный желтый			
11	4,5 G 5/8	Насыщенный зеленый			
12	3 PB 3/11	Насыщенный синий			
13	5 YR 8/4	Светлый желто-розовый (кожа человека)			
14	5 GY 4/4	Средний оливково-зеленый (зеленый лист)			

Приложение Б (Обязательное)

Спектральный коэффициент яркости β(λ) восьми основных образцов цвета, применяемых для измерения индекса цветопередачи [2]

Таблица Б.1

гаолицаь. Длина			β(λ) дл	я восьми осн	новных обра:	зцов цвета		
волны λ, nm	01	02	03	04	05	06	07	08
360	0,116	0,053	0,058	0,057	0,143	0,079	0,150	0,075
365	0,136	0,055	0,059	0,059	0,187	0,081	0,177	0,078
370	0,159	0,059	0,061	0,062	0,233	0,089	0,218	0,084
375	0,190	0,064	0,063	0,067	0,269	0,113	0,293	0,090
380	0,219	0,070	0,065	0,074	0,295	0,151	0,378	0,104
385	0,239	0.079	0,068	0.083	0,306	0,203	0.459	0,129
390	0,252	0,089	0,070	0,093	0,310	0,265	0,524	0,170
395	0,256	0,101	0,072	0,105	0,312	0,339	0,546	0,240
400	0,256	0,111	0,073	0,116	0,313	0,410	0,551	0,319
405	0,254	0,116	0,073	0,121	0,315	0,464	0,555	0,416
410	0,252	0,118	0,074	0,124	0,319	0,492	0,559	0,462
415	0,248	0,120	0,074	0,126	0,322	0,508	0,560	0,482
420	0,244	0,121	0,074	0,128	0,326	0,517	0,561	0,490
425	0,240	0,122	0,073	0,131	0,330	0,524	0,558	0,488
430	0,237	0,122	0,073	0,135	0,334	0,531	0,556	0,482
435	0,232	0,122	0,073	0,139	0,339	0,538	0,551	0,473
440	0,230	0,123	0,073	0,144	0,346	0,544	0,544	0,462
445	0,226	0,124	0,073	0,151	0,352	0,551	0,535	0,450
450	0,225	0,127	0,074	0,161	0,360	0,556	0,522	0,439
455	0,222	0,128	0,075	0,172	0,369	0,556	0,506	0,426
460	0,220	0,120	0,073	0,172	0,381	0,554	0,488	0,413
465	0,220	0,134	0,080	0,100	0,394	0,549	0,469	0,397
470	0,216	0,138	0,085	0,203	0,403	0,541	0,448	0,382
475	0,214	0,138	0,083	0,254	0,410	0,531	0,448	0,366
480	0,214	0,150	0,109	0,234	0,415	0,519	0,429	0,352
485	0,214	0,159	0,109	0,308	0,418	0,519	0,400	0,332
490	0,214	0,139	0,128	0,332	0,419	0,304	0,363	0,337
495								
500	0,218	0,190	0,172 0,198	0,352 0,370	0,417	0,469 0,450	0,341	0,310
505	0,225	0,207	0,198	0,370	0,413	0,430	0,324	0,289
510	0,225	0,242	0,221	0,390	0,403	0,431	0,311	0,283
				0,394	-	,		
515 520	0,226	0,253	0,260 0,278	0,394	0,396	0,395	0,291	0,276
525	0,225 0,225	0,260	0,278	0,393	0,389	0,377	0,283	0,270
530	0,223	0,267	0,302	0,392	0,372	0,336	0,273	0,262
535	0,227	0,269	0,339	0,383	0,372	0,341	0,260	0,251
540	0,236	0,209	0,370	0,377	0,353	0,320	0,257	0,251
545	0,235	0,272	0,392	0,354	0,333	0,309		0,250
	0,243	0,276					0,257	
550 555		0,282	0,400	0,341	0,331	0,279	0,259	0,254 0,258
	0,262				-			
560	0,272	0,299	0,380	0,312	0,308	0,253	0,260	0,264
565	0,283	0,309	0,365	0,296	0,296	0,241	0,258	0,269
570	0,298	0,322	0,349	0,280	0,284	0,234	0,258	0,272
575	0,318	0,329	0,332	0,263	0,271	0,227	0,254	0,274
580	0,341	0,335	0,315	0,247	0,260	0,225	0,254	0,278
585	0,367	0,339	0,299	0,229	0,247	0,222	0,259	0,284
590	0,390	0,341	0,285	0,214	0,232	0,221	0,270	0,295
595	0,409	0,341	0,272	0,198	0,220	0,220	0,284	0,316
600	0,424	0,342	0,264	0,185	0,210	0,220	0,302	0,348
605	0,435	0,342	0,257	0,175	0,200	0,220	0,324	0,384

Окончание таблицы Б 1

Длина		β(λ) для восьми основных образцов цвета								
волны λ, nm	01	02	03	04	05	06	07	08		
610	0,442	0,342	0,252	0,169	0,194	0,220	0,344	0,434		
615	0,448	0,341	0,247	0,164	0,189	0,220	0,362	0,482		
620	0,450	0,341	0,241	0,160	0,185	0,223	0,377	0,528		
625	0,451	0,339	0,235	0,156	0,183	0,227	0,389	0,568		
630	0,451	0,339	0,229	0,154	0,180	0,223	0,400	0,604		
635	0,451	0,338	0,224	0,152	0,177	0,239	0,410	0,629		
640	0,451	0,338	0,220	0,151	0,176	0,244	0,420	0,648		
645	0,451	0,337	0,217	0,149	0,175	0,251	0,429	0,663		
650	0,450	0,336	0,216	0,148	0,175	0,258	0,438	0,676		
655	0,450	0,335	0,216	0,148	0,175	0,263	0,445	0,685		
660	0,451	0,334	0,219	0,148	0,175	0,068	0,452	0,693		
665	0,451	0,332	0,224	0,149	0,177	0,273	0,457	0,700		
670	0,453	0,332	0,230	0,151	0,180	0,278	0,462	0,705		
675	0,454	0,331	0,238	0,154	0,183	0,281	0,466	0,709		
680	0,455	0,331	0,251	0,158	0,186	0,283	0,468	0,712		
685	0,457	0,330	0,269	0,162	0,189	0,286	0,470	0,715		
690	0,458	0,329	0,288	0,165	0,192	0,291	0,473	0,717		
695	0,460	0,328	0,312	0,168	0,195	0,296	0,477	0,719		
700	0,462	0,328	0,340	0,170	0,199	0,302	0,483	0,721		
705	0,463	0,327	0,368	0,171	0,200	0,313	0,489	0,720		
710	0,464	0,326	0,390	0,170	0,199	0,325	0,496	0,719		
715	0,465	0,325	0,412	0,168	0,198	0,338	0,503	0,722		
720	0,466	0,324	0,431	0,166	0,196	0,351	0,511	0,725		
725	0,466	0,324	0,447	0,164	0,195	0,364	0,518	0,727		
730	0,466	0,324	0,460	0,164	0,195	0,376	0,525	0,729		
735	0,466	0,232	0,472	0,165	0,196	0,389	0,532	0,730		
740	0,467	0,322	0,481	0,168	0,197	0,401	0,539	0,730		
745	0,467	0,321	0,488	0,172	0,200	0,413	0,546	0,730		
750	0,467	0,320	0,493	0,177	0,203	0,425	0,553	0,730		
755	0,467	0,318	0,497	0,181	0,205	0,436	0,559	0,730		
760	0,467	0,316	0,500	0,185	0,208	0,447	0,565	0,730		
765	0,467	0,315	0,502	0,189	0,212	0,458	0,570	0,730		
770	0,467	0,315	0,505	0,192	0,215	0,469	0,575	0,730		
775	0,467	0,314	0,510	0,194	0,217	0,477	0,578	0,730		
780	0,467	0,314	0,516	0,197	0,219	0,485	0,581	0,730		
785	0,467	0,313	0,520	0,200	0,222	0,493	0,583	0,730		
790	0,467	0,313	0,524	0,204	0,226	0,500	0,585	0,731		
795	0,466	0,312	0,527	0,210	0,231	0,506	0,587	0,731		
800	0,466	0,312	0,531	0,218	0,237	0,512	0,588	0,731		
805	0,466	0,311	0,535	0,225	0,243	0,517	0,589	0,731		
810	0,466	0,311	0,539	0,233	0,249	0,521	0,590	0,731		
815	0,466	0,311	0,544	0,234	0,257	0,525	0,590	0,731		
820	0,465	0,311	0,548	0,254	0,266	0,529	0,590	0,731		
825	0,464	0,311	0,552	0,264	0,273	0,532	0,591	0,731		
830	0,464	0,310	0,555	0,274	0,280	0,535	0,592	0,731		

Приложение В (Обязательное)

Спектральный коэффициент яркости $\beta(\lambda)$ шести дополнительных образцов цвета, используемых для измерения индекса цветопередачи

Таблица В.1

Длина волны		β(λ) дл:	я шести дополни	тельных образц	ов цвета	
λ,	09	10	11	12	13	14
nm						
360 365	0,069 0,072	0,042	0,074 0,079	0,0189 0,175	0,071	0,036 0,036
370	0,072	0.045	0,079		0,076	0,036
		- '		0,158		
375	0,070	0,047	0,098	0,139	0,090	0,036
380	0,066	0,050	0,111	0,120	0,104	0,036
385	0,062	0,054	0,121	0,103	0,127	0,036
390	0,058	0,059	0,127	0,090	0,161 0,211	0,037
395	0,055	0,063	0,129	0,082		0,038
400	0,052	0,066	0,127	0,076	0,254	0,039
405	0,052	0,067	0,121	0,068	0,313	0,039
410	0,051	0,068	0,116	0,064	0,341	0,040
415	0,050	0,069	0,112	0,065	0,352	0,041
420	0,050	0,069	0,108	0,075	0,359	0,042
425	0,049	0,070	0,105	0,093	0,361	0,042
430	0,048	0,072	0,104	0,123	0,364	0,043
435	0,047	0,073	0,104	0,160	0,365	0,044
440	0,046	0,076	0,105	0,207	0,367	0,044
445	0,044	0,078	0,106	0,256	0,369	0,045
450	0,042	0,083	0,110	0,300	0,372	0,045
455	0,041	0,088	0,115	0,331	0,374	0,046
460	0,038	0,095	0,123	0,346	0,376	0,047
465	0,035	0,103	0,134	0,347	0,379	0,048
470	0,033	0,113	0,148	0,341	0,384	0,050
475	0,031	0,125	0,167	0,328	0,389	0,052
480	0,030	0,142	0,192	0,307	0,397	0,055
485	0,029	0,162	0,219	0,282	0,405	0,057
490	0,028	0,189	0,252	0,257	0,416	0,062
495	0,028	0,219	0,291	0,230	0,429	0,067
500	0,028	0,262	0,325	0,204	0,443	0,075
505	0,029	0,305	0,347	0,178	0,454	0,083
510	0,030	0,365	0,356	0,154	0,461	0,092
515	0,030	0,416	0,353	0,129	0,466	0,100
520	0,031	0,465	0,346	0,109	0,469	0,108
525	0,031	0,509	0,333	0,090	0,471	0,121
530	0,032	0,546	0,314	0,075	0,474	0,133
535	0,032	0,581	0,294	0,062	0,476	0,142
540	0,033	0,610	0,271	0,051	0,483	0,150
545	0,034	0,634	0,248	0,041	0,490	0,154
550	0,035	0,653	0,227	0,035	0,506	0,155
555	0,037	0,666	0,206	0,029	0,526	0,152
560	0,041	0,678	0,188	0,025	0,553	0,147
565	0,044	0,687	0,170	0,022	0,582	0,140
570	0,048	0,693	0,153	0,019	0,618	0,133
575	0,052	0,696	0,138	0,017	0,651	0,125
580	0,060	0,701	0,125	0,017	0,680	0,118
585	0,076	0,704	0,114	0,017	0,701	0,112
590	0,102	0,705	0,106	0,016	0,717	0,106
595	0,136	0,705	0,100	0,016	0,729	0,101
600	0,190	0,706	0,096	0,016	0,736	0,096
605	0,256	0,707	0,092	0,016	0,742	0,095

Окончание таблицы В 1

Длина волны		β(λ) μ	для шести допол	нительных обра	зцов цвета	
λ, nm	09	10	11	12	13	14
610	0,336	0,707	0,090	0,016	0,745	0,093
615	0,418	0,707	0,087	0,016	0,747	0,090
620	0,505	0,708	0,085	0,016	0,748	0,089
625	0,581	0,708	0,082	0,016	0,748	0,087
630	0,641	0,710	0,080	0,018	0,748	0,086
635	0,682	0,711	0,079	0,018	0,748	0,085
640	0,717	0,712	0,078	0,018	0,748	0,084
645	0,740	0,714	0,078	0,018	0,748	0,084
650	0,758	0,716	0,078	0,019	0,718	0,084
655	0,770	0,718	0,078	0,020	0,748	0,084
660	0,781	0,720	0,081	0,023	0,747	0,085
665	0,790	0,722	0,083	0,024	0,747	0,087
670	0,797	0,725	0,088	0,026	0,747	0,092
675	0,803	0,729	0,093	0,030	0,747	0,096
680	0,809	0,731	0,102	0,035	0,747	0,102
685	0,814	0,735	0,112	0,043	0,747	0,110
690	0,819	0,739	0,125	0,056	0,747	0,123
695	0,824	0,742	0,141	0,074	0,746	0,137
700	0,828	0,746	0,161	0,097	0,746	0,152
705	0,830	0,748	0,182	0,128	0,746	0,169
710	0,831	0,749	0,203	0,166	0,745	0,188
715	0,833	0,751	0,223	0,210	0,744	0,207
720	0,835	0,753	0,242	0,257	0,743	0,226
725	0,836	0,754	0,257	0,305	0,744	0,243
730	0,836	0,755	0,270	0,354	0,745	0,260
735	0,837	0,755	0,282	0,401	0,748	0,277
740	0,838	0,755	0,292	0,446	0,750	0,294
745	0,839	0,755	0,302	0,485	0,750	0,310
750	0,839	0,756	0,310	0,520	0,749	0,325
755	0,839	0,757	0,314	0,551	0,748	0,339
760	0,839	0,758	0,317	0,577	0,748	0,353
765	0,839	0,759	0,323	0,599	0,747	0,366
770	0,839	0,759	0,330	0,618	0,747	0,379
775	0,839	0,759	0,334	0,633	0,747	0,390
780	0,839	0,759	0,338	0,645	0,747	0,399
785	0,839	0,759	0,343	0,656	0,746	0,406
790	0,839	0,759	0,348	0,666	0,746	0,416
795	0,839	0,759	0,353	0,647	0,746	0,422
800	0,839	0,759	0,359	0,680	0,746	0,428
805	0,839	0,759	0,365	0,686	0,745	0,434
810	0,838	0,758	0,372	0,691	0,745	0,439
815	0,837	0,757	0,380	0,694	0,745	0,444
820	0,837	0,757	0,388	0,697	0,745	0,448
825	0,836	0,756	0,396	0,700	0,745	0,451
830	0,836	0,756	0,403	0,702	0,745	0,454

БИБЛИОГРАФИЯ

[1] Рекомендации Международной комиссии по освещению (МКО) Публикация № 015
 [2] Рекомендации Международной комиссии по освещению (МКО) Публикация № 13.3
 Метод измерения и определения характеристик цветопередачи источников излучения

УДК 681.7.069.2.089:006.354

OKC 17.180

Ключевые слова: цветопередача, индекс цветопередачи, спектральный коэффициент яркости, координаты цвета, координаты цветности

Подписано в печать 01.09.2014. Формат $60x84^{1}/_{8}$. Усл. печ. л. 1,40. Тираж 35 экз. Зак. 878.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru