МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, VETROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ **FOCT IEC** 61770— 2012

# ПРИБОРЫ ЭЛЕКТРИЧЕСКИЕ, ПРИСОЕДИНЯЕМЫЕ К СЕТЯМ ВОДОСНАБЖЕНИЯ

Предотвращение обратного сифонирования и повреждения соединительных шлангов

(IEC 61770:2008, IDT)

Издание официальное



## Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0–92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2–2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

### Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научноисследовательский институт сертификации» (ОАО «ВНИИС»)
- 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 03 декабря 2012 г. № 54-П)

За принятие проголосовали:

| оа припятие проголосовали.    |                  |                                  |  |  |  |  |
|-------------------------------|------------------|----------------------------------|--|--|--|--|
| Краткое наименование          | Код страны       | Сокращенное наименование         |  |  |  |  |
| страны по МК (ИСО 3166) 004 - | по МК (ИСО 3166) | национального                    |  |  |  |  |
| 97                            | 004 – 97         | органа по стандартизации         |  |  |  |  |
| Азербайджан                   | AZ               | Азстандарт                       |  |  |  |  |
| Армения                       | AM               | Минэкономики Республики Армения  |  |  |  |  |
| Беларусь                      | BY               | Госстандарт Республики Беларусь  |  |  |  |  |
| Казахстан                     | KZ               | Госстандарт Республики Казахстан |  |  |  |  |
| Киргизия                      | KG               | Кыргызстандарт                   |  |  |  |  |
| Россия                        | RU               | Росстандарт                      |  |  |  |  |
| Таджикистан                   | TJ               | Таджикстандарт                   |  |  |  |  |
| Узбекистан                    | UZ               | Узстандарт                       |  |  |  |  |

4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 августа 2013 г. № 550-ст межгосударственный стандарт ГОСТ IEC 61770–2012 введен в действие в качестве национального стандарта Российской Федерации с 01 июля 2014 г.

5 Настоящий стандарт идентичен международному стандарту IEC 61770:2008 Electric appliances connected to the water mains – Avoidance of backsiphonage and failure of hose-sets (IEC 61770:2008 Приборы электрические, присоединяемые к сетям водоснабжения. Предотвращение обратного сифонирования и повреждения соединительных шлангов).

Международный стандарт разработан IEC/TC 61 «Безопасность бытовых и аналогичных электрических приборов».

Перевод с английского языка (en).

Степень соответствия - идентичная (IDT)

#### 6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2014

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

## Введение

Настоящий стандарт является прямым применением международного стандарта IEC 61770:2008 «Приборы электрические, присоединяемые к сетям водоснабжения. Предотвращение обратного сифонирования и повреждения соединительных шлангов».

В настоящем стандарте применены следующие шрифтовые выделения:

- требования светлый;
- методы испытаний курсив;
- примечания петит;
- термины полужирный.

# МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

### ПРИБОРЫ ЭЛЕКТРИЧЕСКИЕ, ПРИСОЕДИНЯЕМЫЕ К СЕТЯМ ВОДОСНАБЖЕНИЯ

## Предотвращение обратного сифонирования и повреждения соединительных шлангов

Electric appliance connected to the water mains Avoidance of backsiphonage and failure of hose-set

**Дата введения** - 2014 - 07 - 01

## 1 Область применения

Настоящий стандарт устанавливает требования к приборам бытового и аналогичного применения в целях предотвращения обратного сифонирования **непитьевой воды** в сети водоснабжения. Он также устанавливает требования к **соединительным шлангам**, используемым для соединения таких приборов с сетями водоснабжения с давлением не более 1 МПа.

#### Примечания

- 1 Примерами аналогичного применения является использование приборов в столовых, ресторанах, прачечных самообслуживания и коммунальных квартирах.
  - 2 Настоящий стандарт не распространяется на:
    - приборы, используемые для сухой чистки;
    - приборы для медицинских целей;
    - приборы, предназначенные для промышленных целей;
    - водонагреватели, являющиеся составной частью системы водоснабжения:
    - охладители воды, являющиеся составной частью системы водоснабжения.
  - 3 Подсоединение прибора к сетям водоснабжения может быть временным или постоянным.
- 4 К сетям водоснабжения относят также системы подачи воды из цистерн или аналогичных систем.
- 5 Многие страны предъявляют требования по предотвращению загрязнения питьевой воды в результате контакта с вредными материалами, расположенными до устройства предотвращения противотока.

## 2 Нормативные ссылки

Для применения настоящего стандарта необходим следующий ссылочный документ. Для датированной ссылки применяют только указанное издание ссылочного документа.

IEC 60730-2-8 Автоматические электрические управляющие устройства бытового и аналогичного назначения. Часть 2-8. Частные требования к электрическим водяным клапанам, включая требования к механическим характеристикам

### 3 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими определениями:
- 3.1 **питьевая вода** (potable water): Вода, получаемая непосредственно из сети питьевого водоснабжения и находящаяся в закрытой системе до **устройства предотвращения противотока**.
- 3.2 **непитьевая вода** (non-potable water): Вода, покинувшая закрытую систему и прошедшая устройство предотвращения противотока.
- 3.3 устройство предотвращения противотока (backflow prevention device): Средства, предотвращающие загрязнение питьевой воды противотоком непитьевой воды.

Примерами являются воздушные промежутки и трубопроводные прерыватели.

3.4 воздушный промежуток (airgap): Свободное расстояние между местом вытекания воды или окончанием подводящей трубы и критическим уровнем воды.

П р и м е ч а н и е – Расстояние считают свободным, если воздушный поток в подводящей трубе в условиях вакуума не ограничивается конструкцией прибора.

- 3.5 **трубопроводный прерыватель** (pipe interrupter): Устройство без подвижных или эластичных частей, в которое может поступать воздух при прохождении через это устройство воды.
- 3.6 динамическое устройство предотвращения противотока (dynamic backflow preventer): Устройство предотвращения противотока, которое предотвращает обратное сифонирование с помощью подвижных частей.
- 3.7 **переливное средство** (overflow): Средства для слива из прибора избыточной воды при засорении обычного слива.
- 3.8 **максимальный уровень воды** (maximum water level): Наивысший уровень **непитьевой воды** в любой части прибора при его продолжительной работе в условиях неисправности.
- 3.9 **критический уровень воды** (critical water level): Уровень, до которого **непитьевая вода** снижается с **максимального уровня воды** через 2 с после прекращения подачи воды.
- 3.10 **соединительный шланг** (hose-set): Конструкция, состоящая из гибкого шланга и соединителей, предназначенная для соединения прибора с сетью водоснабжения.

Примечание — Соединение может быть выполнено с помощью или без помощи инструмента.

3.11 **съемная часть** (detachable part): Часть, которая может быть снята без помощи инструмента.

## 4 Общие требования

- 4.1 Приборы должны иметь устройство предотвращения противотока.
- В приборах со встроенным устройством смягчения воды, расположенным до воздушного промежутка или трубопроводного прерывателя, динамическое устройство предотвращения противотока должно быть встроено до устройства смягчения воды.

Другие компоненты, представляющие угрозу для питьевой воды, такие, как распределительные устройства, предназначенные для добавления в воду моющих, ополаскивающих, смягчающих или аналогичных веществ, не должны располагаться до устройства предотвращения противотока.

Трубопровод, содержащий питьевую воду, находящийся до устройства предотвращения противотока, не должен проходить через непитьевую воду в приборе.

Соответствие проверяют осмотром.

П р и м е ч а н и е — В данном случае в гидравлической системе «до» обозначает сторону, с которой выте<mark>кает вода, и «пос</mark>ле» обозначает сторону, куда течет вода.

- **4.2 Устройства предотвращения противотока** должны быть частью прибора и сконструированы так, чтобы:
  - их функциональные характеристики не могли быть изменены, даже умышленно:
  - их можно было снять только с помощью инструмента;
  - если они не установлены, прибор оказывался неработоспособным или явно некомплектным.

Соответствие проверяют осмотром и испытаниями вручную.

**4.3** Соединительные шланги для подключения приборов к сетям водоснабжения должны быть сконструированы так, чтобы исключалось затопление, насколько это возможно.

Соответствие проверяют испытаниями по разделу 9.

**4.4** Металлические части системы подсоединения воды к прибору, износ которых может нарушить соответствие прибора требованиям настоящего стандарта, должны быть стойкими к эрозии, обесцинкованию, окислению и коррозии.

Соответствие проверяют осмотром.

Примечание — Стойкость латуни к обесцинкованию может быть проверена по ISO 6509<sup>1)</sup>.

## 5 Общие условия проведения испытаний

- 5.1 Если указано, что испытания проводят при нормальных условиях, то применяют следующее:
- прибор устанавливают на горизонтальную опору;
- прибор соединяют с системой водоснабжения в соответствии с инструкциями по установке;

<sup>&</sup>lt;sup>1</sup> ISO 6509 Коррозия металлов и сплавов. Определение стойкости латуни к обесцинкованию.

- система водоснабжения имеет статическое давление не более 1 МПа и динамическое давление не менее 0,6 МПа;
  - прибор пит**ают номинальным нап**ряжением;
- прибор испытывают без загрузки, без моющих, ополаскивающих или аналогичных веществ с закрытыми дверями и крышками.

П р и м е ч а н **и е** – Под указанными давлениями понимаются избыточные давления по отношению к атмосферному давлению.

- **5.2** При проведении испытаний в условиях неисправности прибор наклоняют на угол 2° к горизонтали в самом неблагоприятном положении. В дополнение к нормальным условиям применяют следующие условия неисправностей, насколько они приемлемы, каждый раз имитируя только одну неисправность:
- блокировка соединения между любым распределительным устройством, предназначенным для добавления в воду моющих, ополаскивающих, смягчающих или аналогичных веществ, и другими частями прибора, за исключением случаев, когда площадь поперечного сечения соединения превышает 10 см² по всей его длине и нет ни одного размера менее 10 мм.

П р и м е ч а н и е — Соединения распределительных устройств не блокируют, если соединения имеют поперечное сечение, которое изменяется действиями пользователя каждый раз, когда прибор используется, например, открытием моющего раздаточного устройства;

- блокировка **переливных средств**, если они имеют:
- круглое поперечное сечение не более 5 cm<sup>2</sup>:
- некруглое поперечное сечение с одним размером меньше 3 мм и площадью не более 5 см²;
- удержание в открытом состоянии всех магнитных клапанов, которые могут быть открыты одновременно в течение нормального выполнения программы прибора, находящихся до устройства предотвращения противотока:
  - отсоединение всех двигателей от сети питания и блокировка нормального сливного выхода.
  - 5.3 Если не указано иное, то испытания проводят в указанной последовательности и:
- для приборов, **трубопроводных прерывателей** и **динамических устройств предотвращения противотока** на одном образце в состоянии поставки, который должен выдержать все соответствующие испытания;
- для **соединительных шлангов** на трех образцах. Если один образец не выдерживает испытания, испытания повторяют на дополнительных трех образцах, все из которых должны выдержать повторные испытания.

Каждое испытание по 9.1.9 – 9.1.11 выполняют на трех новых образцах.

- **5.4** Испытания воздушных промежутков, трубопроводных прерывателей и динамических устройств предотвращения противотока выполняют на приборе, за исключением случаев, когда это невыполнимо.
- **5.5** При определении **критического уровня воды** приборов, имеющих больше одного ввода воды и программу, разрешающую одновременное заполнение, каждый ввод воды закрывают по очереди. другие вводы воды оставляют открытыми.
  - **5.6** Если не указано иное, испытания выполняют при температуре окружающей среды ( $20 \pm 5$ ) °C.

# 6 Воздушные промежутки

**6.1 Воздушные промежутки** должны быть сконструированы так, чтобы вода могла свободно течь через воздушную зону и чтобы вода не могла всасываться в подводящую трубу после воздушного промежутка.

Соответствие проверяют осмотром и испытаниями по 6.2 и 6.3. Вместо испытания по 6.3 может быть выполнено испытание по приложению A.

**6.2** Прибор работает в условиях неисправности до достижения **максимального уровня воды.** Выпуск подводящей трубы не должен контактировать с **непитьевой водой.** 

6.3 Прибор работает в условиях неисправности до достижения критического уровня воды. Длина воздушного промежутка должна быть не менее удвоенного наименьшего диаметра системы подачи воды внутри прибора, но не менее 20 мм. Также должно быть свободное пространство в 20 мм между выпуском подводящей трубы и другими частями в любом направлении ниже по течению. Толщина любой водяной пленки и размеры капель воды должны быть приняты во внимание.

## 7 Трубопроводные прерыватели

7.1 Трубопроводные прерыватели должны быть сконструированы так, чтобы входные воздушные отверстия оставались постоянно свободными и открытыми для атмосферного воздуха. Вода, которая при нормальном использовании может вытекать из входного воздушного отверстия, должна собираться в контейнере прибора, но ее уровень не должен достигать значений, меньше указанных в 7.3 и 7.4.

**Трубопроводные прерыватели** должны быть защищены от их преднамеренного засорения или манипуляций, которые могут оказать отрицательное влияние на результаты испытаний.

Суммарная площадь поперечных сечений входных воздушных отверстий должна быть не меньше площади поперечного сечения входных отверстий для воды. Наименьший размер каждого входного воздушного отверстия должен быть не менее 3 мм. Размеры измеряют под прямым углом к направлению воздушного потока.

Соответствие проверяют осмотром, измерением и испытаниями по 7.2 – 7.4. Однако, если измерения по 7.3 и 7.4 не могут быть выполнены из-за конструкции прибора, соответствие проверяют испытанием по приложению **A**.

7.2 Для отдельных **трубопроводных прерывателей** вертикальную трубку из стекла или другого прозрачного материала, имеющую приблизительно такой же внутренний диаметр и длину не менее 500 мм, соединяют с выходом **трубопроводного прерывателя**. Свободный конец трубки погружают в воду на глубину не менее 25 мм, как показано на рисунке 1.

Вакуумный насос подсоединяют непосредственно ко входу **трубопроводного прерывателя** и прикладывают пониженное давление (65 ± 15) кПа в течение не менее 5 с. Измеряют расстояние h между уровнем воды в трубке и уровнем воды в емкости.

Для **трубопроводных прерывателей**, которые встроены в прибор после магнитного клапана, испытание выполняют в приборе. Вакуумный насос подсоединяют непосредственно ко входу воды в прибор с помощью трубки, имеющей наименьшую возможную длину.

П р и м е ч а н и е – Если входной шланг не может быть снят даже с помощью инструмента, вакуумный насос подсоединяют ко входу шланга.

**7.3** Прибор работает в условиях неисправности до достижения **максимального уровня воды**.

Измеряют расстояние по вертикали между максимальным уровнем воды и самым нижним краем входного воздушного отверстия трубопроводного прерывателя. Это расстояние должно быть не менее значения h, показанного на рисунке 2.

**7.4** Сразу после испытания по 7.3 подачу воды прекращают. Измеряют расстояние по вертикали между **критическим уровнем воды** и самым нижним краем входного воздушного отверстия. Это расстояние должно быть не менее (h + 20) мм.

Также проверяют **критический уровень воды** в шлангах, подсоединяющих **трубопроводный прерыватель** к устройству смягчения воды, находящемуся после **динамического** устройства предотвращения **противотока**.

П р и м е ч а н и е – Если **критический уровень воды** невозможно **наблюдать** по пр**ичине непрозрачности** части или шланга, то их заменяют прозрачными, имеющими такие же формы и размеры.

# 8 Динамические устройства предотвращения противотока

**8.1** Динамические устройства предотвращения противотока должны быть сконструированы так, чтобы износ, или повреждение подвижных частей, их опор или направляющих, или удаление съемных частей не приводили к обратному сифонированию. Подвижные части должны работать каждый раз при прохождении воды через устройство в условиях нормальной эксплуатации, а отказ любой из этих частей должен приводить прибор в нерабочее состояние или быть очевидным для пользователя.

Соответствие проверяют осмотром и проверкой **динамического устройства предотвращения противотока** по 8.2 с последующим испытанием по приложению A.

Испытание по приложению А выполняют при следующих условиях:

- с подвижными частями, расположенными в самом неблагоприятном положении, каждый раз устанавливая в неблагоприятное положение одну часть;
  - после удаления **съемных частей**;
- после имитации повреждения подвижных частей, включая их опоры или направляющие, каждый раз имитируя повреждение только одной части.

Только одно из этих трех условий применяют каждый раз.

- **8.2** Устройство работает в течение 5000 циклов. Каждый цикл состоит из периода, равного 3 с, в течение которого вода проходит через устройство, и периода, равного 3 с, без протекания воды. Вода подается под давлением 0,2 МПа и имеет температуру:
- (15 ± 5) °C для **динамических устройств предотвращения противотока** при холодном водоснабжении;
- (65 ± 5) °C для **динамических устройств предотвращения противотока** при горячем водоснабжении:
- (65 ± 5) °C для **динамических устройств предотвращения противотока** при отсутствии маркировки входа.

. Испытание проводят 10 раз с перерывом, равным 48 ч. Перед каждым испытанием динамическое устройство предотвращения противотока проверяют на работоспособность подвижных частей при протекании воды через это устройство.

# 9 Соединительные шланги

**9.1 Соединительные шланги** должны выдерживать нагрузки, которым они могут подвергаться при нормальной эксплуатации.

Соответствие проверяют соответствующими испытаниями, указанными в 9.1.1 — 9.1.9, как показано в таблице 1 для различных типов шлангов, и испытаниями по 9.1.10 и 9.1.11 для соединителей.

При испытаниях по 9.1.1 — 9.1.8 шланг не должен пропускать воду, разрываться или соскальзывать со своих соединителей.

Примечания

- 1 Деформацию, которая не нарушает функции соединительного шланга, не учитывают.
- 2 Гибкие металлические соединительные шланги длиной менее 1 м не подвергают испытаниям по 9.1.2 и 9.1.3.
- 3 Для **соединительных шлангов**, которые включают в себя устройства предотвращения от затопления, и для шлангов, заключенных в гибкую трубу, подвергают испытаниям по 9.1.6 9.1.8 только сами шланги.
- 4 Шланги, подключенные после электромагнитного клапана, не подвергают испытаниям по 9.1.6 9.1.8, если они не могут оказаться под давлением из-за действия другого магнитного клапана.

Таблица1 – Испытания, применяемые к различным типам шлангов

|                            | Тип шланга             |                                                  |                           |                                                |                              |  |
|----------------------------|------------------------|--------------------------------------------------|---------------------------|------------------------------------------------|------------------------------|--|
| Испытание                  | Нетермо-<br>пластичный | Нетермопластичный с<br>металлической<br>оплеткой | Термо-<br>пластич-<br>ный | Термопластичный<br>с металлической<br>оплеткой | Гибкий<br>металл-<br>ический |  |
| На перегиб                 | 9.1.1                  | -                                                | 9.1.1                     | _                                              |                              |  |
| На гибкость                | _                      | _                                                | _                         | _                                              | 9.1.2                        |  |
| На изгиб                   | _                      | _                                                | _                         | _                                              | 9.1.3                        |  |
| На раздавлива-<br>ние      | _                      | 9.1.4                                            | -                         | 9.1.4                                          | -                            |  |
| Пониженной<br>температурой | _                      | _                                                | 9.1.5                     | 9.1.5                                          | -                            |  |
| На старение                | 9.1.6                  | 9.1.6                                            | 9.1.6                     | 9.1.6                                          | _                            |  |
| Изменяющимся<br>давлением  | 9.1.7                  | 9.1.7                                            | 9.1.7                     | 9.1.7                                          | 9.1.7                        |  |
| Повышенным<br>давлением    | 9.1.8                  | 9.1.8                                            | 9.1.8                     | 9.1.8                                          | 9.1.8                        |  |
| Озоном                     | 9.1.9                  | 9.1.9                                            | _                         | ı                                              | _                            |  |

9.1.1 Испытание на перегиб выполняют следующим образом.

Шланг перегибают посередине на угол 180° между параллельными пластинами так, чтобы расстояние между пластинами было равно удвоенному наружному диаметру шланга, как показано на рисунке 3. Через 5 с пластины снимают.

Испытание выполняют 10 раз с перерывом, равным 1 мин, в течение которого усилие к шлангу не прикладывают. Шланг перегибают каждый раз в одном и том же направлении.

9.1.2 Испытание на гибкость выполняют следующим образом.

Один из соединителей соединительного шланга закрепляют на качающемся рычаге, как показано на рисунке 7. На другом соединителе закрепляют груз массой 2 кг, при этом шланг не

#### **FOCT IEC 61770-2012**

должен касаться других частей. Выполняют 500 изгибов при перемещении качающегося рычага на угол 180° со скоростью (10 ± 2) изгибов в минуту.

Примечание – Изгиб – это одно перемещение на 180°.

#### 9.1.3 Испытание на изгиб выполняют следующим образом.

Шланг загибают посередине на угол 180° между параллельными пластинами, как показано на рисунке 8. К верхней пластине прикладывают силу 30 Н.

Расстояние между пластинами не должно превышать 200 мм плюс удвоенный наружный диаметр шланга.

# 9.1.4 Испытание на раздавливание выполняют следующим образом.

Шланг загибают посередине на угол 180° между параллельными пластинами. К пластинам прикладывают силу 100 Н в течение 5 с.

Испытание выполняют 10 раз с перерывом, равным 1 мин, в течение которого шланг распрямляют. Шланг загибают каждый раз в одном и том же направлении.

П р и м е ч а н и е – Приспособление для испытания аналогично показанному на рисунке 3.

## 9.1.5 Испытание пониженной температурой выполняют следующим образом.

Шланг сматывают в кольцо диаметром (300 ± 10) мм и помещают в камеру с температурой минус (15 ± 2) °С. После 16 ч выдержки в камере шланг разматывают и в течение 6 с делают полный оборот вокруг цилиндра с такой же температурой. Диаметр цилиндра равен утроенному наружному диаметру шланга. Затем шланг распрямляют.

## 9.1.6 Испытание на старение выполняют следующим образом.

Шланг сматывают в кольцо диаметром (300 ± 10) мм. Шланг заполняют водой и поддерживают давление 1,2 МПа. Температура воды должна быть:

- (50 ± 5) °C для **соединительных шлангов**, маркированных максимальной температурой 25 °C;
- (70 ± 5) °C для **соединительных шлангов**, маркированных максимальной температурой 70 °C;
- $-90_0^{+5}$  °C для **соединительных шлангов**, маркированных максимальной температурой 90 °C.

**Соединительный шланг** помещают на 168 ч в камеру, имеющую такую же температуру, как установлено для воды. Затем **соединительный шланг** вынимают из камеры и охлаждают приблизительно до комнатной температуры.

9.1.7 Испытание изменяющимся давлением выполняют следующим образом.

Соединительный шланг присоединяют к системе, в которой циркулирует вода, и подвергают изменяющемуся давлению, как показано на рисунке 4. Температура воды должна быть:

- (20 ± 5) °C для соединительных шлангов, маркированных максимальной температурой 25 °C;
- (70 ± 5) °C для соединительных шлангов, маркированных максимальной температурой 70 °C;
- 90 °C для соединительных шлангов, маркированных максимальной температурой 90 °C.

Давление 1,5 МПа изменяют синусоидально с амплитудой 0,5 МПа и частотой 30 пульсаций в минуту. Количество пульсаций — 25000.

9.1.8 Испытание повышенным давлением выполняют следующим образом.

Соединительный шланг заполнен водой с температурой:

- (20 ± 5) °C для **соединительных шлангов**, маркированных максимальной температурой 25 °C;
- (70 ± 5) °C для **соединительных шлангов**, маркированных максимальной температурой 70 °C;
- 90° °C для **соединительных шлангов**, маркированных максимальной температурой 90°C.

Соединительный шланг подсоединяют к герметичной водной системе. Гидростатическое давление увеличивают с постоянной скоростью приблизительно 100 кПа/с, пока не будет достигнуто давление 3,15 МПа. Это давление поддерживают в течение 1 мин.

#### 9.1.9 Испытание озоном выполняют следующим образом.

Образцы шланга длиной приблизительно 10 см каждый, снабженные соединителем, помещают в камеру с температурой (30 ± 5)°С на 96 ч. Концентрация озона в камере составляет 0,5 10  $^{-6}$ . Отношение суммарной подвергающейся воздействию поверхности трех образцов в квадратных сантиметрах к объему камеры в кубических сантиметрах не должно превышать 0,1.

После испытания на образцах не должно быть трещин, видимых с помощью линзы с шестикратным увеличением.

П р и м е ч а н и е – Если вздутие шланга, вызванное соединителем, не видно, например, потому, что оно закрыто крышкой, тогда соединитель заменяют оправкой, запрессованной в шланг, как показано на рисунке 6.

9.1.10 Прочность соединительных гаек проверяют следующим испытанием.

Перед началом испытания соединительные гайки из термопластического материала подвергают кондиционированию в течение 72 ч при температуре (23 ± 2) °C и относительной влажности от 45 % до 55 %.

Соединительную гайку с уплотнительной шайбой навинчивают на оправку, показанную на рисунке 5, и затягивают вращающим моментом 15 Н·м при этом зацепление между гайкой и оправкой должно быть не более четырех полных витков резьбы.

Примечани е – Для ограничения зацепления могут быть использованы шайбы.

Собранное изделие помещают в камеру с температурой  $90_0^{+5}$  °C на 96 ч. Затем охлаждают приблизительно до комнатной температуры.

Вращающий момент, требуемый для ослабления гайки, должен быть не менее 4 Н·м. На одной и той же сборке испытание выполняют дважды.

Гайка не должна сломаться. После снятия с оправки гайка не должна иметь никаких трещин, видимых невооруженным глазом, и должна быть пригодной для дальнейшего использования.

9.1.11 Прочность соединительных трубок проверяют испытаниями по 9.1.11.1 и 9.1.11.2.

Перед началом испытания соединительные трубки из термопластического материала подвергают кондиционированию в течение 72 ч при температуре (23  $\pm$  2) °C и относительной влажности от 45 % до 55 %.

После испытаний соединительные трубки не должны быть поломаны и не должны иметь никаких трещин, видимых невооруженным глазом, и должны быть пригодными для дальнейшего использования

**9.1.11.1** Соединительную трубку плотно закрепляют ее соединительной гайкой без уплотнительной шайбы к закрепленной оправке, как показано на рисунке 9.

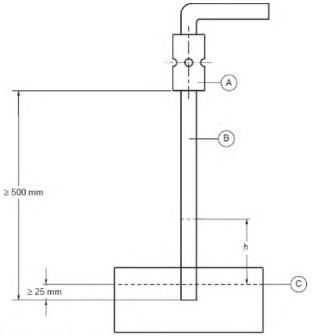
Стальную трубку с толщиной стенки не менее 2 мм и внутренним диаметром на 0,2 мм больше наружного диаметра соединительной трубки насаживают на соединительную трубку.

К стальной трубке прикладывают такое усилие, чтобы соединительная трубка подвергалась изгибающему моменту 10 Н·м, который достигается через 2 с. Это усилие поддерживают 30 с.

Для угловых соединительных трубок проводят два испытания на отдельных образцах. При одном испытании момент прикладывают в направлении угла, при другом испытании — в противоположном направлении.

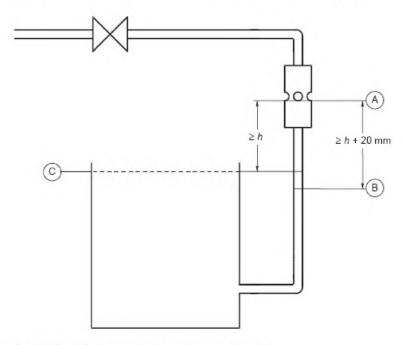
9.1.11.2 Соединительную трубку плотно закрепляют ее соединительной гайкой без уплотнительной шайбы к закрепленной оправке, как показано на рисунке 10.

Удар энергией 1,6 Дж наносят по концу соединительной трубки, как показано на рисунке 10.


**9.2** Если **соединительные шланги** содержат в себе **клапаны воды для защиты от затопления**, то эти клапаны должны соответствовать IEC 60730-2-8.

Соответствие проверяют осмотром.

- 9.3 Соединительные шланги должны иметь стойкую маркировку, содержащую:
- наименование, торговую марку или товарный знак изготовителя или ответственного продавца;
- модель или тип образца;
- дату изготовления в виде кода, расшифровываемого изготовителем;
- номинальное давление;
- 25 °C макс. и синюю цветовую идентификацию в виде кольца или полоски для **соединительных шлангов**, предназначенных только для холодного водоснабжения;
- 70 °C макс. или 90 °C макс. и красную цветовую идентификацию в виде кольца или полоски для **соединительных шлангов**, предназначенных для горячего водоснабжения.


Соответствие проверяют осмотром и протиркой маркировки вручную в течение 15 с куском ткани, смоченной водой, и затем в течение 15 с куском ткани, смоченной уайт-спиритом.

После испытания маркировка должна быть легкоразличимой. Таблички с маркировкой не должны легко сниматься и закручиваться.



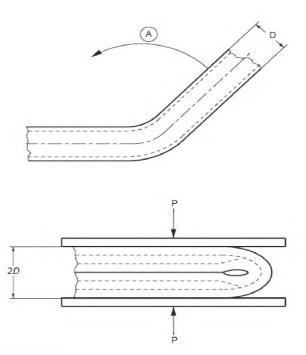

- А трубопроводный прерыватель;
- В трубка из стекла или другого прозрачного материала;
- С уровень воды в емкости

Рисунок 1 – Измерение расстояния h для трубопроводных прерывателей



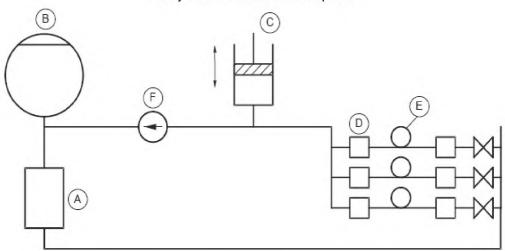
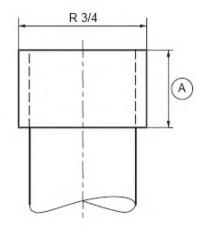

- А самый низкий край входного воздушного отверстия;
- В критический уровень воды;
- С максимальный уровень воды в емкости

Рисунок 2 – Измерение максимального и критического уровней воды для трубопроводных прерывателей

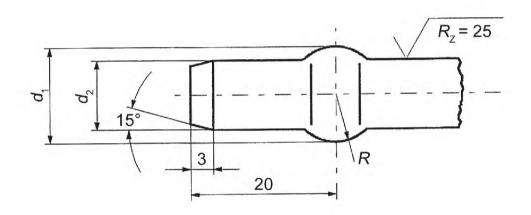


# А – направление сгибания


Рисунок 3 – Испытание на перегиб



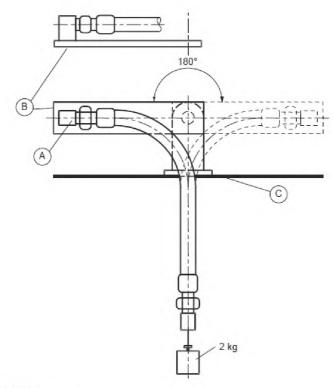
- А нагреватель с терморегулятором;
- В напорный бак;
- С генератор пульсаций;
- D соединитель;
- *E* шланг с петлей;
- F насос


Рисунок 4 – Установка для испытания соединительных шлангов изменяющимся давлением

# **FOCT IEC 61770-2012**



# А – не менее четырех витков резьбы


Рисунок 5 – Оправка для испытания соединительных гаек



В миллиметрах

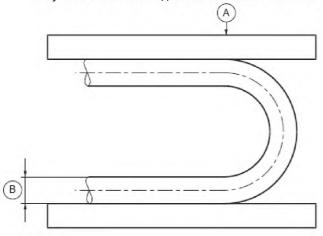
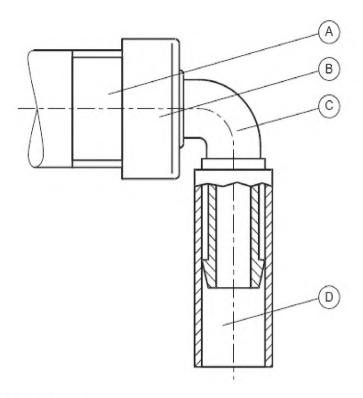

| Диаметр | d <sub>1</sub> | $d_2$ |
|---------|----------------|-------|
| 10      | 12,5 ± 0,1     | 10    |
| 12,5    | 15,5 ± 0,1     | 13    |

Рисунок 6 - Оправка для испытания соединительных шлангов озоном

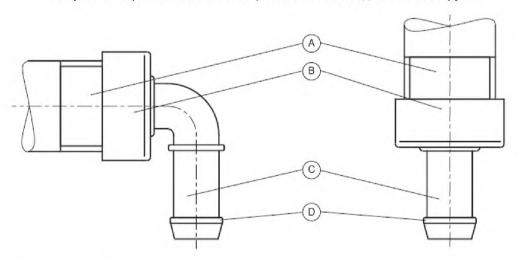


- A крепление соединителя; B качающийся рычаг; C основание


Рисунок 7 – Установка для испытания на гибкость



- A сила;
- В диаметр шланга


Рисунок 8 – Испытание на изгиб

## **FOCT IEC 61770-2012**



- А закрепленная оправка;
- В соединительная гайка;
- С соединительная трубка;
- D стальная трубка

Рисунок 9 – Приложение изгибающего момента к соединительной трубке



- А закрепленная оправка;
- В соединительная гайка;
- С соединительная трубка;
- D точка удара

Рисунок 10 – Испытание соединительных трубок ударом

# Приложение А (обязательное)

## Испытание на обратное сифонирование

Высушивают внутренние поверхности труб и шлангов между входным клапаном и устройством предотвращения противотока. Прозрачный шланг, имеющий внутренний диаметр не меньше внутреннего диаметра входного шланга, подсоединяют к прибору вместо соединительного шланга. Другой конец прозрачного шланга подсоединяют к вакуумному насосу с помощью трубки с минимально возможной длиной.

Прибор заполняют до **критического уровня воды,** используя отдельную подачу воды, и поддерживают его во время испытания.

Пониженное давление (65 ± 15) кПа прикладывают в течение не менее 5 с и измеряют его как можно ближе к прибору. Электромагнитный клапан поддерживают в открытом положении отдельным электрическим питанием.

Для приборов, имеющих более одного **соединительного шланга,** входы проверяют поочередно.

Вода не должна поступать в прозрачный шланг.

УДК 641.542.1-65.006.354

MKC 91.140.60

IDT

Ключевые слова: приборы электрические, шлаги соединительные, вода питьевая/непитьевая, устройство предотвращения обратного потока, устройство сливное, уровень воды, испытания

Подписано в печать 01.08.2014. Формат  $60x84^1/_8$  Усл. печ. л. 2,33. Тираж 36 экз. Зак. 1120.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ФГУП «СТАНДАРТИНФОРМ»

123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru