МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 31819.22— 2012 (IEC 62053-22:2003)

Аппаратура для измерения электрической энергии переменного тока. Частные требования

Часть 22

СТАТИЧЕСКИЕ СЧЕТЧИКИ АКТИВНОЙ ЭНЕРГИИ КЛАССОВ ТОЧНОСТИ 0,2S и 0,5S

(IEC 62053-22:2003, MOD)

Издание официальное

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ)
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. № 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Российская Федерация	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
У з бекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2012 г. № 1038-ст межгосударственный стандарт ГОСТ 31819.22—2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.
- 5 Настоящий стандарт модифицирован по отношению к международному стандарту IEC 62053-22:2003 Electricity metering equipment (a.c.) Particular requirements Part 22: Static meters for active energy (classes 0,2S and 0,5S) [Аппаратура для измерения электрической энергии (переменный ток). Частные требования. Часть 22. Статические счетчики активной энергии (классы точности 0,2S и 0,5S)]. При этом дополнительные и измененные положения, учитывающие потребности национальной экономики указанных выше государств, выделены в тексте курсивом.

Международный стандарт разработан Международной электротехнической комиссией (IEC). Перевод с английского языка (en).

Наименование настоящего стандарта изменено относительно наименования международного стандарта для приведения в соответствие с ГОСТ 1.5—2001 (пункт 3.6).

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

Степень соответствия — модифицированная (МОD).

Стандарт подготовлен на основе применения ГОСТ Р 52323—2005

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и мерологии в сети Интернет

© Стандартинформ, 2013

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения	i
2	Нормативные ссылки	2
3	Термины и определения	2
4	Стандартные значения электрических величин	2
5	Механические требования	2
6	Климатические условия	2
7	Электрические требования	2
	7.1 Потребляемая мощность	2
	7.2 Влияние кратковременных перегрузок током	3
	7.3 Влияние самонагрева	3
	7.4 Испытание напряжением переменного тока	3
8	Требования к точности	ļ
	8.1 Пределы погрешности, вызываемой изменением тока	ļ
	8.2 Пределы погрешности, вызываемой другими влияющими величинами	5
	8.3 Проверка начального запуска стартового тока и отсутствия самохода	7
	8.4 Постоянная счетчика	3
	8.5 Условия проверки точности	3
	8.6 Интерпретация результатов испытаний)
9	Дополнительные требования)
	9.1 Требования к импульсному выходному устройству)
П	риложение А (обязательное) Схема испытательной цепи для испытания влияния субгармоник . 10)
П	риложение В (обязательное) Электромагнит для испытания на влияние внешних магнитных полей	2
П	риложение ДА (справочное) Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам	3
Б	ибпиография	

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Аппаратура для измерения электрической энергии переменного тока. Частные требования

Часть 22

СТАТИЧЕСКИЕ СЧЕТЧИКИ АКТИВНОЙ ЭНЕРГИИ КЛАССОВ ТОЧНОСТИ 0,2S и 0,5S

Electricity metering equipment (a.c). Particular requirements. Part 22. Static meters for active energy (classes 0,2S and 0,5S)

Дата введения — 2014—01—01

1 Область применения

Настоящий стандарт распространяется на статические (электронные) счетчики ватт-часов (далее — счетчики) классов точности 0,2S и 0,5S для измерения электрической активной энергии в сетях переменного тока частотой 50 или 60 Гц и устанавливает требования к производству и испытаниям счетчиков.

Стандарт распространяется только на счетчики, работающие от трансформаторов, предназначенные для применения внутри помещения и содержащие измерительный элемент и счетный(е) механизм(ы), заключенные в корпус счетчика. Он также распространяется на индикатор(ы) функционирования и испытательный(е) выход(ы). Если счетчик имеет измерительный элемент для измерения энергии более чем одного вида (счетчики на энергию разных видов) либо если в корпус счетчика заключены другие функциональные элементы, такие как показатели максимума, электронные регистраторы тарифов, переключатели по времени, приемники дистанционного управления, интерфейсы передачи данных ит. д., то тогда применяют соответствующие стандарты *или нормативные документы* на эти элементы государств, упомянутых в предисловии, как проголосовавших за принятие настоящего стандарта.

П р и м е ч а н и е — В Γ ОСТ 7746 установлены требования на трансформаторы тока классов точности 0,2 и 0,5, имеющие диапазон измерения (5 %—120 %)/_{ном}, и на трансформаторы тока классов точности 0,2S и 0,5S, имеющие диапазон (1 %—120 %)/_{ном}. Так как диапазоны измерения счетчика и связанных с ним трансформаторов должны соответствовать друг другу и так как только трансформаторы классов точности 0,2S и 0,5S имеют пределы погрешности, сопоставимые с пределами погрешностей счетчиков, настоящий стандарт распространяется на счетчики с диапазоном измерений (1 %—120 %)/ $_{\rm ном}$.

При коммерческом учете электроэнергии по согласованию сторон допускается применение трансформаторов тока классов точности 0,2 и 0,5 вместо 0,2S и 0,5S.

В отличие от счетчиков с нижним значением диапазона измерения 5 %/_{ном} в обозначение класса точности счетчиков, имеющих нижнее значение диапазоны измерения 1 %/_{ном}, введена буква S (классы точности 0.2S и 0.5S).

Стандарт не распространяется на:

- а) счетчики ватт-часов с напряжением между зажимами свыше 600 В (линейное напряжение для многофазных счетчиков);
 - b) переносные счетчики и счетчики, предназначенные для наружной установки;
 - с) интерфейсы данных к счетному механизму счетчика;
 - d) эталонные счетчики.
 - Требования к надежности установлены в [1] и [2].

Требования к надежности и методика испытаний счетчиков на надежность должны быть установлены в нормативных документах на счетчики конкретного типа государств, упомянутых в предисловии, как проголосовавших за принятие настоящего стандарта. Средняя наработка до отказа должна быть не менее межповерочного интервала.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ГОСТ 7746—2001 Трансформаторы тока. Общие технические условия

ГОСТ 31818.11—2012 (IEC 62052-11:2003) Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

П р и м е ч а н и е — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов по указателю «Национальные стандарты», составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ 31818.11.

4 Стандартные значения электрических величин

По ГОСТ 31818.11.

5 Механические требования

По ГОСТ 31818.11.

6 Климатические условия

Климатические условия — по ГОСТ 31818.11.

7 Электрические требования

Дополнительно к требованиям *ГОСТ 31818.11* счетчики должны удовлетворять следующим требованиям.

7.1 Потребляемая мощность

Потребляемая мощность в цепях напряжения и тока должна быть определена любым соответствующим методом в нормальных условиях, приведенных в 8.5. Суммарная максимальная погрешность измерений потребляемой мощности не должна превышать 5 %.

Активная и полная потребляемая мощности при нормальной температуре и номинальной частоте для каждой цепи напряжения при номинальном напряжении и для каждой цепи тока при номинальном токе не должны превышать значений, установленных в таблице 1.

Т а б л и ц а 1 — Потребляемая мощность, в том числе источника электропитания

	Значение мощности для счетчика		
Источник электропитания	с внутренним источником электропитания	с внешним источником электропитания	
Цепь напряжения	2 Вти 10 В ∙ А	0,5 B · A	
Цепь тока	1 B · A	1,0 B · A	
Вспомогательный источник электропитания	_	10,0 B · A	

Примечания

- 1 Для согласования трансформаторов напряжения и тока со счетчиками изготовитель должен указать, является ли нагрузка индуктивной или емкостной.
- 2 Приведенные в таблице значения являются средними. Допускаются импульсные источники электропитания с пиковыми значениями мощности, превышающими указанные, при этом необходимо обратить внимание на соответствие мощности трансформаторов напряжения, к которым подключают счетчик.
 - 3 Для многофункциональных счетчиков см. [3].

7.2 Влияние кратковременных перегрузок током

Кратковременные перегрузки током не должны вызывать повреждения счетчика. Счетчик должен нормально функционировать при возвращении к своим начальным рабочим условиям, а изменение погрешности при номинальном токе и коэффициенте мощности, равном 1, не должно превышать 0,05 %.

Испытательная цепь должна быть практически безындуктивной. Испытание для многофазных счетчиков должно быть проведено поочередно для каждой фазы.

После воздействия кратковременных перегрузок током с подключенным напряжением на зажимах счетчик, находящийся только под напряжением, должен быть выдержан до достижения первоначальной температуры (около 1 ч).

Счетчик должен выдерживать в течение 0,5 с ток, равный $20I_{\rm makc}$ при допустимом отклонении от 0 % до минус 10 %.

7.3 Влияние самонагрева

Изменение погрешности, вызываемое самонагревом, при токе $I_{\rm makc}$ не должно превышать значений, приведенных в таблице 2.

Таблица 2 — Изменение погрешности, вызываемое самонагревом

Koochduuuout Mouuuootu	Пределы изменения погрешности, %, для счетчиков классов точности		
Коэффициент мощности	0,2\$	0,58	
1,0	0.4	0.2	
0,5 (при индуктивной нагрузке)	0,1	0,2	

Испытание должно быть проведено следующим образом: при обесточенных цепях тока на цепи напряжения подают напряжение, равное номинальному, в течение времени, не превышающего 2 ч. Затем цепи тока нагружают максимальным током.

Погрешность счетчика должна быть измерена при коэффициенте мощности, равном 1, сразу после приложения тока и затем через промежутки времени, достаточно короткие для точного построения кривой изменения погрешности в зависимости от времени. Испытание следует проводить в течение, по крайней мере, 1 ч и до тех пор, пока изменение погрешности в течение 20 мин не будет превышать 0,05 %.

Затем такое же испытание должно быть проведено при коэффициенте мощности, равном 0,5 (при индуктивной нагрузке).

Кабель, используемый для подачи электропитания на счетчики, должен иметь длину примерно 1 м и такое поперечное сечение, чтобы плотность тока была 1,5—2,5 А/мм².

7.4 Испытание напряжением переменного тока

Испытание счетчиков напряжением переменного тока следует проводить в соответствии с таблицей 3.

Таблица 3 — Испытание напряжением переменного тока

Испытание	Класс защиты	Среднеквадратическое значение испытательного напряжения, кВ	Точки приложения испытательного напряжения
A	I	2	а) Между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением свыше 40 В, соединенными вместе, с одной стороны, и «землей», с другой стороны

FOCT 31819.22—2012

Окончание таблицы 3

Испытание	Класс защиты	Среднеквадратическое значение испытательного напряжения, кВ	Точки приложения испытательного напряжения
А	l	2	b) Между цепями, которые не предполагается соединять вместе во время работы
Б	II	4	а) Между всеми цепями тока и напряжения, а также вспомогательными цепями с номинальным напряжением свыше 40 В, соединенными вместе, с одной стороны, и «землей», с другой стороны
		2	b) Между цепями, которые не предполагается соединять вместе во время работы
		_	с) Визуальный контроль на соответствие требованиям 5.7 ГОСТ 31818.11

Испытательное напряжение должно быть практически синусоидальным, частотой в пределах 45—65 Гц, и должно быть приложено в течение 1 мин. Выходная мощность источника испытательного напряжения должна быть не менее 500 В · А.

Во время испытаний относительно «земли» вспомогательные цепи с номинальным напряжением 40 В или ниже должны быть соединены с «землей».

Испытания необходимо проводить при закрытом корпусе счетчика и установленных кожухе и крышке зажимов.

Испытания необходимо проводить при закрытом корпусе счетчика, а при испытаниях с целью утверждения типа, кроме того, и при установленной крышке зажимов.

Во время испытаний не должно быть искрения, пробивного разряда или пробоя.

8 Требования к точности

Испытания и условия испытаний приведены в ГОСТ 31818.11.

8.1 Пределы погрешности, вызываемой изменением тока

В нормальных условиях, приведенных в 8.5, допускаемые основные погрешности счетчика, выраженные в процентах, не должны превышать пределов для соответствующего класса точности, установленных в таблицах 4 и 5.

Если счетчик предназначен для измерения энергии в двух направлениях, значения, установленные в таблицах 4 и 5, действительны для каждого направления.

Таблица 4— Пределы *допускаемой основной* погрешности (для одно- и многофазных счетчиков с симметричными нагрузками)

Значение тока	Коэффициент мощности	Пределы <i>допускаемой основной</i> погрешности, %, для счетчиков класса точности		
		0,2\$	0,5\$	
0,01 <i>I</i> _{HOM} ≤ <i>I</i> < 0,05 <i>I</i> _{HOM}	1,00	± 0,4	± 1,0	
$0.05I_{HOM} \leq I \leq I_{MAKC}$		± 0,2	± 0,5	
$0.02I_{\text{HOM}} \le I < 0.10I_{\text{HOM}}$	0,50 (при индуктивной нагрузке) и 0,80 (при емкостной нагрузке)	± 0,5	± 1,0	
$0,10I_{\rm HOM} \leq I \leq I_{\rm MAKC}$	N 0,00 (при емкостной нагрузке)	± 0,3	± 0,6	
0,10 $I_{\text{Hom}} \leq I \leq I_{\text{макс}}$ (по требованию потребителя)	0,25 (при индуктивной нагрузке) и 0,50 (при емкостной нагрузке)	± 0,5	± 1,0	

Т а б л и ц а 5 — Пределы *допускаемой основной* погрешности (для многофазных счетчиков с однофазной нагрузкой при симметрии многофазных напряжений, приложенных к цепям напряжения)

Значение тока	Коэффициент мощности	Пределы <i>допускаемой основной</i> погрешности, %, для счетчиков класса точности		
			0,58	
$0.05I_{HOM} \leq I \leq I_{MAKC}$	1,0	± 0,3	± 0,6	
$0.10I_{HOM} \leq I \leq I_{MAKC}$	0,5 (при индуктивной нагрузке)	± 0,4	± 1,0	

Разность между значениями погрешностей при однофазной нагрузке счетчика и при симметричной многофазной нагрузке при номинальном токе $I_{\rm hom}$ и коэффициенте мощности, равном 1, не должна превышать 0,4 % и 1,0 % для счетчиков классов точности 0,2S и 0,5S соответственно.

Примечание — При испытании на соответствие требованиям таблицы 5 испытательный ток должен подаваться в цепь тока каждого измерительного элемента поочередно.

8.2 Пределы погрешности, вызываемой влияющими величинами

Дополнительная погрешность, вызываемая изменением влияющих величин по отношению к нормальным условиям, приведенным в 8.5, не должна превышать пределов для соответствующего класса точности, установленных в таблице 6.

Таблица 6 — Влияющие величины

D	Значение тока (при	Коэффициент мощности	Класс точности счетчиков	
Влияющая величина	симметричной нагрузке, если не оговорено особо)	коэффициент мощности	0,2S	0,5\$
Изменение температуры окружающей среды ¹⁾			Средний то ный коэфф	емператур- ициент, %/К
	$0.05I_{\rm HOM} \!\leq\! I \!\leq\! I_{\rm MAKC}$	1,0	0,01	0,03
	$0,10I_{HOM} \leq I \leq I_{MAKC}$	0,5 (при индуктивной нагрузке)	0,02	0,05
Изменение напряжения электропитания \pm 10% $^{2)$, 3)				ополнитель- шности, %
	$0.05I_{HOM} \leq I \leq I_{MAKC}$	1,0	0,10	0,20
	$0,10I_{HOM} \leq I \leq I_{MAKC}$	0,5 (при индуктивной нагрузке)	0,20	0,40
Изменение частоты ± 2 % ³⁾	$0.05I_{HOM} \leq I \leq I_{MAKC}$	1,0	0,10	0,20
	$0,10I_{HOM} \leq I \leq I_{MAKC}$	0,5 (при индуктивной нагрузке)		
Обратный порядок следования фаз	$0,10I_{HOM}$		0,05	0,10
Несимметрия напряжения ⁴⁾	I _{HOM}		0,50	1,00
Вспомогательное напряжение ± 15 % ⁵⁾	0,01 <i>I</i> _{HOM}		0,05	0,10
Гармоники в цепях тока и напряжения ⁶⁾	0,50 I_{MaKC} 1,0		0,40	0,50
Субгармоники в цепи переменного тока ⁶⁾	0,50 I_{HOM}^{-7})		0,60	1,50
Постоянная магнитная индукция внешнего происхождения ⁶⁾	I _{HOM}		2,	00

ΓΟCT 31819.22—2012

Окончание таблицы 6

Principling population	Значение тока (при симметричной нагрузке, если не оговорено особо)	Коэффициент мощности	Класс точности счетчиков	
Влияющая величина			0,28	0,5\$
Магнитная индукция внешнего происхождения 0,5 мТл ⁸⁾	I_{HOM}		0,50	1,00
Радиочастотные электромагнитные поля			1,00	2,00
Функционирование вспомогательных частей ⁹⁾	$0.01I_{HOM}$		0,05	0,10
Кондуктивные помехи, наводимые радиочастотными полями	I_{HOM}	1,0	1,00	2,00
Наносекундные импульсные помехи				
Устойчивость к колебательным затухающим помехам				

- 1) Средний температурный коэффициент необходимо определять для всего рабочего диапазона. Рабочий температурный диапазон следует разделить на поддиапазоны по 20 К. Затем средний температурный коэффициент следует определять путем проведения измерений для этих поддиапазонов: 10 К выше и 10 К ниже середины поддиапазона. Во время проведения испытания температура ни в коем случае не должна выходить за пределы указанного рабочего диапазона.
- $^{2)}$ Для диапазонов напряжения от минус 20 % до минус 10 % и от плюс 10 % до плюс 15 % пределы дополнительной погрешности могут в три раза превышать приведенные в таблице. При напряжении ниже $0.8U_{\text{ном}}$ погрешность счетчика может меняться в пределах от плюс 10 % до минус 100 %.
 - $^{3)}$ Рекомендуется проводить испытания при $I_{\mathsf{Hom}}.$
- ⁴⁾ Многофазные счетчики с тремя измерительными элементами должны измерять энергию и регистрировать показания в пределах граничных значений изменения погрешности, представленных в таблице, если прерываются:
 - одна или две фазы в трехфазной четырехпроводной сети;
- одна из трех фаз в трехфазной трехпроводной сети (если счетчик предназначен для такой работы).
 Это относится только к прерываниям фаз и не относится, например, к таким случаям, как перегорание предохранителей трансформаторов.
- ⁵⁾ Применимо, только если вспомогательное электропитание внутри счетчика не соединено с цепью, измеряющей напряжение.
 - 6) Условия испытаний приведены в 8.2.1—8.2.3.
- ⁷⁾ Коэффициент искажения формы кривой напряжения должен быть не более 1 %. Условия испытаний приведены в 8.2.2.
- 8) Магнитная индукция внешнего происхождения 0,5 мТл, создаваемая током частоты, одинаковой с частотой подаваемого на счетчик напряжения, и при наиболее неблагоприятных фазе и направлении, не должна вызывать дополнительную погрешность счетчика, превышающую значение, установленное в таблице.

Магнитная индукция может быть создана путем помещения счетчика в центр катушки средним диаметром 1 м с прямоугольным поперечным сечением, небольшой радиальной толщиной по сравнению с диаметром и имеющей 400 ампер-витков.

⁹⁾ Вспомогательную часть внутри корпуса счетчика (например, электромагнит многотарифного счетного механизма) включают под напряжение прерывисто.

Желательно, чтобы присоединение к вспомогательной части маркировалось для обеспечения правильного его подключения. Если эти соединения выполнены с помощью штепсельных вилок и розеток, то должна быть предусмотрена защита от возможности неправильного подключения счетчика.

Однако при наличии подобных маркировок или соединений, обеспечивающих защиту от возможностей неправильного подключения счетчика, дополнительная погрешность не должна превышать указанную в таблице, если счетчик испытывается с соединениями, создающими наиболее неблагоприятное условие.

Проверку дополнительной погрешности, вызываемой одной из влияющих величин, следует проводить независимо от всех других влияющих величин, находящихся в нормальных условиях согласно таблице 8.

8.2.1 Проверка точности при наличии гармоник

Условия проверки:

- ток основной частоты I_1 = 0,5 $I_{\text{макс}}$;
- напряжение основной частоты $U_1 = U_{\text{ном}}$;
- коэффициент мощности основной частоты 1:

- напряжение пятой гармоники U_5 = 10 % $U_{\text{ном}}$;
- ток пятой гармоники I_5 = 40 % от тока основной частоты;
- коэффициент мощности гармоники составляет 1;
- напряжения основной и высших гармоник находятся в фазе при пересечении положительного нулевого уровня.

Активная мощность пятой гармоники равна

$$P_5 = 0.1U_1 \cdot 0.4I_1 = 0.04P_1. \tag{1}$$

Суммарная активная мощность основной и высших гармоник составляет 1,04 P_{1} .

8.2.2 Испытания на влияние субгармоник

Испытание следует проводить, используя схему, приведенную на рисунке А.1, или другие средства, способные генерировать ток требуемой формы, как показано на рисунке А.2.

Дополнительная погрешность, когда счетчик подвергается испытаниям током, форма которого определена на рисунках А.2 и А.3, и током нормальной (синусоидальной) формы, не должна превышать пределов, указанных в таблице 6.

П р и м е ч а н и е — Значения, указанные на рисунках, — только для частоты 50 Гц. Для других частот эти значения следует соответственно изменять.

8.2.3 Постоянная магнитная индукция внешнего происхождения

Постоянная магнитная индукция может быть создана с помощью электромагнита (согласно приложению В), по которому проходит постоянный ток. Это магнитное поле должно быть приложено ко всем доступным для прикосновения поверхностям счетчика, установленного в нормальное рабочее положение. Значение приложенной магнитодвижущей силы должно быть 1000 ампер-витков.

8.3 Проверка начального запуска, стартового тока и отсутствия самохода

Условия испытаний и значения влияющих величин должны соответствовать 8.5 со следующими дополнениями.

8.3.1 Начальный запуск счетчика

Счетчик должен функционировать не позднее чем через 5 с после того, как к его зажимам будет приложено номинальное напряжение.

8.3.2 Проверка без тока нагрузки (отсутствия самохода)

После приложения напряжения при отсутствии тока в цепи испытательный выход счетчика не должен создавать более одного импульса.

Для этого испытания цепь тока должна быть разомкнута, а к цепям напряжения должно быть приложено напряжение, равное 115 % номинального значения.

Минимальный период испытания ∆t, мин, должен составлять:

для счетчиков класса точности 0,2S

$$\Delta t \ge \frac{900 \cdot 10^6}{k \cdot m \cdot U_{\text{HOM}} I_{\text{MAKC}}},\tag{2}$$

для счетчиков класса точности 0,5S

$$\Delta t \ge \frac{600 \cdot 10^6}{k \cdot m \cdot U_{\text{HOM}} I_{\text{Makc}}},\tag{3}$$

где k — число импульсов выходного устройства счетчика на 1 кВт · ч [имп./(кВт · ч)];

m — число измерительных элементов;

 $U_{\text{ном}}$ — номинальное напряжение, В;

 $I_{\mathsf{макс}}$ — максимальный ток, А.

 Π р и м е ч а н и е — Для трансформаторных счетчиков постоянная k должна соответствовать значениям вторичных величин (токов и напряжений).

8.3.3 Проверка стартового тока (чувствительности)

Счетчик должен начать и продолжать регистрировать показания при значении тока, равном $0.001I_{\rm Hom}$, и коэффициенте мощности, равном 1 (а в случае многофазных счетчиков — при симметричной нагрузке).

Если счетчик предназначен для измерения энергии в двух направлениях, то испытание должно быть проведено для каждого направления.

ГОСТ 31819.22-2012

8.4 Постоянная счетчика

Связь между количеством импульсов, формируемых на испытательном выходе, и показанием на дисплее должна соответствовать маркировке на щитке.

8.5 Условия проверки точности

Проверку точности проводят при соблюдении следующих условий:

- a) счетчик должен быть испытан с установленным кожухом. Все части, требующие заземления, должны быть заземлены;
- b) до проведения любых испытаний цепи должны быть под напряжением в течение времени, достаточного для достижения тепловой стабильности;
 - с) дополнительно для многофазных счетчиков:
 - порядок следования фаз должен соответствовать указанному на схеме подключений счетчика;
- напряжения и токи должны быть практически симметричными в соответствии с требованиями таблицы 7;
 - d) нормальные условия указаны в таблице 8;
 - е) требования к испытательному оборудованию должны соответствовать [4].

Таблица 7 — Требования к симметрии токов и напряжений

Напряжение и ток многофазных счетчиков	Допускаемые отклонения для счетчиков классов точности 0,2S и 0,5S
Напряжения между фазой и нейтралью, а также между любыми двумя фазами не должны отличаться от соответствующего среднего значения более чем на	± 1 %
Токи в токовых цепях не должны отличаться от среднего значения более чем на	± 1 %
Значения сдвига фаз для каждого из этих токов от соответствующих напряжений между фазой и нейтралью независимо от фазового угла не должны отличаться друг от друга более чем на	

Таблица 8 — Нормальные условия

Влияющая величина	Нормальное значение	Допускаемое отклонение для счетчиков классов точности 0,2S и 0,5S
Температура окружающей среды	Нормальная температура или, если она не установлена, 23 °C ¹⁾	± 2 °C
Напряжение электропитания	Нормальное напряжение	± 1,0 %
Частота	Номинальная частот а	± 0,3 %
Порядок следования фаз	L1—L2—L3	_
Несимметрия напряжения	Все фазы подключены	_
Форма кривой	Синусоидальные напряжения и токи	Коэффици е нт искажения менее 2 %
Постоянная магнитная индукция внешнего происхождения	0	_
Магнитная индукция внешнего происхождения при номинальной частоте	0	Значение индукции, которое создает изменение погрешности не более \pm 0,1 %, но которое в любом случае должно быть не более 0,05 мТл ²)
Радиочастотные электромагнит- ные поля, от 30 кГц до 2 ГГц	0	Менее 1 В/м
Функционирование вспомога- тельных частей	Отсутствие функционирования вспомогательных частей	_
Кондуктивные помехи, наводимые радиочастотными полями	0	Менее 1 В

- ¹⁾ Если испытания проводят при температуре, отличающейся от нормальной температуры с учетом допускаемых отклонений, то результаты должны быть скорректированы введением соответствующего температурного коэффициента счетчика.
 - 2) Испытание состоит:
- а) для однофазного счетчика из определения погрешностей сначала счетчика, нормально присоединенного к сети, а затем при изменении на обратное присоединение цепей тока и напряжения. Половина разности между двумя значениями погрешности представляет собой значение изменения погрешности. Так как фаза внешнего поля неизвестна, испытание следует проводить при токе $0.05I_{\rm Hom}$ и коэффициенте мощности, равном 1, а также при токе $0.1I_{\rm Hom}$ и коэффициенте мощности, равном 0.5;
- b) для трехфазного счетчика из проведения трех измерений при токе $0,05I_{\rm Hom}$ и коэффициенте мощности, равном 1, после каждого из которых присоединения к цепям тока и напряжения переключают, создавая сдвиг фаз на 120° , но без изменения порядка следования фаз. Наибольшую разность между значениями каждой из погрешностей, определенных таким образом, и их средним значением принимают за значение изменения погрешности.

8.6 Интерпретация результатов испытаний

Из-за недостоверности измерений и других причин, оказывающих влияние на результаты измерений, некоторые результаты испытаний могут оказаться вне допустимых пределов, приведенных в таблицах 4 и 5. Однако если при перемещении оси абсцисс параллельно самой себе на значение, не превышающее значения, установленного в таблице 9, все результаты испытаний приходят в соответствие с пределами, установленными в таблицах 4 и 5, то счетчик считают годным.

Таблица 9 — Интерпретация результатов испытаний

Класс точности счетчика	0,28	0,5\$
Допускаемое перемещение оси абсцисс, %	0,1	0,2

9 Дополнительные требования

Дополнительно к требованиям, установленным в ГОСТ 31818.11 (раздел 9), счетчики должны удовлетворять следующим требованиям.

9.1 Требования к импульсному выходному устройству

Импульсное выходное устройство должно иметь два состояния, отличающиеся импедансом выходной цепи.

В состоянии «замкнуто» сопротивление выходной цепи передающего устройства должно быть не более 200 Ом, в состоянии «разомкнуто» — не менее 50 кОм.

Предельно допустимое значение тока, которое должна выдерживать выходная цепь передающего устройства в состоянии «замкнуто», должно быть не менее 30 мА.

Предельно допустимое значение напряжения на выходных зажимах передающего устройства в состоянии «разомкнуто» должно быть не менее 24 В.

Действительное значение сопротивления выходной цепи передающего устройства следует определять соответственно как частное от деления остаточного падения напряжения на предельно допустимый ток и предельно допустимого напряжения на остаточный ток.

Методы измерения остаточного падения напряжения и остаточного тока должны быть установлены в нормативных документах на счетчики конкретного типа государств, упомянутых в предисловии, как проголосовавших за принятие настоящего стандарта.

Приложение А (обязательное)

Схема испытательной цепи для испытания влияния субгармоник

П р и м е ч а н и е — Значения, приведенные на рисунках А.2 и А.3, — только для частоты 50 Гц. Для других частот эти значения следует соответственно изменить.

А.1 Однополупериодное выпрямление (постоянный ток и четные гармоники)

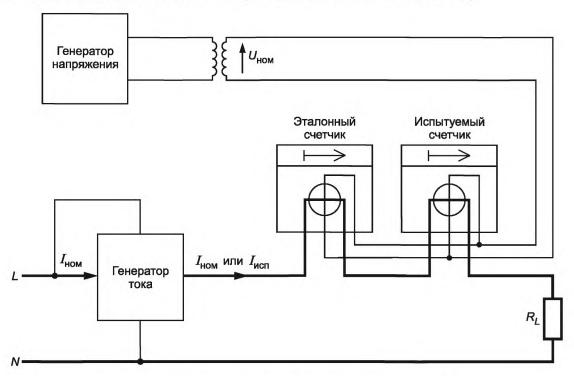


Рисунок А.1 — Схема испытательной цепи для однополупериодного выпрямления

Примечание — Эталонный счетчик должен измерять суммарную активную энергию (основной и высших гармоник) при наличии гармоник.

Испытательный цикл: два периода «включено»/два периода «отключено»

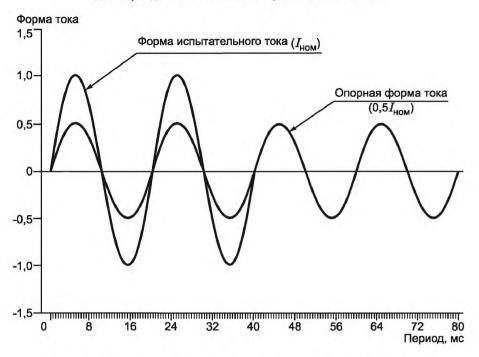


Рисунок А.2 — Форма тока при испытаниях на влияние субгармоник

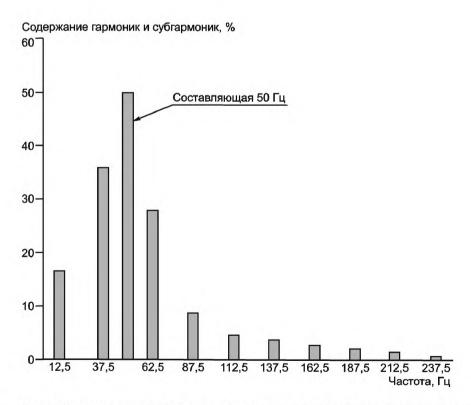
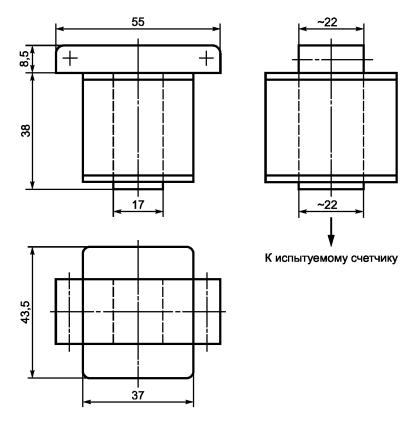



Рисунок А.3 — Распределение гармоник при однополупериодном выпрямлении (анализ Фурье не завершен)

Приложение В (обязательное)

Электромагнит для испытания на влияние внешних магнитных полей

Для определения влияния внешних магнитных полей используют электромагнит, приведенный на рисунке В.1.

Примеры обмотки: 500 витков проволоки диаметром 0,6 мм, сечением 0,28 мм 2 или 1000 витков проволоки диаметром 0,4 мм, сечением 0,126 мм 2 .

Удельные потери 1 Вт/кг.

Рисунок В.1 — Электромагнит для испытания на влияние внешних магнитных полей

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
IEC 60514:1975 Счетчики электроэнергии переменного тока класса 2. Приемочный контроль	NEQ	ГОСТ 25990—83 Счетчики электрические активной энергии класса точности 2,0. Приемочный контроль
IEC 62052-11:2003 Аппаратура для измерения электрической энергии (переменный ток). Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии	MOD	ГОСТ 31818.11—2012 (IEC 62052-11:2003) Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии

 Π р и м е ч а н и е — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- MOD модифицированные стандарты;
- NEQ неэквивалентные стандарты.

Библиография

[1] MЭK 62059-11:2002	Electricity metering equipment (a.c.) — Dependability — Part 11: General concepts [Аппаратура для измерения электрической энергии (переменный ток). Надежность. Часть 11. Общие положения]
[2] MЭK 62059-21:2002	Electricity metering equipment (a.c.) — Dependability — Part 21: Collection of meter dependability data from the field [Аппаратура для измерения электрической энергии (переменный ток). Надежность. Часть 21. Сбор данных о надежности счетчика в условиях эксплуатации]
[3] IEC 62053-61:1998	Electricity metering equipment (a.c.) — Particular requirements — Part 61: Power consumption and voltage require ments [Аппаратура для измерения электрической энергии (переменный ток). Частные требования. Часть 61. Требования к напряжению и потребляемой мощности]
[4] MЭK 60736:1982	Testing equipment for electrical energy meters (Испытательная аппаратура для счетчиков электрической энергии)

УДК 621.317.785:006.354

MKC 17.220.20

MOD

Ключевые слова: аппаратура, измерение электрической энергии, переменный ток, требования частные, счетчики статические, счетчики ватт-часов, энергия активная, счетчики электронные, счетчики трансформаторные, элемент измерительный, индикаторы функционирования, регистраторы тарифов электронные, переключатели по времени, приемники дистанционного управления, интерфейсы

Редактор *Н.В. Таланова*Технический редактор *В.Н. Прусакова*Корректор *И.А. Королева*Компьютерная верстка *П.А. Круговой*

Сдано в набор 04.09.2013. Подписано в печать 24.09.2013. Формат $60\times84\frac{1}{8}$. Гарнитура Ариал. Усл. печ. л. 2,32. Уч.-изд. л. 1,70. Тираж 98 экз. Зак. 1071.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4.
www.gostinfo.ru info@gostinfo.ru

Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.
Отпечатано в филиале ФГУП «СТАНДАРТИНФОРМ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6.