ТИПОВОЙ ПРОЕКТ 0901-9-23.87

ФИЛЬТРЫ - ПОГЛОТИТЕЛИ ДЛЯ РЕЗЕРВУАРОВ ЧИСТОЙ ВОДЫ ЕМКОСТЬЮ ОТ $2500\,\mathrm{M}_{20}^3$ 4600 М

ВАРИАНТ БЕЗ КЛАПАНОВ

АЛЬБОМ Т

ОБЩАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ. АРХИТЕКТУРНО- СТРОИТЕЛЬНАЯ ЧАСТЬ.
ВЕНТИЛЯЦИЯ.

Tenandoring Phanas
LINTTI
Throson report /germs/
H 0901-9-23 at
Jaras N. 114
Lien - 1948. 82 km.
Them - 500 19696

0901-9-23.87 ФИЛЬТРЫ-ПОГЛОТИТЕЛИ ДЛЯ РЕЗЕРВУАРОВ ЧИСТОЙ ВОДЫ ЕМКОСТЬЮ ОТ 2500 M³ до 4600 M³

ТИПОВОЙ ПРОЕКТ

ВАРИАНТ БЕЗ КЛАПАНОВ.

состав проекта:

АЛЬБОМ І-ОБЩАЯ ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ. АРХИТЕКТУРНО— СТРОИТЕЛЬНАЯ ЧАСТЬ. ВЕНТИЛЯЦИЯ.

АЛЬБОМ \mathbb{I} – Электротехническая часть. Технологический контроль.

(из типового проекта \mathbb{I} \mathbb{I}) АЛЬБОМ \mathbb{I} \mathbb{I})

АЛЬБОМ II - СТРОИТЕЛЬНЫЕ ИЗДЕЛИЯ.

АЛЬБОМ №—СПЕЦИФИКАЦИИ ОБОРУДОВАНИЯ. АЛЬБОМ №—СМЕТЫ.

АЛЬБОМ №- ВЕДОМОСТИ ПОТРЕБНОСТИ В МАТЕРИАЛАХ.

ΑΛЬБΟΜΙ

Разгавотан проектным инстититом
"ГИПРОКОММУВВО ДОКОН САЛ"
Главный ниженер института
Главный ниженер проекта

Дитинатическая проекта

Дитинатическая проекта

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ
МИНЖИЛКОМ ХОЗОМ РСФ СР
ПРИКОЗ N 12 - ТД от 15 пключя 1987.

		Н	Привязан:	
I HRB. R	 	_	22778-04 2	-

СОДЕРЖАНИЕ АЛЬБОМА

uļn NN	Наименование	Cme.
1	Содержание альбома,	2
2	азынае каналетингоп каше	5
	Технологическая часть	
3.	Общие ДАННЫЕ	9
ų.	Φ Πŧ; Φ ΠŧΜ	10
	NAAH HA OMMEMKE 0.000	1
1	PASPESSI 4-1; 2-2	l
	CXEMA	l
5.	ዋበ 26; ዋበ 2K; ዋበ 36; ዋበ 3K.	4
	План на отм. 0.000. Разрезы 1-1; 2-2.	
	Cxema.	
	ДРХИМЕКШАБИО - СШБОЙ ШЕУРНУЯ	
	часть.	1
6.	DEMNE TANKPE	12
		1
2.	План на опт. 0.000. Разрезы 1-1+3-3	13
L		1

NN n/n	Наименование	Cmr.
8. 9 40 41. 42.	Схема РАСПОЛОЖЕНИЯ СМЕНОВЫХ БЛОКОВ НА ОММ. 0.000. РАСКЛАДКА БЛОКОВ ПО ОСЯМ 1, 2, 4, Б. Схемы РАСПОЛОЖЕНИЯ ПЛИМ ПОКРЫМИЯ МОНОЛИМНЫЙ ПОЯС МП-1 УЗЛЫ 1÷6 ФИЛЬМРЫ — ПОГЛОМИМЕЛИ ФП1, ФП1М. ФИЛЬМРЫ — ПОГЛОМИМЕЛИ ФП2Б; ФП2К	14 15 16 17 18
13.	Фильтом - поглотители ФПЗБ; ФПЗК. В е и т и ля ц ия.	ן יי
f4. f5. f6.	Общие данные План на отм. 0.000. Разрез 1-1 Схема системы В1. Ограждение отверстия входного патрубка центробежжения отоематира.	20 21 22

1, BBEZEHNE

- 41 Миповой проект фильтов поглатителей воды разработан по плану типового проектирования , итвержсвенному
 Постановлением ГОССТРОЯ СССР
 от 23.12.85 г. на стани рабочий
 проект.
- 1.2 РАЗДЕЛ ПОЯСНИПЕЛЬНОЙ ЗАПИСКИ С РАСЧЕПНЫМИ ДАННЫМИ ХРАНИПСЯ В ИНСПИПИТИТЕ . ГИПРОКОММУНВОДОКАНАЛ ...

RNHAHAMNAU TENANGU S

- 2.2. Фильтры поглатители применяются для оборудования вновь проектируемых и дооборудования резервудров чистой воды.
- 2.3. Для обеспечення работы фильтров поглотителей резервуары должны быть герметизированными.
- 24, Фильтры поглотители запроектированы в каиматическом районе с расчетными зимними температурами до -5°C

25. Данные по типовым проектам Фильтров - поглатителей:

10 mg	12 10/10 11/10	РТКОСТЬ РЕЗЕРВЗА- РОВ СЕРИИ С ОПОРНОЙ, ПЯПТОЙ,	резервза- ров с при - ненением изаелий привадемой м 3	PACTETHAN EMPOCITIS PESEP- BYA POB M3		KOAM YECT- BO 中们, 田田	Размеры ФП, мм	KAMEP KAMEP KAMEP	PA3ME- PM KAMEPM M ×M	Nº-MH- NOBOPO NPŒK- INA
By Arry Hills of	1	50-300	100 - 250	50-300	48	2	<u>\$100</u> \$00 × 800	1	£7×3,8	0901-9-20,87
	2	500-1400	500-1200	S00-1200	15-480	2	<u> </u>	1	5,7×3,8	0901-9-21.87
AHE	3	1600-2600	1400-2400	1300-2400	210-360	3	<u> </u>	1	8.843,8	0901-9-22.87
SOATHEN N AATA	4	2100-4600	2509-3900	2500-4600	375-690	3	1500×1200	1	12,5 × 4, 2	0901-9-23.67
	5	5000 H 900	S000-H000	2090- H08 <i>C</i>	750-1650	Б	1500×1200 			0901-9-24.87
HPB.AS.ADAA.		13000-202000	12000-20000	15000-15300	1950 -3000	12	41500 1200×1500	2	17 × 4.2	0901-9-24.87

RPHMEHAHUS:

- 4. В табанце И1 часовой расход воздуха соответствует 15% объема резервара.
- 2. Расход Возанха соответствиет расходи воды, отбираемой из резервнара.
- 3, Расход воздуха на 1cm2 площави ФП принят 0,3 4 мин.

OBOPSAOBAHHE KAMEP

- PACHOMATAIOMES B DAHON C 32 KAMEPH PESEPBYAPOM OBBANOBKE PALLINOSHHE KAMEPOÑ PN N B YHEMOME PANEAM PESEPBYAPOM чистай ВОДЫ CHOKAGA HE MEHEE 5 MEMPOB H3 YCADBHR **EPIWP** НА ЕСМЕСМВЕННОЕ NOCAAKH KAMEPH DEHOBAHHE.

- 33 Атмосферный возаух стерез возаухо заборные трубы подется непос реаствению на фильтор поглоти тели, которые перехрываются дереванными съётными щимтим.
- 34. Во избежении ОБРУШЕНИЯ KOHEM иинажилизод ичп PYKUHH PESEPBYAPA RPEAEADB ДАВАЕНИЯ (НЗБЫ -KPHMHHECKHX ПРЕДУСМАПТРИВА -(AMEENAR NAN GTOHFOM BOAAHA АН СЧЭГМЭПЗИА АААНТИЗ ЗВИНОИВНАПТИВ OMKPHITTHE JAABHACKN (ДЛЯ ЭКЕПРЕННОГО ВЫПУСКА НАИ ВПУЕКА АН ЙОННЭЖОЛОПЗАЯ (ПФ КЕНИМ АКЕЛЕОВ АВАРИЙНОМ ВОЗАЧХОВОДЕ.

15 Расчетная площадь фильтрации Йолатительной Круглых — 4,4 м² Привязан

1 BAPHAHM

COAEPMAHUE PPAKUMA 1-3mm HE BOAEE 15% 05-1mm HE MEHEE 85% MEHEE 0,5 MM HE BOAEE 5%	300mm	Котельный шлак опока
5-10 mm	8	Гравий
15-20 MM	g	Гравий

2 BAPHAHM

COAEPACAHUE PPAKUUM 1-3 pm he boaee 15% OS-1 mm hemehee 85% MEHEE 0,5 mm he boaee 5%	Човин	Керамэнтовый Антроцитовая	
5-10mm	Ä	ГРАВИЙ	
15-20 mm	1	ГРАВИЙ	

3 BAPHAHITI

Содержание фракций 0,5-1 ÷ 0,6-1,2 ф	Чадын	Песок, почтеняемый караба вы караба
5-10 mm	E	Гравий
15-20 mm	4	Гравий

THANNAH P

СОДЕРЖАНИЕ ФРАКЦИЙ Q5-1 ÷ 0.6-1.2 100°).	400 mm	Песок по ГОСТ 10268-80 иГОСТ 6139-78 применяемый Аля притопповления и проверки качества бетана
5-10 mm	8	ГРАВНЙ
15-20 nm	ş	Гравий

В КАЧЕСТВЕ ОСНОВНОЙ ЗАГРУЗКИ ФИЛЬТРОВ
ПРИНЯТА ЗАГРУЗКА ПО ЗЕМЯ ВАРИАНТУ
ВОЗМОЖНО В КАЧЕСТВЕ ЗАГРУЗКИ ПРИМЕНЕНИЕ ГОРЕЛЫХ ПОРОД, ДОПУСКАЕМЫХ К ПРИМЕНЕНИЮ В ХОЗ-ПИТЬЕВОМ
ВОДОСНАБЖЕНИИ.

					,			
					TN 0901-9-23.87	7		ПЗ
	H. KOHITTE.	PAKOS	Hanol	-				
_			14		Фильтры - поглатители Для резервуаров чистой воды емкистью от 2500м3 до 4600м Вариант без клапанов	CTAAMS	VHCUI	ANUMA
		CHECOMIE	ylin		EMRUCTON OT 2500M3 AO 4600M3		1	1 6
	PYK CA	Турицына	augu		BAPHAHM BES KAANAHOB	<u> </u>	<u></u>	
	PUG	POMAROSA	140		рания пояснительная	Funday	*************************	одоканда •
	L'A CREO	AESEAES	Mis		3A TINEKA			
	HAY DOTA	Марин	allaga		SAIINENA		r.Mock	BA
					92078 A			

- Пля отведения конденсатной влаги со дна ФП в стенке корпуса его прокладывается дренажная труба, на конце которой устанавливает-CA BEHMUNG # = 25 MM.
- Deno BHUE MEXHUKO SKOHOMUYECKUE показатели приведены в таблице на листе δ .

Ярхитектурно --- строительная часть.

4.1 Obusue uchobus.

Проект разработан в соответствии с действующими нормами и правилами.

Кимера вля фильтров-поглотителей относится к Іклассу по капитальности, по степени ознестойкости-Д. Категория производства пожарной безопасности-Д.

- Условия и область применения Проект разработин для строительства в районах со следнощими природно-климатическими условиями:
- сейсмичность района не выше в баллов;
- расчётная зимн**я я температура муружного бездука минус 20-30**;
- -- рельеф терри**тории спокойный**;
- грунтовые воды отсутствуют;
- грунты в основинии непучинистые и непросидомые со следующимы нормативными характеристиками:

9=30°; C = 0.002 MNA; E = 15 MNA; P= 1.8 T/M3

При наличии грунтовых вод необходимо выполнить монолитнов железобетонное днище и гидроизоляцию Kamepol.

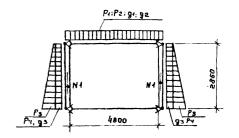
43 Объёмно-планировочные и конструктивные решения.

Камера для фильтров-поглотительй представляет собой прямовтольное в плане соорижение с размерами в осях \$542 размещаемое в общей обвановке с резервуаром, для которого она предназначается.

Расстояние до резервуара принимается около вм из учета препирания на естественное основание удобства производства работ и устанавливается в конкретном проекте. Высота камеры до ноза плит покрытия 2.4 м, высота обсыпки соответствиет принятой для резервуара Вход в кимеру осуществляется через входную вверь. Стены запроектированы из сборных бетонных блоков для стен подвала по ГОСТ 13579-78, покрытие - из сборных плит по серии 1.442.1-1. Фильтры-поглотители, служащие для дыхания" резервуаров, разработаны в 42 вариантах.

- -круглые из сборных железобетонных колец серий;
- круглые из стальных труб;
- прямоугольные из кирпича марки 75 на растворе марки-50
- прямоугольные из монолитного бетона марки в 12.3.

Тип конструкции фильтров-поглотителей устанавливается при привязке проекта.


Рекомендации по антикоррозийной защите строительных конструкций и устройству полов даны на чертежах проекта.

4.4 Основные расчетные положения. Конструкция кимеры расчитана на следующие нагрузки.

Ταδηυμα 2

Нагруэки	нагрузки В в в в в в в в в в в в в в в в в в в в	козффиц. надежности по нагрузка	Hèle
Пастоянные:			
1. Собственный вес покрытия	P4	1.1 (C.9)	попроекту
2. Собственный вес стен	N4	1.1 (c. 3)	по проекту
3. Вес грунтовой обсыпки	Pe	(0.9)	1.35 T/m³
4. Боковое давление грунтовой засыпки на стену.	Рз	1.2 (0.9)	1.5 T /M ³
5. Боковов давление засыпки.	Py	4.2 (c.9)	0.6 T/M3
Временные:		1	
5. Снеговая для й района	91	1.4	1.5 KY/M2
7. Временная на покрытии	92	1.2	1 KY/MZ
8. Боковое дивление от временной насружи	93	45	1KY/M2

Схема расчетных нагрузок

Соображение по производству работ. Проект разработан для производства работ в летнее время. При производстве работ в зимнее время в проект должны быть внесены коррективы еогласно действующим нормам и правилам Земляные работы должны выполняться с соблюдением требований СН и П 1 - 3-76. Все строительно- монтажные работы должны выполняться в coombemembou со CHu П m-16-80, a так же укизиниями серий, в которых разравотаны сборные железобетонные изделия с соблюдением правил техники безописности согласно CHU17-11 - 4-80.

Обратная засыпка пазух и обсыпка должна производиться только посля установки плит покрытия камеры, слоями 25-30 см, равномерно по периметру камеры с уплотнением. График производства работ см. лист 3.

। १४६म ३ सा स						
						Aucm
INB. Nº		TH	0901-9-23.	87	П3	2
INO. N -	L	 	22778-01	5		

	edunu- ua u3-	003EM pagot	TPYOO- EMLOCIE	TPYOO- EMKOCTH	COCTOB Spyradbi (25840) B CMEHY					-	Po	180	YU	e	•	744	,													
	MEPE- HUR.		HU EBU- HUY YEN. Y.	на весь объем уел. ч.		Ι.	2	3	, 5	6	7 8	3 5	10	~	12	13 1	4	5 1	5 1	118	19	20	24	22	23	24 2	.5 Z	6 Z:	7 28	29
Jemnanbie paborb: - paspašorka (PMPa (BYN6203EPOM, JACKABAROPOM:	100M 3	0,4	7.0	0,35	Maunimer 65-24 8kcka 6ara p 30-3341, 6 31160 - 30, 43- 54 Dodovue: 4 p-14,	Q. 2											1	-	1	1	-	L					-	\downarrow	1	L
- paspadorka rpynra bpyynyno.	M 3	34	2.76		30-14; 20-24.		30	1	╽.	Ц	\perp	1	\perp	_		4	4	4	\downarrow	1	1	5	L	Н	-	+	+	+	+	╀
- обваловка соорхжения с помощью выльдо- Зера, экскаватора и вругную	100M ³	6,8 85	3,5 0,58	2,00	MOWUHUCE: Gp-Er Padavue: 4p-11, 3p-11; Ep-21,													1	1		יו	•		Ш		1	1	1	\downarrow	L
Jerpoderio necrahoù nodrotoku nod фун-	100M 2	0,48	25	1,3	ANTOYUE: 40-17. 30-17; 20-21.			격				\perp	\perp	L			_	1	1	ļ	L			Ц		\perp	1	\perp	\perp	L
Vknadka фундаментных плит и влоков.	ur.	#1	0,655	9,09	POTOTUE VP-17. 30-17; ZP-27. MERCUNUES P-17. MERCUNUES X-1852			9		٧.	<u>0,</u>										-	L				\perp		1	\downarrow	L
TETPOUCTSO MONONUTHEM NENTOTHEM OPWOO- MENTOS U M.S. NOSCO: -YETPOUCTSO ONONYÓKU	m²	62,5	0,85	6,65	POSTOYUE: Up-17; 2p-24				10		22		\perp	L				1		1	-	L				1	1	1	\downarrow	L
- apmupobanue	7	1,14	9,51	1,36	podoyue: Yp-ty; Zp-ty,	L	Ш		4		2	ㅗ	L			Ц	1	1	\perp	\perp	ĮĹ,	L	L	Ц		\downarrow	\perp	4	4	L
-detanuposanue e namous bio astasetono- nacoa 54-80-20	Ag 3	17.0	2,73	5,8	CARCOPOSTAL POTOTYUE! Vp-17; Ep-14				\perp	16	1	2	\perp	L		Ц	\perp	1	1	\downarrow	1	\downarrow		Ц		4	-	1	1	L
- mezhonaruyeckui nepepiil	denb	2			0-5	L	Ц	\downarrow	1	L	Ц	Ŀ	20	+-		Ц	4	4	4	+	#	1	H	Н	\dashv	+	4	+	+	₽
-pastapka onanyoku	W &	62,6	0,4	3,13	POBONIE: Sp-14; 2p-24		Ш	\perp	\perp	L	Ц	ļ	1	140	-	Ц	4	1	1	\downarrow	Ļ	\perp	L	\sqcup		4	4	╀	+	\vdash
(פסתשב רעלףסטטת אנעם בדפא (פכתסא)	WS	46	0,57	3, 28	Poborue: 4p-17. 3p-17; 7p-1x Poborue: 4p-th	L	Ц	_	1	L	Ц	4	1	1	10		4	1	1	\downarrow	#	1	H	Ц	\sqcup	+	\downarrow	\downarrow	+	H
OBMW30YHOR FUDPOUSONRYUR CMEH	100m²	1,49	1,94	364	30-14; 20-14	L	Ц		\perp	L	Ц	4	1	1	10	_	4	4	4	1	#	L		Н	_	+	4	4	+	\sqcup
Yerpoierbo nanob: -nadrorobka us webma	400M2	9,46	25	1.44	POGOVUE: 4p-14; 3p-14, 2p-24							19	Ц.,								1								floor	
- Nenagka gelana agweemenacocawa 64-80-50	100M E	0,45	933	0,52	Checope:4p-1x Puborue 4p-1x Zp-2x	Γ	П			Г		a	4				T	T	T	I	i	Γ							\perp	
-mexhanaruveckuù nepepul	denb	2										I	2.0					I	I	I	i	L						L	\perp	\Box
- YEMEHTHEE NORPHITUE TONUL ESMM.	100m²	0,46	11	0,63	PODOYUE: 4P-14. 3P-14												#	1			i					1	\perp	L	$oldsymbol{\perp}$	L
Crpourenberbo Gunbrpob-nornorureneù gar-25 (3 gyeùku)	UT. SYCCK	3	-	12,4	Pobovie: 4p-14 3p-14; 2p-24									,		30	1								-					
Monrade nour nokobitus, Bec do Fr.	47.	4	0,64	0,32	ADDOTUE: Sp-tr												쌔		1							1				
Устройство кровли: - Цементна я стяжка	100M2	1.01	25	3,16	PODOTUE: 4p-14; 3p-12							I					ř	5	1	I						I	Ι	I	I	
- makneuka 4 = cnoes rudpausona	W.S	52	1,14	7,41	Podovue: \$p-17 3p-17; 8p-17.	Γ						I	\prod				brack T	J	1	5	-	\prod					I	I	\prod	
Выполнение разных строительно-мон- таженых работ.	pso.	283	18p	15,21	Andorue: 10-12 3p-14; 2p-84			\rfloor	I		$oxed{oxed}$	*	4				9	I		1.8	1						I	I		
Устройство вентипяции.	pså	120	50p	24	Checaps: 4p-14; 2p-14.		Ц	\perp	\perp	Ц	1	1		L	Ц	\downarrow	\int	1	٤	1	L		Ц		\perp			L		Ц
Мантаж технологического Оборудования и трубопроводов	pub.	7570	50 _A	15,0	Cnecaps: 5p-2v; 4p-2v; 3p-4z														-	25										
Монтон силового электрорборудования.	pse.	170	58p	2,93	211.MONTEP 5p-14; 3p-14.		\prod									I	\int	I		, 43	1					I	$oxed{I}$	\prod		
Manrosk Inektpoocheusens	pos.	150	58p	2,5	3r. montep: Sp-17; 3p-14		\coprod						Γ		П	\Box	I	٤	7						$oxed{\int}$	I	I	\prod	\prod	
Montash kun	pro.	50	58p	0,86	3p. Montep Sp-17; 3p-14		\coprod			П	\perp	Ĺ			Ш	\bot		I	\perp	L	1						\perp	L	\prod	

График праизводства работ.

Прибязан:				
	\Box			
UH5.N2		TN 0901-9-23.87		
		22778-01	6	

6.0 BEHMUNAYUA.

В камераж фильтров-поглатителей запраектирована вытяжная межани-ческая вентиляция из расчета пяти-кратного воздухообмена в час.

Вентиляция предустатрена периодического действия с выключением ее за 10-15 минут перед ввадом абслужи; вающего персанала в камеру.

Воздуховоды вытяжных систем окраичваются масляной краской за 1 раз снаружи.

Монтаж испытания и приемку системы отапления и вентиляции производить в соответствии с правила-ми производства и приемки Сни П. 3.05.01-85.

7.0 Jackmpomeznuteckas tacma.

По степени возможности электросновжения все электроприемники относятся
к потребителям Т категарии,
длектроснавжение превустатривается
одним кавельным вводом напряжением
эво/гов.

Все электродвигатели, межанизмы приняты асина ронными с короткозамкиятым ротором.

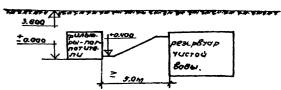
Согласно ГДЭ предусматривается завемление (зануляющее устройство). Для зануления использован нулевой провод питающий линии, каторый подключен к внутреннему контуру завемлемия.

Рабочее электроосвещение принято на напряжение 2208, местное напряжение 128. Величины асвещенности приняты в орогветствии с нормами провытирования на искусственном освещении сни ПТ-4-79. Предусматривается дистанционное управление задвижкой на ваздушном трубопроводе на сигналу о достижении критические пределов дувления или разряжение ческие пределов дувления или разряжение

воздужа в резервиаре. Место вля размещения аппаратов дистанционного управления определяется при привязке проекта. Управление вентиляцией запроектировано местное со шкафа управления и дистанционное - кнопкой, устанавливаемой у вхада в камеру и световой сигнализацией о работе вентилятора. Все сигналы неисправности работы механизмов камеры Фл передаются на местный диспеттерский пинкт мощадки.

8.0 Технологический контроль.

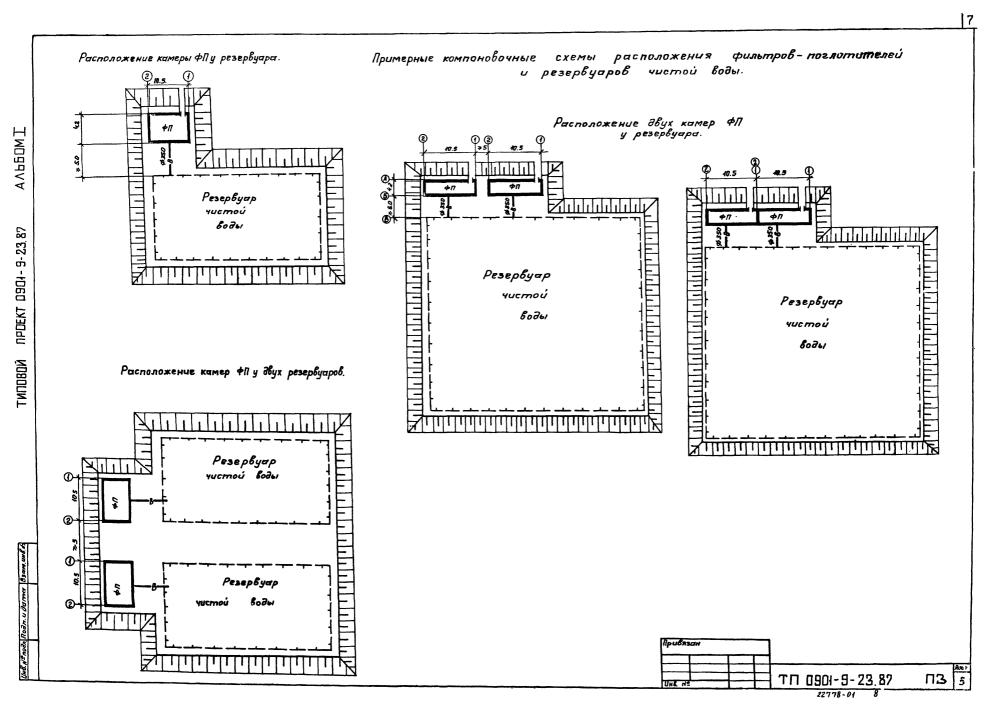
При наполнении резервуара бодой избыточнае давление не должно превышать 100 кгс/м²;


Это давление фиксирует датчик - реле
давления РН-25.

При опорожнении резервуара разряжения возвуха в нем должно дыть не менее то-80 ккг/м². Это разряжение измеряет датуик- реле тяги на воздуховоде, соединямищем фильтры- поглотители с резервуаром в помещении фильтров - поглотителей. Сигналы критических значений давления передаются на диспетчерский тункт площадки. Температура воздуха контролируется дат-чиками температуры ДТКЕ.

- so ykasanua na npubaske npoekta.
- 3.1. Уточняется расчетная температура наружного возджа.
- 9.8 камера фл рассчитана для обарэдования герметигираванных резервуаров.
- 23. Определяется местоположение камер фильтров-поплотителей на генплане в зависимости от высотной посадки резервуаров и грунтовых условий с таким расчетом, утобы катеры располатать на естественном или на устойнитевом искусственном основаниях. Если местные условия и высотная посадка катеры не позволяют разместить ее вобщем обвановании резервуара она

может быть вынесена за его пределы.
При этом уточняются нагрязки на плиты покрытия, а так же диаметры вазажоводов.


- 3.4. Каждый резервуар должен быть оборудован собственной группой фильтров поглатителей.
- 3.5. При привязке проекта следует учитывать режим работы резервуаров в системе с соответствующим подбором типов ФП по фактическому расходу воздужа. При этам разряжение дав-ления в резервуаре при аварийном его опорожнении (наполнении) не должено превышать величины указанных в специальной части пояснительной эсписки.
- 3.6 Примерные компановочные сжемы расположения камер фильтров - поглотителей и резервуаров чистой воды ст. лист 5.
 - 9,7. Пример расположения фильтрав-

9.8 В слачае часового постипления и выпуска воздуха не соответствиницего 15% объема резервуара следчет иточнить площади фильтрации и необходимость применения других типовых проектов фильтров – поглотителей.

pu6asan;					
		ΤП	0901-9-23.87	П3	L
MB.N	 	<u> </u>			17

22778-01 7

МЕХНИКО- ЭКОНОМИЧЕСКИЕ ПОКАЗАМЕЛИ мелатитолоп - мачталиф оп Основные

В СРАВНЕНИИ С АНАЛОГОМ.

	H	_	3 H A 4 E H M E Π Ο K A 3 A Π E A Я Диницы Достигнутые по ФП для резервуара емкостью от 2500 м³ до 4260 м³ Достигнутые по ФП для резервуара емкостью от 2500 м³ до 4260 м³															
ulu NN	H AWMEHOBAHHE NOKABAMEAEÑ	ЕДиницы измере-	Достигна	IWPIE UC	ቀበ ልላ	PE3EPO	YAPA EM	костью	om 2500 m³ _A i	04600 M3	Базовые	no Φ n)	N AAS PI	AHAADFA	A EMKOCITI Nº 0.901 -	9 - 3, 83)	2560 m³ ao	4260 m³
		RUA	ዋበ		ቀበተ			2 K	ΦN		ΦΠ		ዋበ	1 M	ዋ በ :	2 K	ФП	125
			BCECO	YAEAHH DOK	BCETO	YA. NOK.	BCETO	YA. nok.	BCETO	AY. UOK.	BCETO	YA. nok.	BCETO	9д. пок.	BCEro	SA. NOK.	BCETO	YA. nok.
\Box																		
	Машность (РАСКОД ОЧИЩЕННОГО	M3/4	6:	90	69	0	69	0	6	0	60	10	61	10	6	10	-	540
2.	603ДУХД.) Годовой объем продукции (очищенного 603ДУХД)	M3	604	4400	6040	1400	604	44 00	604	4400	560	6400	560	400	560	5400	56	06400
3.	СЕБЕСТОИМОСТЬ 1М3 (ОЧИЩЕННОГО	KON	0.1	014	0.0	14	0.	014	0.0	149	0.	02	0	.02	0.	02	ļ ———	0.02
	УРОВЕНЬ АВПОМАПИЗАЦИИ	<i>a</i> /e	10	0	100		10	0	11	0	10	0	7	00	4	00		100
	(АВАРИЙНЫЙ РЕЖИМ)															Î		<u> </u>
5.	ПРИВЕДЕННЫЕ ЗАПІРАТЫ НА ЕДИНИЦИ ПРОДИКЦИИ	P96.	0	62	0.6	<u> </u>	O.	62	Q.	62		9		19		19		1.19
6.	Странтельный объем	M3	19	7?	17	7	18	7		17	27			70		70		
	стонмость									<u> </u>			^	1		<u> </u>		170
	В МОМ ЧИСИТЕ : ЭКОНИ МОМ В МО	MPIG. SAE	12.52		13.52		12.49		12.56		48.2		20, 2		48.6		18.8	
	Строительно- монтажных работ	Mbic. P46.	40, 26		4.26		40, 23		10.30		16.2		18.4		16.6		17.4	
9.	RNHABOAPADAD	Mbic. Pys.	2.26		2.26		2.26		2.26		2.0		4.8		2.0		4.4	
41.	СТОИМОСТЬ СМР НА ТИРОЦИТЕЛЬНОГО ОПООМНОПО СТОИМОСТЬ ОБЪЕМА НА РАСЧЕПИВЫЙ ЛОКАЗАПЕЛЬ	P46. 146.		57, 97 2, 72		53.62 2.94		57. 8 0 2.72		58. 19 2. 73	60 4.2		58 4.47		51 4,3		54	
	T P Y A D E M KOCM b									2. 13	4.4		4. 47		4.3		4,4	
19	MOCMPOENHE MPYADSHE JAMPAMA	YEA. AH.	217		254		224											
13.	TO XE HA PACHEMININ NOKASAMEAL	HEA. AH.	AU	0.05		0.06		0.05	223	0.05	431.2	0.1	530, 2	0.12	438.6	0.4	342.6	0.08
目	РАСХОДЫ																	0.08
	РАСХОД СПРОНПЕЛЬНОХ МАПЕРИАЛОВ																	
	ЦЕМЕНП, ПРИВЕДЕННЫЙ К М 400 Тоже на расчетный показатель		25.09	0.005	24.46	0.005	24. 15	0.005	25,47	0.005	34.5	0.008	33.52	0.002	34, 18		35.32	
16	CMANS, RPHBEAEHHAR K KNACCAM A4 H C 38/35	T	2.81		6.18		2.57		2.57	0.003	7.52	0.004		V. UU 8		0.008		0.002
	То же, на расчетный показатель.	KP		0.61		4.3		0. 56	2.31	0.56	(,34	1.76	10.6	2.48	7.2	1.69	7.2	1.69
1	БЕПОН Н ЖЕЛЕВОБЕПОН В пом. чиске: монолипный	W ₂	105. 19 32.03		103.15 32.03		108.19 32.03		108.26		135. 08		432.56 36.42		132.56		139 1	
20.	СБОРНЫЙ	M3	73.16	0.018	₹₹. ₹6	0.012	91.16		33.01 ?1.46		36.42 98.96	\vdash	36. {2 96. 44		152.56 36.12 96.44		45. 26 96. 44	
			2.58	4.010	- A PB	U-U18		0.018		0.018		0.03		0.03	90.11	0.03	30.44	0.03
	VECA-	W ₂	 		2.53		2.61		3.84	 	1.4		3.4		4.4		2.8	
	ТО ЖЕ, НА РАСЧЕМНЫЙ ПОКАЗАМЕЛЬ	W ₃	0.	0002	0.	0002	0.	0002	0.0	002		0.0003		0.0003		0.0003		0.0006
24.	Кирпич	Mыс. шт.					4.	74							1.52			
-	Names House	RKAN/4AC																
		KBM	0.9	19	0.	10					2480		2480		2480		2480	
26.	Romperacomb 8 SAE KMPOSHEPCHH RP M MEYAHUS:	KDIA	J	-	<u> </u>	-	0.5	19	0.9	9	7.8		7. 8		7.8		7.8	

1. Типы камер ФП см. ансты КЖ 2. Показатели рассчитаны на максимальную емкость резервуара.

ПРИБЯЗАН:

TN 0901-9-23.87

йзжэт дэн хиноалд атоомоля XX атоомоля ТХ

Ведомость ссылочных и

TPHAAFAEMЫX

Лист	Наименование	Примечание
1	Общие Данные.	
2	ФП1; ФП1M. ПЛАН НА OMM. 0,000	
	PASPESH 1-1; 2-2. CXEMA	
3	ФП2Б ФП2К ФП3Б ФП3К ПЛАН НА	
	omm. 0 000. PASPESH 11; 2-2.	
	CXEMA.	

Обозначение	Наименование	ПРИМЕЧАНИЕ
	ПРИЛАГАЕМЫЕ ДОКУМЕНТЫ	
-TX CO	Спецификации ОБОРЧАОВАНИЯ	
-TX BM	ведомость потребности в	
	МАПЕРНАЛАХ	

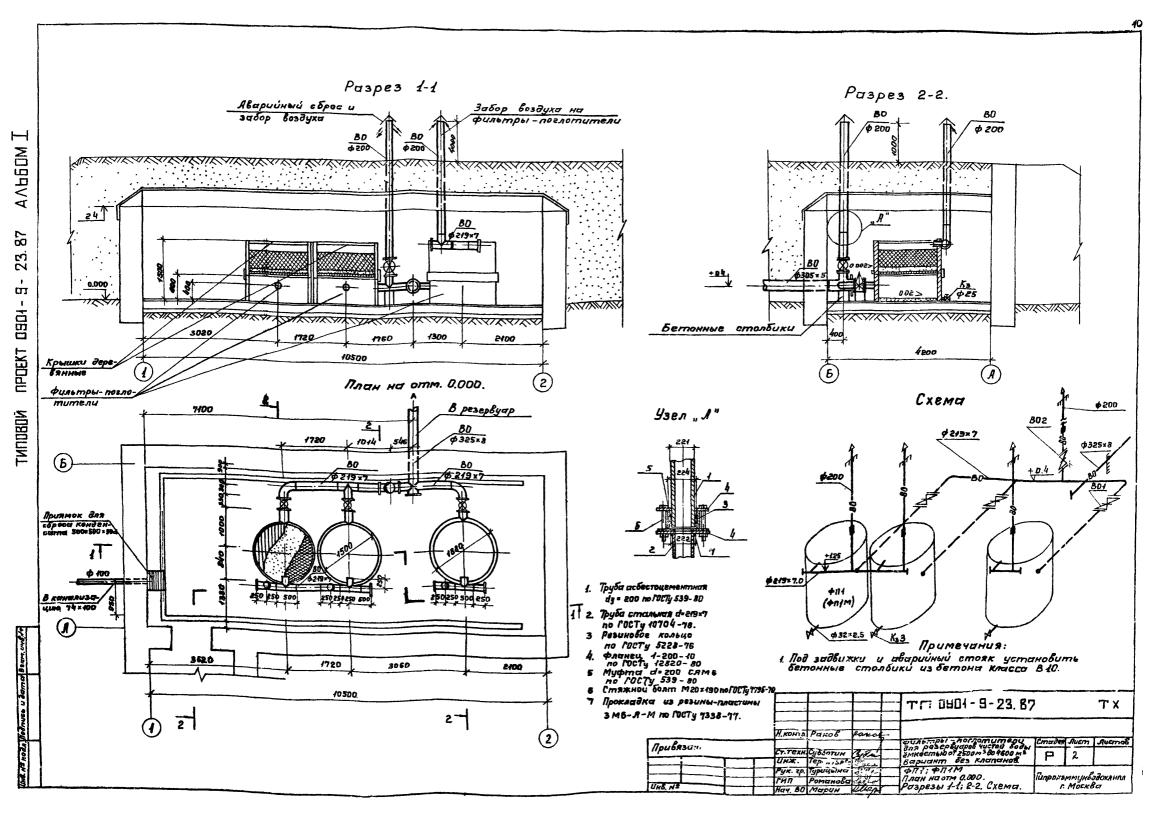
AOKYMEHMOB

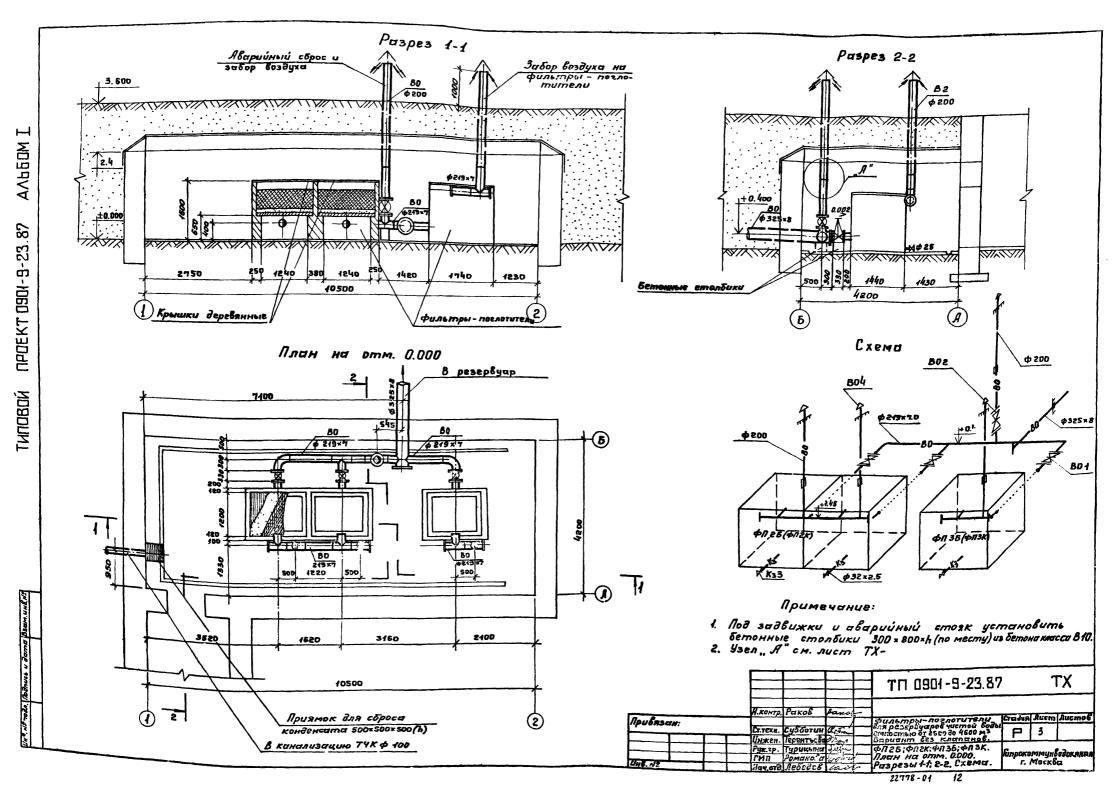
ВЕДОМОСТЬ ОСНОВНЫХ КОМПЛЕКТОВ РАБОЧИХ ЧЕРТЕЖЕЙ

Условные обозначения

Обозначение	Наименование	Примечание
tx	MEXHOLDENTELKAS YACTIL	
AC	АРхитектурно- строитель-	
	HAS HACTIL	
3M	3 AEKMPO MEXHUMECKAS	CM T.A.
	часть	0901-9-18.1.87
08	Виделиная и виналия	

OFO2HA4E HNE	Нанменование
80	HADBOXEAGO
K3	EBPOC KOHAEHCAMA


CHURE SKASAHUR


- Монтаж оборудования фильтров- поглатителей производить до установки плит перекрытия камеры,
- 2. ВЕНШИЛЬ Ф25ММ ДЛЯ СБРОСА КОНДЕНСАПІА ИЗ ФИЛЬПРОВ - ПОГЛОПИПЕЛЕЙ ЗАПЛОМБИРОВАПЬ В ЗАКРЫМОМ ПОЛОЖЕНИИ.
- 3. Стальные трубы, Фасонные части и оборудование покрасить масляной краской за 2 раза.

Типовой проект разработки в соответствии с действующими нармами и предустатующими тредустатующими тождриятия, обеспечивающие взрывную, взрывопождризо и пождризовов везопасность при эксплуагтами сооружений.

Главный инженер проекта Рацаст Т.Х. Романова

				Пэнвязан:			
NHB.Nº			_				
				TN 0904-9-23.8	37 TX		
н.контр.	PAKOB	Page		Guar mari - del somume su	7.4.4.4	Luca	Анстов
HHACEHE	Маркима Гурицыка	College Mar		Тильтем - Петлотителя Для резервуаров чистом воды Ерүкострыо опглотительного Вариант без клапанов	P	4	3
TA CHEN.	POMAHOBA ABBEAEB MAPHH	beller		Общие Данные	Гипрок	энкмио гооМ.э	BOARKAHAA K BA

Ведомость рабочих чертежей основного комплекта АС

Jucm	Наименование	Примечание
1	Общие данные	
2	Ппан на отм. 0.000. Разрезы 1-1, 2-2, 3-3	
3	Схемы расположения стеновых блоков на отм. 0.000.	
	Раскладка блоков по осят 1,2,4,5. Схеты расположения	
	плит покрытия.	
4	Монолитный пояс МП-1	
5	Узлы 1÷6	
6	Фильтры-поглотители ФП1; ФП1М	
7	фильтры - поглотители ФП2Б,ФП2К	
8	Фильтры-поглотители ФПЗК, ФПЗБ	

Номер узла при его изображении

М детали или узла
М нлиста и эльбома, на котором
изоражено деталь или узел

Типовой проект разраб*отан* в соответствии с действующеми нормати и правилами и предустатривает в части желеговетонных конструкций тероприятия, обеспечивающие пожарную везопасность эксплуатации сооружения.

Інавный инженер проекта

Д-7 (Закубанский Е.A.

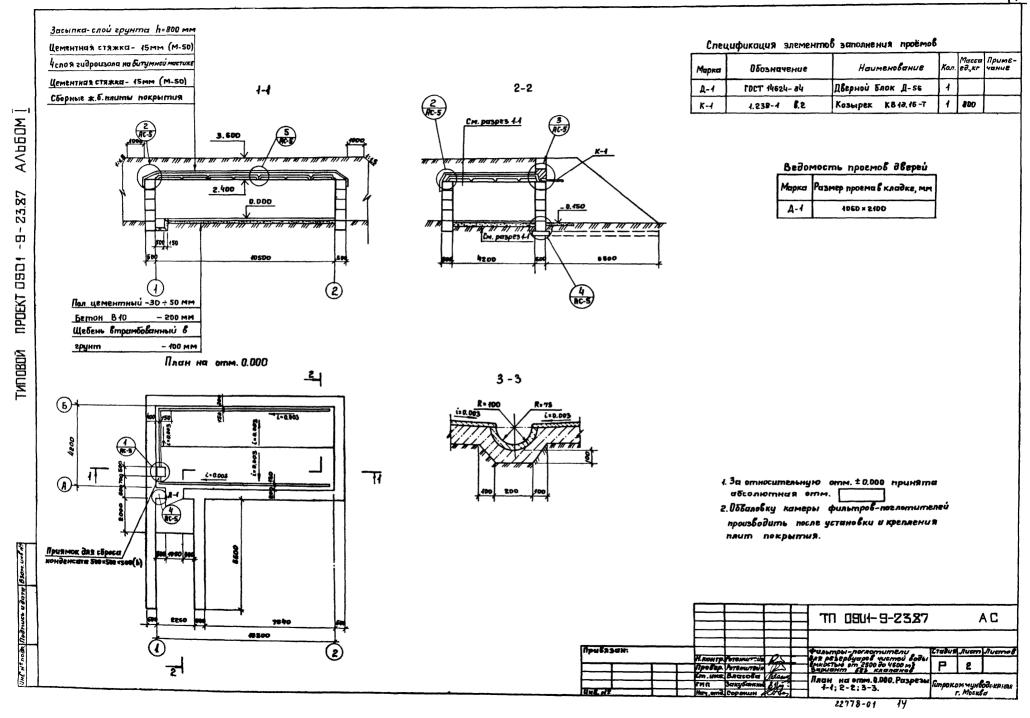
Ведомость ссылочных и прилагаемых документов

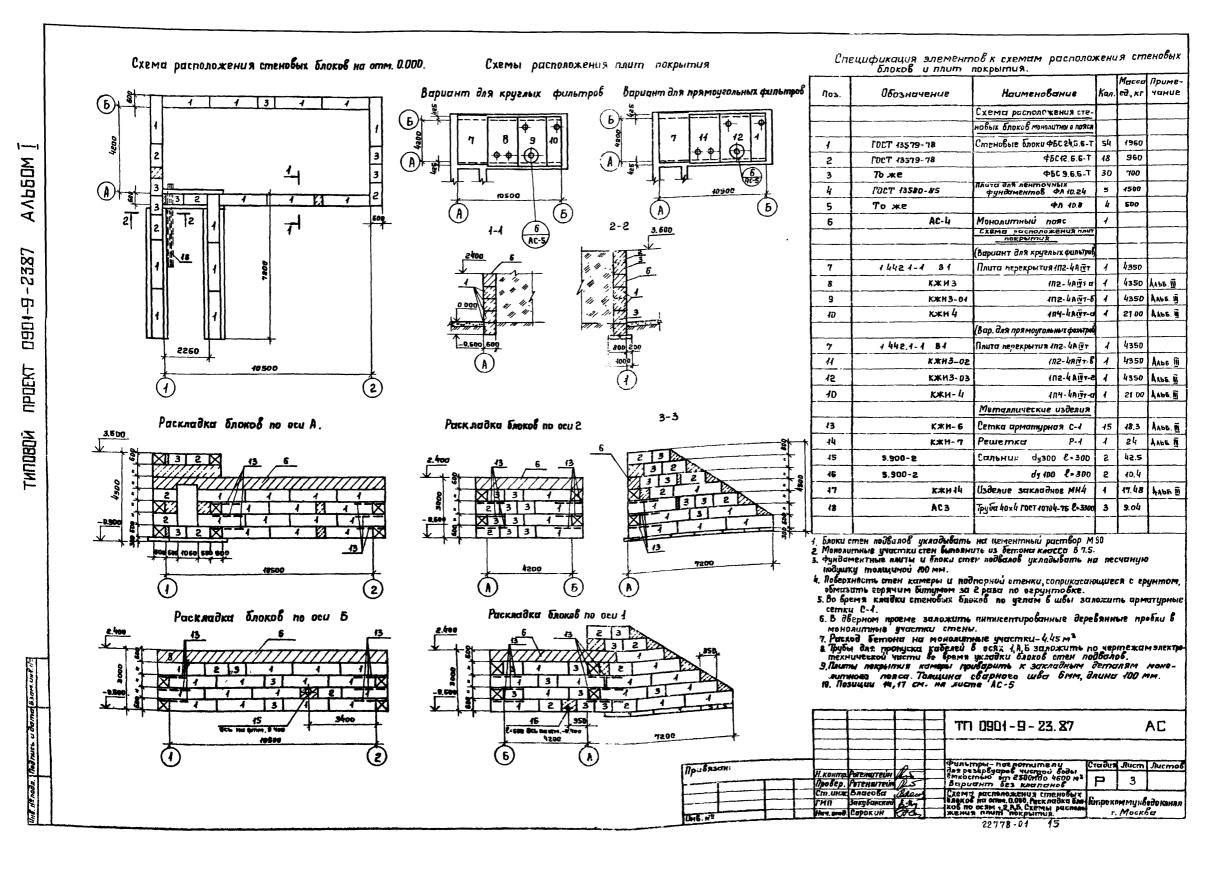
Обозначение	Наименование	Примечани е
	Ссылочные документы	
1.038.1.1 B.1	Перемычки железабетонные	
1.238-1 8.2	Железобетонные козырьки входов и парапетных плит общественных з Заний	
5.900 - 2	Сальники набивные Д 50 4400 для пропуски труб через стены	
PDCT 43579-76	Блоки бетонные для стен подвалов	
FDCT 43580- 8 6	Плиты ленточных фундаментов желе зо бет онные	
FDCT 14624-84	Цвери деревянные для производственных здиний	
1.442.1-1 8.1	Плиты перекрытий железобетонные высотой чос мм, укладываемые на полки ригелей	
FOCT 5784-82*	Стиль горячекатанная для армирования железобетонных конструкций	
	Прилагаемые документы	
кжи	Строительные изделия	Альбомії
ВМ	Ведомость потребности в материалах	Альбом <u>ў</u>

Ведомость спецификаций

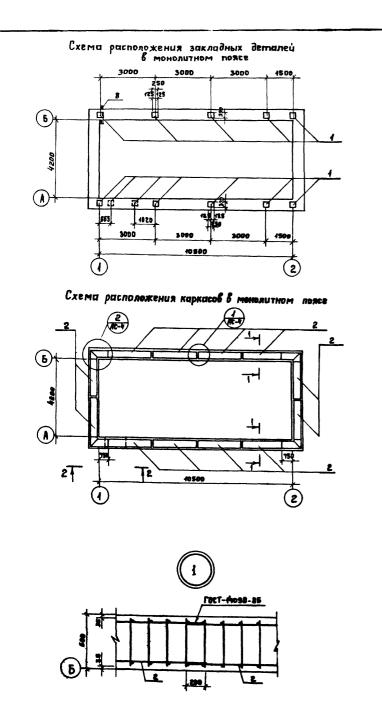
Jucm	Наименование	Примечание
2	Спецификация элементов заполнения проёмов	
3	Спецификация элементов к схетам расположения стеновых	
	блоков и плит покрытия	
4	Спецификация элементов монолитной конструкции	
5	Спецификация изделий к узлам крепления элементов	
6	Спецификация сборных железобетонных и металлических	
	элементов	
7	Спецификация элементов монолитных конструкций	
8	Спецификация элетентов монолитых конструкции	

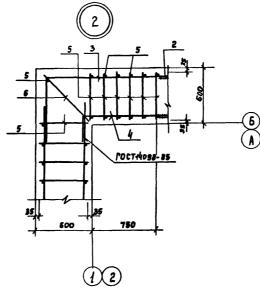
Основные строительные показатели

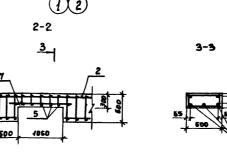

Наименование	Ед. Изм.	Примеча- ние
Площадь застройки	M ²	340.0
Строительный объем	MB	177


- 1. За относительную оттетку 0.900 принята абсолютная оттетка
- 2. Фундаменты расчитаны на грунты с нормитивными хирактеристиками: $Y=30^\circ$; $C^{N}=0.002$ мл в, E=45 мл в, $F=4.87/m^3$
- 3. Стены камеры фильтров-поглотителей с наружной стороны обназать гирячим битутом за 2 раза по огрунтовке.
- 4. При наличии грунтовых вод фундаменты и стены камеры фильтров-поглогителей подлежит перепроектированию
- 5. Обваловку камеры фильтров-поглотителей производить после установки плит покрытия.
- 6. Схема расчетных нагрузок на сооружение приведена в пояснительной записке.

Спецификация фильтров-поглотителей на камеру.


Марка фильтров- - поглотителей	Tun конструкций	Kon. wm.	Номер листа альбома	u
ΦΠ 1	Кругаме железобетон- ные	3	Альбом I	AC-5
ФП 1М	Круглые металлические	3	Альбом I	AC- B
Φ Π 2Κ	Прямоцгольные кирпичные	1	Альбом I	AC-7
ቀበ 25	Прямоугальные Ветонные	1	Яльбом <u>Т</u>	AC-7
ФП 3 К	Прямоугольные кирпичные	1	Альбом I	AC-8
ФП 35	решонные решонные	1	Альбом I	8-3A


			Привязан			
Uн8. №						
			TO 0901-9-23.8	7	Α	C
			ቀильтры - доглотители	Стадия	Sucm	Juemo
Н контр. Провер.	Роголитейн Рогенштей Власова		фильтры - поглотители для резербуароб чистой воды EMKOCMED от 250020 4600 M ³ В армант без клапанов	P	1	8
תעיו	Власова Закубанский Сорокин	Store	Обила данные	Punpok	омтуна г. Мася	водок оня ква

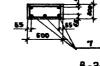


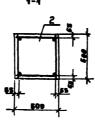
5 6 5	5	2 3 5 750 750	2009	
	(()(2)		

Спецификация элементов монолитной конструкции

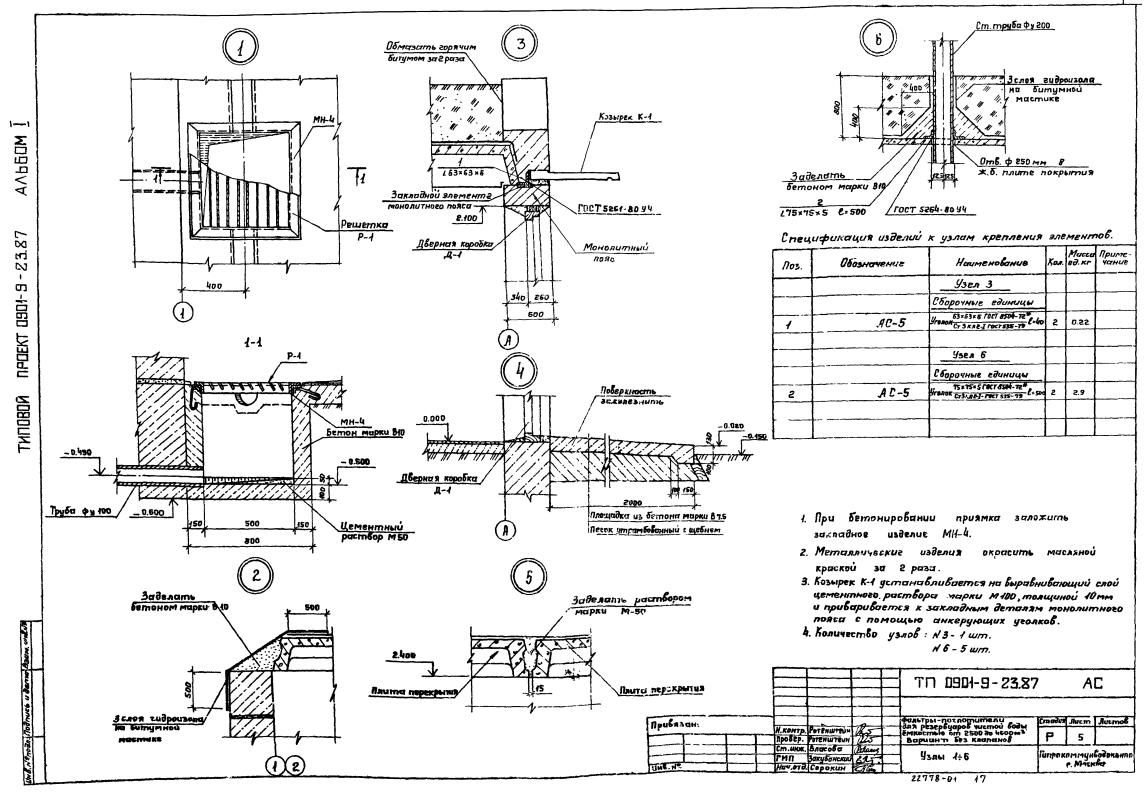
٠.	110	ци	Pukugun Selemenmes m			
формат	Зона	<i>No</i> 3.	Обозначение	Наименование	Kon.	Приме-
Ť	Ť			1-ПМ экоп инитипоном		
	П			Сборочные единицы		
	П			Пэдбили закупадные		
		1	1.400-6/16 Вып.1	M1-3-1	15	10,0 Kr
		2	K ж u-8	Пространственный каркас КП-4	12	41.3 Kr
Н				Детали		
		3	AC -4	A-19-10 FDCT 5784-82# 4 = 2220	8	4.37 KF
		4	AC - 4	A-11-1019CT 5781-82# @= 1480	8	0.94 Kr
		5	AC - 4	A-I- 6 FOCT 5181-82# £ = \$30	120	0.12 KF
		6	AC - 4	A-I-6 FOCT 5781-82* £= 800	8	0.48 KF
		7	AC - 4	A-#-10 roc7 \$781-82*l= 1100	3	0.74 Kr
		8		Труба 18 ×4.0 гостиото4-ть в=750	2	2.1 Kr
				Материалы		
				Бетон класса в 15	11.5	мз

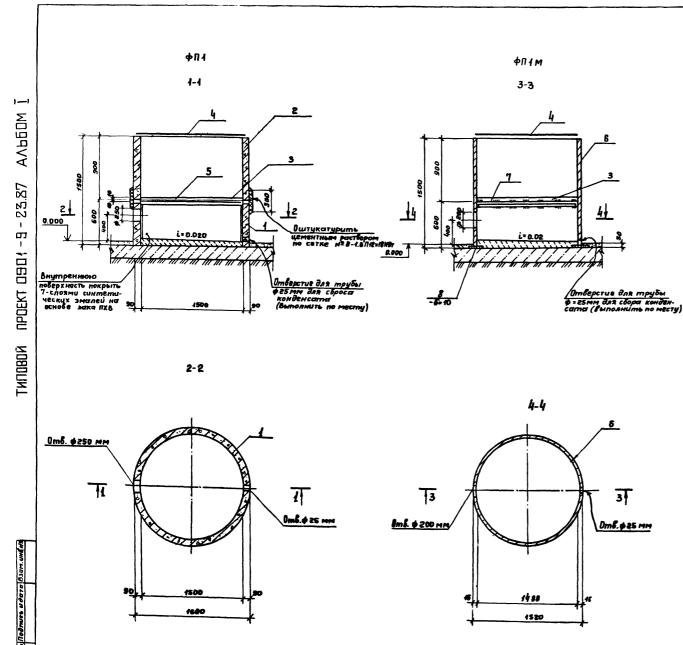
Ведомость деталей Поз Эскиз 1485


735 1215 265


Ведомость расхода стали на элемент, кг

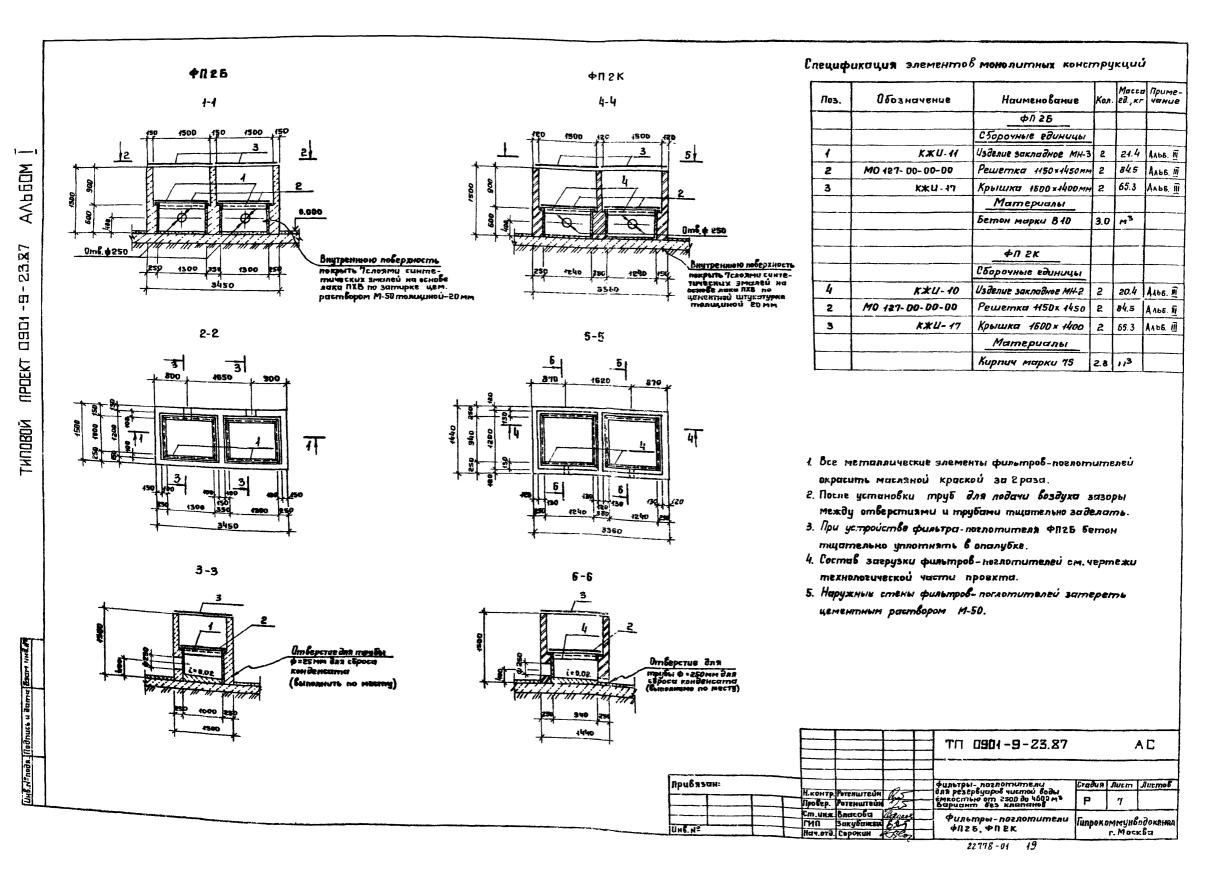
	U30E	RUR	арм	атурн	1HE	Uz	genus	30K	ладн ые				1
Марка	Apmo	Ірмитура класса		Арматур	Арматура класся		Прокат марки				8 бици		
элемента	A-	I	A-	更	Bcero	Am		Br	13 Kn 2			Beero	1
	FOCTS	784-824	FOET 5	181-82	1	FBCT 578	-82#	PDET 40	73-76	10CT	Γ	1	,
	\$ 5	Итего	ф 10	Итого	1	Ø14	Uraro	-10=2 5 0	Utoro	7py5a	Utoro	1	
MD-4	79.2	3.67	94.6	91.6	170.8	27.9	27.9	31.8	94.8	4.2	4.20	123,90	294.

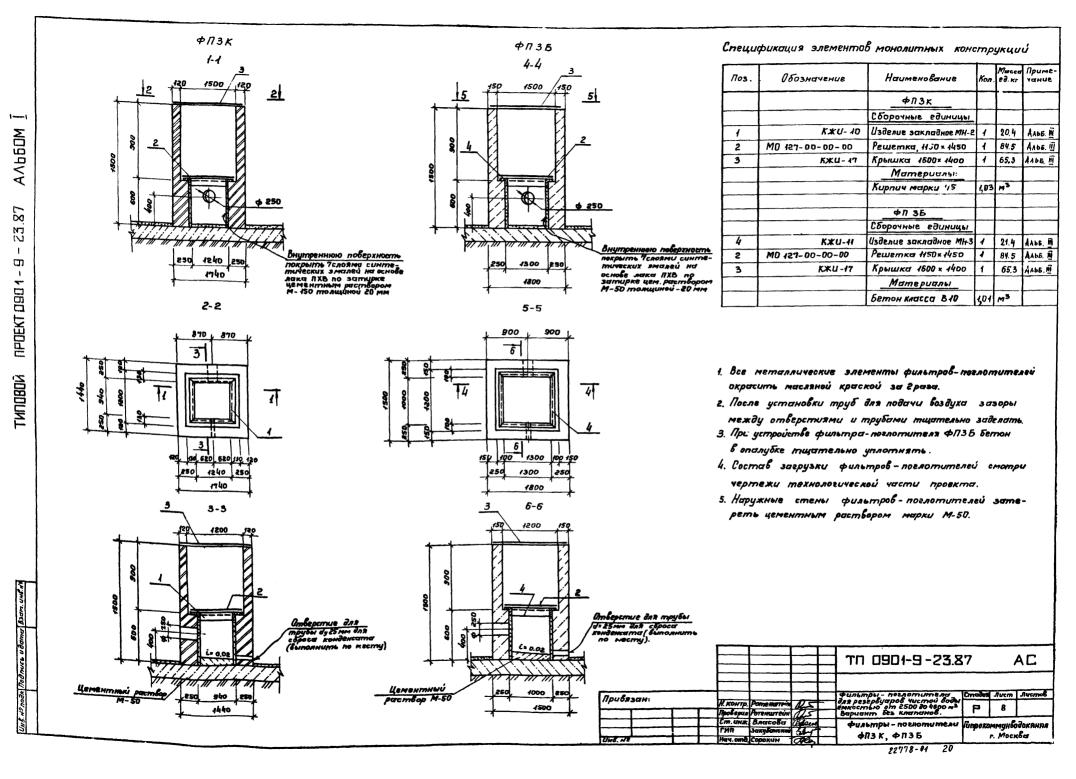

- 1. Сварку металлоконструкций производить электродами типа 9-42.
- 2. При устройстве монолитного пояси зиложить 2 трубы для пропуски электрокабелей согласно чертежам электротехнической части.


						TT 0901-9-23.87		Αl	3
При вяз ан:						Puntipu- pernomumenu	Стадия	Лист	Листов
		Н. контр Ротенштей Провер. Ротенштей		M (25)* 1		для резербуароб чистой боды вткостью от 2500 до 4600 м² Барчант без клапанов	P 4		
Uns. de		LHU	власова Закубанский Сорокин 4	6900		Монолитный пояс МП-1	funpox	оммун Моск	одокан а а
	······································	1	soponon -	(22779 -04 16			

3

Спецификация сборных железобетонных и металлических элементов


	металлическо	A SHEMENITOD			
Ros.	0 бозначение	Наименование	Kon.	Масса ед.,кг	Приме Зиния
		-η-4			
		Сборочные единицы			
1	K*U-18	Кольцо стеновог кц-15-5 д	1	660	
2	3.900 - 3 8.7.71	Тоже КЦ-15-9	1	1000	
3	M 0 124 - 00 - 00 - 00	Решетка \$1410 мм	1	73.5	
4	K*U-16	Крышка ф 1600 мм	1	54 .8	
5	K#U-15	Uзделие закладкое h#5	1	81.77	
	FOCT 3826-82	Cemea Nº8-1.5 112=18 H97	5.4	n.m.	
		ФП-1м	_		
		Сборочные единицы			
6		Труби 1520=16 ГОСТ 10704-76 l= 1501	1	890 .30	
7	K#U-12	Кольцо	1	19.20	
8	K#U- 43	Кольцо	1	74.7	
3	MD 124-00-00-00	Решетка ф 1410 мм	1	73.5	
4	K ≭U-46	Крышка ф 1600 мм	1	54. Ø	


- 1. Сварку металяических элементов ФП1М производить электродами типа 9-42, ГОСТ 9467-15.
- 2. Все металлические злементы фильтров-поглотительй вкрасить масляной краской за 2 разы.
- 3. В фильтре-поглатителе ФП4 кольца устанавливать на цементном растворе марки M-50.
- 4. После установки труб для подачи воздуха, зазоры между отверстиями и трубами лицательно заделать.
- 5. В фильтре-поглотителе ФП1М трубы для подачи воздуха обварить по всему периметру.
- Б. При установке ФП1 закладное изделие МН-5 запожить одновременно с установкой кольца КЦ-15-9.
- 7. Состав загрузки фильтров-тоглотителей см. чертежи технологической части проекта.
- 8. Ширина сетки типа н8-1.6П/2×18Н9Т принята 300 мм.

TO 0901-9-2387 AC

RPUS RESERVE:

RE

9-23.

TINOH - CREMO

Тарактеристика отопительно-вентиляционных систем.

area.	400	Haumehobahue	TUD	Γ	Be	HMY	חפת	nop			3nekrpod			
OGO3- HOYE- HUE CUC- TEMBI	CUC-	ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna ogobagoganna	YC/Md. HOBKU	TUN UCNONH NO Bapsibo Bdwyre		we.	TO. TO. THE MUR	3/	PH (SE)	וחו	TUD UCHOTHE BSPH803a- WUME	٨,	ח, סל/אונואי	Применамие
81	1	QUANT DE PARTOTUSE TO CASE DESCRISSIONS VOCTOCI BODE EMBOCTENO OT 2500M ^S DO 4500M ^S	l	8-44-10	2,5	1	лő	525	1 <u>80</u> 18,8	137.5	<i>4.8.8.56.8</i> 4	0,12	1375	

Ведомость чертежей основного комплекта ов

Sucr	Наименование	POWE TOWNE
1	Общие данные	
	BEHMUNALUS. MANH HO OTM. Q.000. Pospes +1.	
	CERMO CUCMEMBI 81.	

ведомость ссылочных и прилагаемых документов.

PROSHAVENUE	Наименование	ROUMEYONU
	CCGINOTHEIR BOKYMENMEL	
5.904-1	BETONU KPENNEHUA BOSONO-	
	රි ගලිංජිං	
1.494-32	JOHTHI U DEGAREKMOPHI BEHMUAR	
	GUONNOIR CUCTEM.	
5.904-38	Tudkue borobku k yenrpoberk-	
	HUM BENTUNGTOPOM.	
	TIPUNGIGEMBIE BOKYMENMEI.	
08H1	Orpuskaenue arteporum bxod-	
	Horo narpyška uenrpošesk-	
	HOPO BENTUNATOPO	
08.00	Спецификация оборудования	

Obuque ykasanu 9

Проект вентиляции разработан на основании техноэптического задания и архитектурно- строительных чертежей в соответствии с действующими нормами.

В камераж фильтров-поглатителей запроектирована вытяжная механическая вентиляция из расчета 5^{TU} кратного воздужообмена в час, вентиляция предусматривается периодического действия с включением ее за 10-15 минут перед вжодом обслуживающего персонала в помещение.

Воздужоводы окрашиваются масляной краской эа 1раз кнаружи.

Монтаж и испытание системы вентиляции праизводить в соответствии со СНи П 3.05.01-85 "Санитарно-тежническае оборудование эданий и сооружений,"

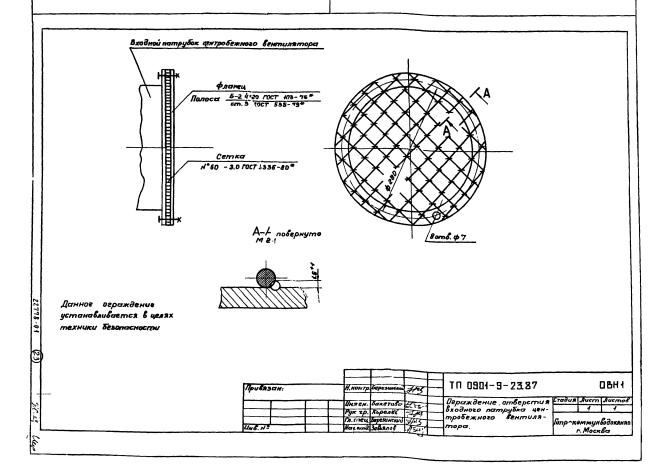
типовой проект разработам в соответствии с действичними мармами и правилами и предустатривает мерапри ятия, обеспечивающие вэрывную, вэрывопожарную и пожарную безапасность при эксплуатации здания.

Fridheid unskenep nisekta Someth 1	Pamanobal.
------------------------------------	------------

UHB. N						
			Tn 0901-9-23.87			ОВ
H. KONTP.	52p2aunckuð	1115				
			COUNTRAL POR	Cradus	AUCT	JUCTOB
VNote.	Bakero8a	Sar	COUNTRIPOI-NOTATOTUTERU ONA PESEPSYONES YUCTOU SOBLI EMKOCTEM OT 2500M3 80 4500M3	P	1	2
	Kapanes		מספראד לפש אחמחשאם .	<u></u>	<u></u>	L
	Se peaunchin	IN		Turnak		SoBakandi
	POMONOBO		טפינוניפ פטארי		.Mockl	
Haxord.	30869.008	1.3-4	chage form the		.77700	

TUNOBOÚ NPOEKT

0901-9-23.87


Фильтры —поглотители для резервуаров чистой воды емкостью от 2500 м² до 4600 м² Вариант вез клапанов

AABEOM I

Овцие виды нетиповых конструкций марки ОВН

			Привязан:	
<u> </u>		 -		
UHB. N	,			

C	держание	
Обозначение	Наименование	Примечания
TN 0901-9-23 87 08H4	1 7	าบล
		центро-
	бежного вентилят	opa -
		
	 	
	 	
	 	
	 	
		
	 	
	 	
	L	
	Привязан	
UNE. Nº		
Кионтр Березинский жу-	TN 0901- 9-25.87	ОВН
ижен. Бакетова СЗа		Стадия Лист Листо
yk.ep. Kapones Jay	Содержание	Fire commune 2
arond Sabernos H3		Гипрокоммунводокния г. Москва

