4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств флумиоксазина в семенах и масле подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.2548—09

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.2. МЕТОДЫ КОНТРОЛЯ, БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств флумиоксазина в семенах и масле подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.2548—09 ББК 51.21 О60

- Обо Определение остаточных количеств флумиоксазина в семенах и масле подсолнечника методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—14 с.
 - 1. Разработаны Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (Долженко В. И., Цибульская И. А., Журкович И. К., Луговкина Н. В., Ковров Н. Г.).
 - 2. Рекомендованы к утверждению Комиссисй по санитарноэпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 25 июня 2009 г. № 2).
 - 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 9 сентября 2009 г.
 - 4. Введены в действие с 1 декабря 2009 г.
 - 5. Введены впервые.

ББК 51.21

[©] Роспотребнадзор, 2009

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

Содержание

1. Вводная часть	4
1.1. Краткая характеристика препарата	
1.2. Краткая токсикологическая характеристика	
1.3. Область применения препарата	
2. Методика определения остаточных количеств флумиоксазина в семенах и масле подсолнечника методом ВЭЖХ	
2.1. Основные положения	
2.2. Реактивы и материалы	
2.3. Приборы и посуда	
2.4. Отбор и хранение проб	
2.5. Подготовка к определению	
2.6. Проведение определения	
3. Обработка результатов анализа	
4. Проверка приемлемости результатов параллельных определений	
5. Оформление результатов	
6. Контроль качества результатов измерений	
7. Требования техники безопасности.	
8. Требования к квалификации оператора	
9. Разработчики	

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

9 сентября 2009 г.

Дата введения: 1 декабря 2009 г

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций прометрина в атмосферном воздухе населенных мест методом капиллярной газожидкостной хроматографии

Методические указания МУК 4.1.2548—09

1. Вводная часть

1.1. Краткая характеристика препарата

Действующее вещество: флумиоксазин.

Название действующего вещества по номенклатуре ИЮПАК: *N*-(7-фтор-3,4-дигидро-3-оксо-4-проп-2-инил-2*H*-1,4-бензоксазин-6-ил)-пиклогекс-1-ен-1,2-дикарбоксамид.

Структурная формула:

Эмпирическая формула: С19Н15FN2О4.

Молекулярная масса: 354,3.

Химически чистое вещество: желтовато-коричневый порошок без запаха.

Температура плавления: 202—204 °C.

Давление пара при 22 °C: 0,32 мПа. $K_{ow}logP = 2,55$ (20 °C).

Растворимость в воде (25 °C) – 1,79 г/л, растворим в большинстве органических растворителей. Гидролиз: DT_{50} 4,2d (pH 5), 1d (pH 7), 0,01d (pH 9). Стабилен при хранении.

1.2. Краткая токсикологическая характеристика

 $ЛД_{50}$ для крыс и мышей > 5 000 ($ЛД_{50}$ дерм. > 2 000) мг/кг. СК₅₀ (96 ч, в мг/л): для ушастого окуня > 21, для радужной форели 2,3. Минимально раздражает глаза, не раздражает кожу кроликов.

Гигиенические нормативы: МДУ для подсолнечника не установлен.

1.3. Область применения препарата

Гербицид для борьбы с однолетними двудольными и некоторыми однолетними злаковыми сорными растениями на посевах подсолнечника, сои, кукурузы и других.

2. Методика определения остаточных количеств флумиоксазина в семенах и масле подсолнечника методом ВЭЖХ

2.1. Основные положения

2.1.1.Область применения и принцип метода. Настоящий документ устанавливает методику определения остаточных количеств флумиоксазина в семенах подсолнечника в диапазоне концентраций 0,05—0,5 мг/кг, в масле подсолнечника – 0,025—0,25 мг/кг.

Методика основана на определении флумиоксазина методом ВЭЖХ с использованием УФ детектора после его извлечения из образцов водно-ацетонитрильной смесью с последующей очисткой жидкостной экстракцией и на концентрирующих патронах.

2.1.2. Метрологические характеристики. При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной всроятности P=0.95 не превышает значений, приведенных в табл. 1, для соответствующих диапазонов концентраций.

Таблица 1

Метрологические параметры

Объект анализа	Диапазон определяе- мых концен- траций, мг/кг	Показатель точности (граница относительной погрешности), $\pm \delta$, % $P=0.95$	Стандарт- ное откло- нение по- вторяемос- ти, σ_r , %	Предел повторяе- мости, r, %	Предел воспроиз- водимости, <i>R</i> , %
Семена подсолнечника	0,050,1	50	4,2	11,8	12,9
	0,10,5	25	4,6	12,9	15,5
Масло подсол-	0,025—0,1	50	3,6	10,1	12,1
нечника	0,1—0,25	25	3,8	10,6	12,7

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентраций (n = 20) приведены в табл. 2.

Таблица 2 Полнота извлечения флумиоксазина, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0.95

Анализи- руемый объект	Предел обнаруже- ния, мг/кг	Диапазон определяемых концентраций, мг/кг	Среднее значение определе- ния, %	Стандарт- ное откло- нение, S, %	Доверитель- ный интервал среднего ре- зультата, ±, %
Семена подсол- нечника	0,05	0,05-0.5	86,5	5,2	4,7
Масло подсол- нечника	0,025	0,25-0,25	90,9	4,8	4,4

2.1.3. Избирательность метода определения флумиоксазина достигается условиями подготовки проб и хроматографического анализа.

2.2. Реактивы и материалы

Ацетон, осч	ТУ 6-09-351386
Ацетонитрил для ВЭЖХ, «В-200нм»,	
Сорт 5 или х.ч.	ТУ 6-09-3534—87
Бумажные фильтры «красная лента»	ТУ 6.091678—86
Вода бидистиллированная, деионизированная	ГОСТ 6709—79

Флумиоксазин, аналитический стандарт с содержанием д.в. 100 % (Сумитомо Кем. Со Лтд) Кислота ортофосфорная, хч. 0,005 М водный раствор ГОСТ 6552---80 н-Гексан, х.ч., свежеперегнанный ТУ 2631-003-05807999---98 Метанол, х.ч. ГОСТ 6995—77 ГОСТ 22300—76 Этилацетат, х.ч., с изм. 1, 2, 3 Подвижная фаза для ВЭЖХ: смесь ацетонитрила - 0,005 M H₃PO₄ (55: 45, по объему). Концентрирующие патроны, заполненные силикагелем 60 (0,040—0,063 mm), 0,5 г, Merck Концентрирующие патроны Диапак С16 (0,4 г),

БиоХимМак

2.3. Приборы и посуда

Жидкостный хроматограф «ACQUITY» фирмы «Waters» с быстросканирующим УФ детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки или «Breeze» фирмы «Waters» или аналогичный Аналитические колонки ACOUITY UPLC BEH C18 (100 × 2,1) мм, 1,7 мкм (Waters) и Spherisorb ODS2 (2.1×150) mm, 3 mkm (Waters) Баня ультразвуковая «Серьга» или аналогичная TY 3.836.008 Весы аналитические ВЛА-200или аналогичные ГОСТ 24104---2001 Воронка Бюхнера ΓOCT 0147 Мельница ножевая РМ -120 и лабораторная ТУ 1-01-0593-79 зерновая ЛМЗ Насос водоструйный ΓΟCT 10696---75 Центрифуга ОПн-8УХЛ4.2 ТУ 5.375-4261---76 Бидистиллятор Аллонж прямой с отводом для вакуума (для работы с концентрирующими патронами) Шприц медицинский с разъемом Льюера ΓOCT 22090 РН-метр универсальный ЭВ-74 ГОСТ 22261—76 Колбы плоскодонные на шлифах КШ500 29/32 ТС ΓΟCT 10384---72 Колбы круглодонные на шлифах КШ50 29/32 ТС ΓOCT 10384---72 Воронки лабораторные В-75-110 ΓΟCT 25 336—82

Цилиндры мерные на 100, 250 и 1 000 см³ Колбы мерные на 25, 50, 100 и 1 000 см³ Пипетки на 1, 2, 5, 10 см³ Микродозаторы Ленпипет переменного объем от 200 до 1 000 мм³ и от 1 до 5 см³

ΓΌCT 1774—74 ΓΌCT 1770—74 ΓΌCT 22292—74

2.4. Отбор и хранение проб

Отбор проб семян подсолнечника производится в соответствии с ГОСТ 10852—86. «Семена масличные. Правила приемки и методы отбора проб». Семена хранят при комнатной температуре в полотняных мешочках, перед анализом доводят до стандартной влажности и измельчают. Масло подсолнечника хранят в холодильнике при температуре 0—4 °С в герметично закрытой стеклянной таре в течение 6 мес.

2.5. Подготовка к определению

- 2.5.1. Подготовка и очистка реактивов и растворителей. Органические растворители при необходимости перед началом работы очищают, сущат и перегоняют в соответствии с типовыми методиками. Гексан встряхивают с небольшими порциями концентрированной серной кислоты до прекращения окрашивания свежей порции кислоты, затем промывают водой, 2 %-м раствором гидроксида натрия и снова водой, после чего его сушат над гидроксидом натрия и перегоняют. Ацетон перегоняют над перманганатом калия и поташом (на 1 дм³ ацетона 10 г КМпО4 и 2 г К2СО3). Ацетонитрил сушат над пентоксидом фосфора и перегоняют; отогнанный растворитель повторно перегоняют над углекислым калием. Этилацетат последовательно промывают 5 % водным раствором карбоната натрия и насыщенным раствором хлористого кальция, высушивают над безводным карбонатом калия и перегоняют над пентоксидом фосфора.
- 2.5.2. Кондиционирование колонки. Перед началом анализа аналитические колонки кондиционируют в потоке подвижной фазы $(0,1-0,2 \text{ см}^3/\text{мин})$ до стабилизации нулевой линии в течение 1 ч.

Приготовление растворов.

Для приготовления 0.005 M раствора ортофосфорной кислоты 0,5 г 98% ортофосфорной кислоты помещают в мерную колбу объемом 1 дм³, растворяют в бидистиллированной воде и доводят объем до метки.

Приготовление стандартного и градуировочных растворов:

Точную навеску флумиоксазина (50 мг) помещают в мерную колбу объемом 100 см³, растворяют в ацетонитриле и доводят до метки. (Стандартный раствор с концентрацией 0,5 мг/см³). Градуировочные растворы с концентрациями 0,25; 0,5; 0,75 и 1,0 мкг/см³ готовят методом по-

следовательного разбавления по объему, используя раствор подвижной фазы — смесь ацетонитрил — 0.005 М ортофосфорная кислота (55 : 45, по объему).

Стандартный раствор можно хранить в холодильнике в силанизированном или тефлоновом флаконе при температуре 0—4 °С в течение 1 месяца, градуировочные растворы используют в течение рабочего дня.

При изучении полноты извлечения флумиоксазина используют ацетонитрильные растворы вещества.

Построение градуировочного графика.

Для построения градуировочного графика (площадь пика — концентрация флумиоксазина в растворе) в хроматограф вводят по 10 мм³ градуировочных растворов (не менее 3-х параллельных измерений для каждой концентрации, не менее 4-х точек по диапазону измеряемых концентраций). Затем измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации флумиоксазина в градуировочном растворе.

Подготовка приборов и средств измерения

Установка и подготовка всех приборов и средств измерения проводится в соответствии с требованиями технической документации.

Подготовка концентрирующих патронов для очистки экстракта

- 2.5.6.1. Кондиционирование патрона, заполненного гексадецилсиликагелем Диапак С16 (0,4 г), осуществляют, пропуская через патрон последовательно по 1 см³ метанола и воды. Элюат отбрасывают.
- 2.5.6.2. Кондиционирование патрона для повторной очистки экстрактов семян и масла, заполненного Силикагелем 60 (0,5 г), осуществляют пропусканием 1 см³ смеси гексана и этилацетата в соотношении 75:25.

2.6. Проведение определения

2.6.1. Определение флумиоксазина в семенах подсолнечника. Навеску размолотых на лабораторной мельнице семян массой 10 г помещают в коническую колбу вместимостью 250 см³, прибавляют 10 см³ воды и 40 см³ ацетонитрила. Флумиоксазин экстрагируют на ультразвуковой бане в течение 10 мин. Суспензию фильтруют в вакууме через воронку Бюхнера с фильтром «красная лента». Экстракцию повторяют и объединенный экстракт дважды промывают в делительной воронке 20 см³ гексана. Раствор упаривают на ротационном испарителе при температуре бани не выше 40 °С до полного удаления ацетонитрила. Водный остаток пропускают через концентрирующий патрон Дианак С16, откондиционированный по п. 2.5.6.1. Патрон промывают 4 см³ воды. Фильтрат и

промывку отбрасывают. Флумиоксазин элюируют 3 см³ ацетона в чистую круглодонную колбу вместимостью 10 см³. Элюат упаривают досуха на ротационном испарителе (40 °C), сухой остаток растворяют в 2 см³ смеси гексан — этилацетат (75 : 25) и полученный раствор количественно вносят в подготовленный концентрирующий патрон, заполненный силикагелем 60. Патрон промывают 2 см³ смеси гексан — этилацетат (75 : 25). Фильтрат и промывку отбрасывают. Флумиоксазин элюируют 2 см³ этилацетата. Полученный раствор упаривают досуха на ротационном испарителе (40 °C), сухой остаток растворяют в 2 см³ подвижной фазы и 10 мм³ образца вводят в жидкостный хроматограф.

- 2.6.2. Определение флумиоксазина в масле подсолнечника. Навеску масла (20 г) помещают в коническую колбу вместимостью 250 см³, прибавляют 20 см³ воды и 80 см³ ацетонитрила и экстрагируют флумиоксазин на ультразвуковой бане в течение 15 мин. Колбу помещают на 30 мин в холодильник для более полного разделения слоев. Содержимое колбы осторожно переносят в делительную воронку, отделяют нижний слой масла и отбрасывают. Оставшийся в воронке водно-ацетонитрильный слой дважды промывают 20 см³ гексана и упаривают на ротационном испарителе (40 °C) до полного удаления ацетонитрила. Водный остаток подвергают очистке на концентрирующих патронах также, как это описано в п. 2.6.1. Сухой остаток растворяют в 2 см³ подвижной фазы и 10 мм³ образца вводят в жидкостный хроматограф.
- 2.6.3. Условия хроматографирования. Ультраэффективный жидкостный хроматограф «ACQUITY» фирмы Waters с быстросканирующим УФ детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки. Колонка ACQUITY UPLC BEH C18 ($100 \times 2,1$) мм, 1,7 мкм (Waters). Температура колонки 30 ± 1 °C. Подвижная фаза: ацетонитрил 0,005 М ортофосфорная кислота в соотношении 55:45. Скорость потока элюента: 0,2 см³/мин. Рабочая длина волны 290 нм. Объем вводимой пробы 10 мм³. Время удерживания флумиоксазина $3,9 \pm 0,1$ мин.

Альтернативные условия хроматографирования: жидкостный хроматограф «Вгеезе» фирмы Waters с УФ детектором и дегазатором. Рабочая длина волны 290 нм. Аналитическая колонка Spherisorb ODS2 (Waters) $150 \times 2,1$ мм, 3 мкм. Подвижная фаза ацетонитрил — 0,005 М ортофосфорная кислота в соотношении 50:50. Скорость потока элюента 0,2 см³/мин. Дозируемый объем 20 мм³.

3. Обработка результатов анализа

Содержание флумиоксазина в образцах семян и масла подсолнечника (X, мг/кr) вычисляют по формуле:

$$X = \frac{S_2 \times C \times V}{S_1 \times P}$$
, где

 S_{i} - площадь пика флумиоксазина в стандартном растворе, (мВ·сек);

 S_2 — площадь пика флумиоксазина в анализируемой пробе, (мВ сек);

V – объём пробы, подготовленной для хроматографического анализа, см 3 ;

Р - навеска анализируемого образца, г;

C - концентрация стандартного раствора флумиоксазина, мкг/см³.

Образцы, дающие пики большие, чем стандартный раствор флумиоксазина 1 мкг/см³, разбавляют подвижной фазой для ВЭЖХ.

4. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает придела повторяемости (1):

$$\frac{2 \times |X_1 - X_2| \times 100}{(X_1 + X_2)} \le r, \text{ где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости ($r = 2.8\sigma_{\rm r}$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

5. Оформление результатов

Результат анализа представляют в виде:

$$\overline{X}\pm\Delta$$
 мг/кг при вероятности $P=0,95$, где

 \overline{X} – среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \frac{\delta \times X}{100}$$
, где

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» (например: менее 0,05 мг/кг*, где *- 0,05 мг/кг — предел обнаружения флумиоксазина в семенах подсолнечника)

6. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

- 6.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 6.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок. Величина добавки С₀должна удовлетворять условию:

Величина добавки C_{λ} должна удовлетворять условию:

$$C_{\alpha} \geq \Delta_{\pi X} + \Delta_{\pi X'}$$
, где

 $\pm \Delta_{\pi,X} \left(\pm \Delta_{\pi,X'}\right)$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг, при этом:

$$\Delta_{\pi} = \pm 0,84\Delta$$
, где

 Δ – граница абсолютной погрещности, мг/кг;

$$\Delta = \frac{\delta \times X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_k = X' - X - C_{\lambda}$$
, где

X', X, C_{∂} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг.

Норматив контроля K рассчитывают по формуле:

$$K = \sqrt{\Delta_{\pi,X'}^2 + \Delta_{\pi,X}^2} \ .$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$\left|K_{k}\right| \leq K \tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру конгроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры к их устранению.

6.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \times |X_1 - X_2| \times 100}{(X_1 + X_2)} \le R, \, \text{где}$$
 (3)

 X_1, X_2 – результаты измерений в двух разных лабораториях, мг/кг; R – предел воспроизводимости (в соответствии с диапазоном концентраций, табл. 1), %.

7. Требования техники безопасности.

При проведении работы необходимо соблюдать требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами (ГОСТ 12.1005—88).

При выполнении измерений с использованием жидкостного хроматографа и работе с электроустановками соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкциями по эксплуатации приборов.

Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91.

8. Требования к квалификации оператора

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффективной жидкостной хроматографии, ознакомленный с руководством по эксплуатации жидкостного хроматографа, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 6.

9. Разработчики

Долженко В. И., Цибульская И. А., Журкович И. К., Луговкина Н. В., Ковров Н. Г.

Всероссийский научно-исследовательский институт защиты растений, Санкт-Петербург.

Определение остаточных количеств флумиоксазина в семенах и масле подсолнечника методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.2548—09

Технический редактор А. В. Терентьева

Подписано в печать 18.12.09

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1,0

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89