

Федеральное государственное учреждение «Всероссийский ордена "Знак Почета" научноисследовательский институт противопожарной обороны»

УТВЕРЖЛАЮ

Начальник ФГУ ВНИИПО МВД России генерал-майор внутренней службы

Н.П. Копылов

9 декабря 2000 г.

МЕТОДИКА ОЦЕНКИ ИСКРОБЕЗОПАСНОСТИ МАТЕРИАЛОВ

MOCKBA 2001

УДК 614.841.12

Методика оценки искробезопасности материалов. - М.: ВНИИПО, 2000. - 11 с.

Представлен метод оценки искробезопасности материалов, который заключается в определении зажигающей способности фрикционных искр, образующихся при быстрочередующихся ударах исследуемого образца о вращающийся диск, по отношению к газопаровоздушным смесям при температурах от 15 до 25 °C и давлении, равном атмосферному. Описаны экспериментальная установка и порядок проведения опытов по оценке искробезопасности материалов. Указаны область применения методики, а также требования безопасности при подготовке и проведении испытаний.

Методика предназначена для организаций, специализирующихся в области испытаний веществ и материалов на пожарную опасность.

Авторы-разработчики: д-р техн.наук, проф. Ю.Н. Шебеко, канд. техн. наук, ст. науч. сотр. В.Ю. Навценя, д-р техн. наук, ст. науч. сотр. С.Н. Копылов, канд. техн. наук А.К. Костюхин, Э.Д. Замышевский, Д.Ю. Шебеко, О.В. Васина.

Методика согласована с ГУГПС МВД России (письмо № 20/2.3/2529 от 05.07.2001).

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Настоящая методика предназначена для оценки искробезопасности твердых материалов при трении или соударении по отношению к газопаровоздушным смесям.
- 1.2. Метод применим при температурах от 15 до 25 °C и давлении, равном атмосферному.
- 1.3. Метод неприменим для определения зажигающей способности фрикционных искр по отношению к газопаровоздушным смесям, один или несколько компонентов которых:

склонны к термическому разложению, окислению или полимеризации при температуре и давлении испытаний;

могут образовывать смеси, чувствительные к детонации; способны вызвать в результате самопроизвольных химических реакций изменение состава смеси или ее горение до момента зажигания;

имеют температуру самовоспламенения ниже величины $(T_{\rm H}+50)$ °C (где $T_{\rm H}$ — температура испытания).

2. ОСНОВНОЕ ОБОРУДОВАНИЕ, СРЕДСТВА КОНТРОЛЯ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

Экспериментальная установка, принципиальная схема которой представлена на рис. 1, состоит из следующих основных частей:

- 1) реакционного сосуда, который представляет собой вертикально расположенный цилиндрический сосуд с внутренним диаметром (380 ± 5) мм и высотой (800 ± 5) мм, изготовленный из нержавеющей стали и рассчитанный на рабочее давление 1 МПа. В верхнем торце реакционный сосуд имеет круглое отверстие диаметром (160 ± 5) мм. Реакционный сосуд снабжен штуцерами для подсоединения газовых магистралей, ввода источника зажигания, датчика давления и манометра;
- 2) крышки, с помощью которой закрывают отверстие в верхней части реакционного сосуда. Крышка крепится на реакционном сосуде посредством 8 болтов. В средней части крышки сделано смотровое окно для визуального наблюдения за распространением пламени в реакционном сосуде;

- механизма установки исследуемого образца в экспериментальном стенде, состоящего из:
- а) держателя, с помощью которого исследуемый образец закрепляют в реакционном сосуде;
- б) прижимного механизма, посредством которого достигают контакта исследуемого образца с диском;
- 4) электродвигателя и передаточного механизма, обеспечивающих вращение диска;
- системы газоприготовления, которая служит для дозированной подачи в реакционный сосуд компонентов газопаровозлушной смеси и включает в себя:
- а) трубопроводы с вентилями. Условный диаметр прохода трубопроводов $(8,0\pm0,5)$ мм, вентилей не менее 4 мм;
- б) вакуумметр класса точности 0,4; манометр с диапазоном измерения до 2,5 МПа класса точности 0,4;
- в) вакуумный насос, обеспечивающий остаточное давление в реакционном сосуде не более 1,0 кПа;
- 6) источника зажигания, используемого для контрольного зажигания газовой смеси в случае, если не произошло ее воспламенение от фрикционных искр.

Источник зажигания представляет собой свечу с двумя электродами, на которых размещена нихромовая проволока диаметром (0.20 ± 0.05) мм и длиной (3 ± 1) мм. Проволоку располагают в верхней части реакционного сосуда и пережигают электрическим током при подаче напряжения (40 ± 5) В.

Входящий в экспериментальную установку динамометр (на рис. 1 не показан) служит для определения силы прижатия исследуемого образца к вращающемуся диску.

Вращающийся диск, конструкция которого представлена на рис. 2, имеет диаметр 100 мм и толщину 10 мм. В центре диска расположено отверстие диаметром 10 мм, предназначенное для закрепления диска в передаточном механизме. На диске вырезано четыре сегмента. Исследуемый образец (рис. 3), выполнен в виде пластины длиной 140 мм, шириной 25 мм, толщиной 7 мм. На пластине имеется два отверстия: одно - для закрепления пластины в экспериментальной установке, второе — для определения силы прижатия пластины к вращающемуся диску.

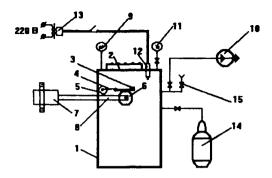


Рис. 1. Принципиальная схема установки для исследования искробезопасности материалов:

1—сосуд реакционный; 2—крышка; 3—исследуемый образец; 4—держатель; 5—прижимной механизм; 6—вращающийся диск; 7—электродвигатель; 8—передаточный механизм; 9—манометр; 10—вакуумметр; 12—совча; 13—понижающий трансформатор; 14—баллон с горючим газом; 15—вентиль

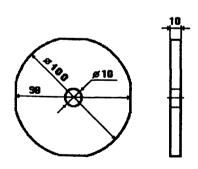


Рис. 2. Вращающийся диск

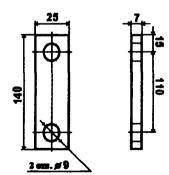


Рис. 3. Исследуемый образец

3. ПОРЯДОК ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

- 3.1. Исследуемый образец и вращающийся диск (далее по тексту — испытываемая пара) закрепляют в реакционном сосуде.
- 3.2. С помощью прижимной пружины регулируют силу прижатия исследуемого образца к диску.
- 3.3. Калибруют динамометр эталонными гирями массой от 0,1 до 1,0 кг.
- 3.4. Измеряют с помощью динамометра силу прижатия пластины к диску. В ходе экспериментов необходимо поддерживать силу прижатия пластины и диска в диапазоне 6—7 Н.
 - 3.5. Закрывают крышку реакционного сосуда.
- 3.6. Осуществляют герметизацию входа вала электродвигателя в реакционный сосуд путем затягивания уплотнительной шайбы.
- 3.7. Вакуумируют реакционный сосуд до остаточного давления 0,5 кПа.
- 3.8. По парциальным давлениям подают в реакционный сосуд компоненты горючей газовой смеси.
- 3.9. Ослабляют уплотнительную шайбу для того, чтобы вал электродвигателя мог вращаться свободно.
 - 3.10. Включают электродвигатель.
- 3.11. С помощью секундомера фиксируют время t_3 от момента включения электродвигателя до момента зажигания горючей газовой смеси. Погрешность измерения не более 0,1 с. Зажигание смеси определяют по манометру и визуально через смотровое окно. Если воспламенение смеси не происходит в течение 1 мин, регистрируют отсутствие зажигания.
 - 3.12. Выключают электродвигатель.
- 3.13. При отсутствии воспламенения газовой смеси осуществляют ее контрольное зажигание с помощью источника зажигания.
- 3.14. Условия и результаты проведения испытаний регистрируют в протоколе, форма которого приведена в приложении (обязательном).
- 3.15. Повторяют процедуру испытаний для каждого состава горючей газовой смеси не менее пяти раз.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Для каждого состава горючей газовой смеси определяют среднее время задержки зажигания $t_{cp,3}$ по формуле

$$t_{cp.3} = \sum_{i=1}^{m} t_{3_i} / m$$
,

где t_{3_i} — время от момента включения электродвигателя до момента зажигания горючей смеси в i-м испытании; m — число испытаний для данного состава горючей газовой смеси.

4.2. Определяют число соударений образцов в единицу времени N, c^{-1} , по формуле

$$N = nk$$
,

где n - число оборотов диска в единицу времени, c^{-1} ; k — число вырезанных сегментов на диске (k = 4).

4.3. Определяют вероятность зажигания *P* горючей газовой смеси данного состава фрикционными искрами испытываемой пары (исследуемого образца и вращающегося диска) по формуле

$$P=\frac{1}{t_{cn}N}.$$

4.4. Испытываемая пара считается искробезопасной по отношению к данной горючей газовой смеси, если максимальное значение P не превышает 10^{-5} для любого состава горючей газовой смеси. При этом испытываемая пара считается искробезопасной по отношению к газопаровоздушным, а также пылевоздушным смесям с минимальной энергией зажигания, большей, чем у использованной при проведении испытаний газопаровоздушной смеси.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. Экспериментальная установка размещается в помещении, удовлетворяющем требованиям нормативных документов для помещений класса Ф5 по функциональной пожарной опасности по СНиП 21-01-97° с учетом категории помещения по НПБ 105-95.

- 5.2. К обслуживанию установки допускаются лица, достигшие 18-летнего возраста, прошедшие медицинское освилетельствование, производственное обучение и имеющие допуск к обслуживанию сосудов под давлением.
- 5.3. Испытания проводят два человека. Рабочие места операторов должны удовлетворять требованиям электробезопасности по ГОСТ 12.1.019 и санитарно-гигиеническим требованиям по ГОСТ 12.1.005.

Средства защиты обслуживающего персонала должны соответствовать ГОСТ 12.4.011.

5.4. Запрещается заполнение установки газопаровоздушными смесями выше атмосферного давления.

6. НОРМАТИВНЫЕ ССЫЛКИ

В настоящей Методике использованы ссылки на следующие нормативные документы:

ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиени-

ческие требования к воздуху рабочей зоны. ГОСТ 12.1.019-79 ССБТ. Электробезопасность. Общие требования и номенклатура видов защиты. ГОСТ 12.4.011-89 ССБТ. Средства защиты работающих.

Общие требования и классификация.

НПБ 105-95 Определение категорий помещений и зданий по взрывопожарной и пожарной опасности.

СНиП 21-01-97* Пожарная безопасность зданий и сооружений.

Форма протокола экспериментов

протокол №

Материал неследуемого образца: Материал вращающегося диска:	_
Цель экспериментов: определение зажигающей способ- сти фрикционных искр, образующихся при трении прижими пластины о вращающийся диск, по отношению к горючей зопаровоздушной смеси. Экспериментальное оборудование: соответствует Методо оценки искробезопасности материалов (ФГУ ВНИИПО М России).	ra- ra-
Измерительные приборы:	
Секундомер марки, заводской №	
диапазон измерения от до с, цена деления с.	
Подготовка к экспериментам и проведение опытов: в со ветствии с Методикой оценки искробезопасности материа: (ФГУ ВНИИПО МВД России). Параметры окружающей среды при проведении эксперимент атмосферное давление, кПа	IOE
температура воздуха, °С	_
относительная влажность воздуха, %	
Матерналы: горючее:	_
окислитель:	_

Результаты экспериментов:

№ п/п		Состав газовой смеси		
	п/п	<i>t</i> ₃ , c	горючий газ, % (об.)	окислитель, % (об.)
1	2	3	4	5
				Воспламенение/отказ

Полученные результаты опытов относятся только к образцам, подвергнутым экспериментальной процедуре.

Исполнители:

ОГЛАВЛЕНИЕ

1. Область применения	3
2. Основное оборудование, средства контроля и вспомогательные устройства	3
3. Порядок проведения экспериментов	
4. Обработка результатов	7
5. Требования безопасности	7
6. Нормативные ссылки	8
ПРИЛОЖЕНИЕ. Форма протокола экспериментов	9

Редактор Г.В. Прокопенко
Технический редактор Л.А. Буланова
Ответственный за выпуск С.Н. Копылов

Подписано в печать 01.11.2001 г. Формат 60×84/16. Печать офестная. Усл. печ. л. 0,7. Уч.-изд. л. 0,5. Т. - 500 экз. Заказ № 125.

Типография ФГУ ВНИИПО МВД России. 143903, Московская обл., Балашихинский р-н, пос. ВНИИПО, д. 12