типовые детали и конструкции зданий и сооружений $\mathbf{Cepu}_{\mathcal{F}} \ K \eth \text{--} 01\text{--}55$

СБОРНЫЕ ЖЕЛЕЗОВЕТОННЫЕ КОЛОННЫ ПРОДОЛЬНЫХ И ТОРЦЕВЫХ ФАХВЕРКОВ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Выпуск I МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ типовые детали и конструкции зданий и сооружений

Серия КЭ-01-55

СБОРНЫЕ ЖЕЛЕЗОБЕТОННЫЕ КОЛОННЫ ПРОДОЛЬНЫХ И ТОРЦЕВЫХ ФАХВЕРКОВ ОДНОЭТАЖНЫХ ПРОМЫШЛЕННЫХ ЗДАНИЙ

Выпуск I МАТЕРИАЛЫ ДЛЯ ПРОЕКТИРОВАНИЯ

РАЗРАБОТАНЫ

Центральным научно-исследовательским и вроектно-экспериментальным
институтом промышленных зданий и сооружений /ЦНИИПРОМЗДАНИЙ/

совместно с ниижб госстроя ссср

утверждены и введены в действие с 1 июня 1964 г Государственным комитетом по делам строительства. СССР приказ N70 от 6 мая 1964

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ МОСКВА 1964

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ УПРАВЛЕНИЯ ТИПОВОГО ПРОЕКТИРОВАНИЯ ГОССТРОЯ СССР

Москва, Б-66, Спартаковская ул., 2а, корпус В Сдано в печать 26 7 1966 года Заказ № 74 Тираж/000 экз.

<u>Содержание</u>

	Стр
Пояснительная записка	3-4
	Auch
Расчетные схемы колонн и нагрузки	. 1
Ключи для падбара коланн торцевых и продольных фахверков	. 2
Сортамент и технико- экономические показатели на коланны продольного и тарцевага фахверков	. 3
Сборачные чертежи колонн продольных и тарцевых факверков	. 4
Схемы торцевых фахверков при стеновых панелях длиной 6 м	5
Схены торцевых фахверков при стеновых панелях длиной 12 м и скеты продальных фахверков	.6
Примеры крепления колонн тарцевого фахверка к конструкциям покрытия. Детали 1-4	7
Примеры крепления колонн продольного факверка к конструкциям покрытия. Дет алу 5-10	8
Расчетные нагрузки на фундаменты колонн торчебых фахберков.	9
Расчетные нагрузки на фундаменты колинн продольных факверков и реакции от ветра, передаваемые колоннами торцевых и продольных факверков на диск покрытия	10
Разбивка закладных элементов для крепления связей к колоннам продольного фатверка	11.5
Детали располажения закладных элементов в колоннах продольного фахверка для крепления вертикальных связей.	. 12

Пояснительная записка

І. Общая часть

1. В серии к3-01-55 даны рабочие чертежи сборных железобетонных калонн продольных и торцевых фахверков в однаэтажных пронзданиях.

Серия состоит из трех выпусков:

выпуск I- мотериалы для проектирования (расчетные нагрузки на колонны, нагрузки на фунданенты, схены продольных и горцевых фахверков и π . d.)

Выпуск Т- рабочие чертежи колонн.

Выпуск Ш-рабочие чертежи вертикальных связей по колоннам.

- 2. Колонны разработаны для зданий, высота и основные конструкции которых соответствуют унифицированным габаритным схенан и номенклатуре сборных железобетонных конструкций Заводского изготовления, утвержденным приказом Госстроя СССР № 390 от 20/№—61г. и унифицированным типовым секциям и пролетам (серия 04-00).
- 3. Колонны разработаны с учетом использования при изготовлении форм основных колонн овноэтажных пронзданий по сериян кэ-01-49 и кэ-01-52. Изготовление колонн сечением 400х 600 предуснотривается в индивидуальной опалубочной форме.
- 4. Колонны разрабатаны для однопролетных и нногопролетных зданий, при этон ширина зданий принята 144 или 150 нетров.

В продольном направлении длина тенпературного отсека принята равной 72м.

- 5 Колонны розработаны из условия приненения фунданентов с отнеткой верха 0,15 н, выпалняемых при нулевам цикле производства работ. Заглубление колонн ниже отнетки чистого пола
 принято: для прятоугольных колонн горцевого фахверка 1000 нн, из условия обеспечения зазора 100мн
 нежду верхон железобетонной части колонны и низон конструкции покрытия; для пряноугольных
 колонн продольного фахверка 900 нн; для двухветвевых колонн продольных и торуевых
 фахверков 1350 нн.
- 6. В случаях приненения колонн в зданиях с агрессивной средой и повышенной относительной влажностью должны быть соблюдены требования, а в необходиных случаях назначены дополнительные неры антикоррозийной ващиты, в соответствии с Указаниями по проектированию антикоррозийной ващиты строительных конструкций пронышленных зданий в производствах с агрессивными средани" СН 262-63.

II. Hazpysku u pacyet konctpykyuu

- 7. Расчет колонн произведен в соответствии с главой Сни П \overline{x} в.1- в2, Бетонные и железобетонные конструкции" и елавай Сни П \overline{x} я. \overline{x} б2, Нагрузки и воздействия" по схенам и нагрузкам,
 приведенным на листе 1 настоящего выпуска.
 - 8. Колонны рассчитаны на следующие нагрузки и воздействия:
 а) от воздействия ветра для I, II, II и II географических районов ветровой нагрузки;
 в) от веса панельных стен:

वेत्रत्र गवसकार्व्य वेत्रायमवर्य ६म - 250 Kr/H2, वेत्रत्र गवसकार्व्य वेत्रायमवर्य १२म - 290 Kr/H2. Магрузка от веса стён приложена на расстаянии 0,15 м от наружной грани колонны;
в) от температурных воздействий при перепаде температуры 40° без учета повората

фундан ентов.

9. Усилия в колоннах определены в предположении:

- а) полной заделки колонн на уровне верха фунданента и шарнирного соединения на ировне диска покрытия:
- б) шар нирного опирания на уровне верха фунданента и шарнирного соединения на уровне диска покрытия.
- 10. Усилия в элементах двухветвевых колонн определены с учетом возножности образования трещун в растямутой ветви (в этом случае вся горизонтальная сща в даннон поперечнон сечении колонны передается на сжатую ветвь, соответственно изменяется величина намента в перенычке).
 - 11. Расчетная длина колонн в плоскости и из плоскости раны принята равной 1.0М, еден - высота колонны.
 - 12. Приведенная гибкость двухветвевых колоны определялась по формуле: $\lambda_{RP} = \sqrt{\lambda^2 + \lambda^2 s}.$
- εθε λ ευδκοστό θσεεο στερικής καλομπώ ο γνετομ μεταλλυνεσκού οπούκυ; λ_b ευδκοστό οπθερωμού θεπόυ.
- 13. Колонны проверены на усилия, возникающие при изготовлений, транспартировке и монтаже, по двуй схенам, приведенным в сериях κ_3 -01-49 и κ_3 -01-52. Расчетная нагрузка от собственного веса в соответствии с n-49 СН и $N\overline{x}$ -8. \overline{x} -62 определена с учетом коэффициента динаничности κ =1,5, без учета коэффициента переерузки на собственный вес.

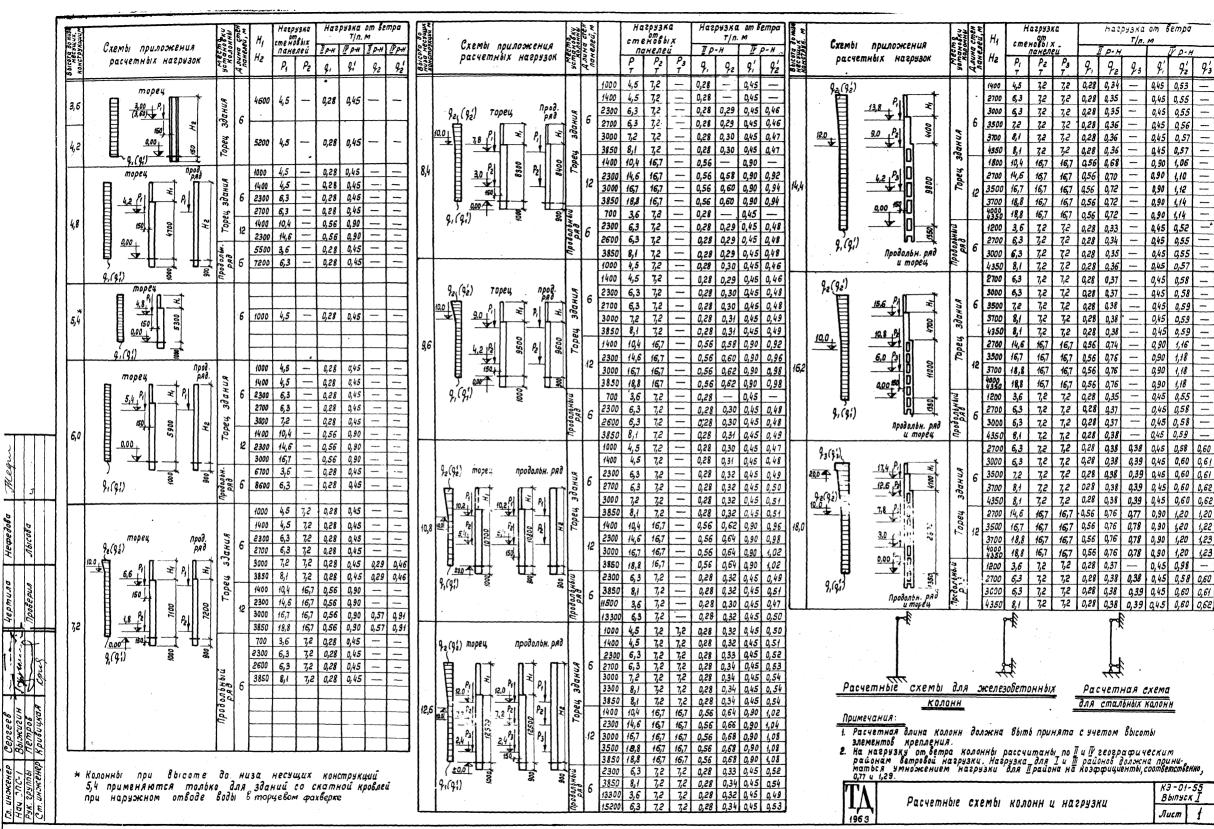
<u>ш. Конструктивное решение</u> колонн

14. Колонны, 30 исключениен колон н продольного фахдерка при высотах до низа несущих конструкций покрытия 4.8; 6,0; 10,8 у 12,6 н, запроектированы составными из железобетонной нижней части, выполняеной в опалувке основных колонн продольных рядов, принятых по сериян кэ-01-49 и кэ-01-52, и неталлической части высота железобетонной части всех составных колонн принята равной высоте до низа несущих конструкций покрытия с учетом необхадимых зазарав

Колонны продольного фахверка при высотах до низа несущих конструкуий покрытия 4,8 и 6,0 м ногут быть изготовлены в опалубке колонн для вескрановых зданий по серии кэ-01-49. При высотах 10,8 и 12,6 м сечение колонн прининается размерон 400×600 мм. Колонны ногут изготовляться в опалубке, инеющей размеры колонны наибольшей длины.

- 15. Колонны торцевых фахверков при высоте да низа несущих конструкций покрытия 3,6 ч 4,2 н. запроектированы неталлическини из прокатного профиля.
- 16. Наркировка колонн принята буквани ПФ (комонны фахверковые) и цифрами. При этом цельные железобетонные колонны инеют пасле букв ПФ одну цифру—порядковый номер колонны (например КФ-20), а составные колонны—две первая из которых обозначает монер нарки железобетонной части колонны, вторая—номер нарки неталлической части. Например: нарка КФ32 обозначает, что колонна состоит из железобетонной части нарки ПЗ и неталлической нарки ТЗ.

Металлические стойки фахверка инеют буквы КФМ и порядковый нонер (например КФМ-2).


<u> I</u>Ÿ. Указания по применению колонн.

17. Выбор колонн для конкретного зданоя производится при понощи ключа, понещенного на листе 2 настоящего выпуска.

В. Поскольку колонны разработаны в пред положении шарнирного опирания по верху, необходино в этон уровне обеспечить опирание колонн или на жесткий диск из плит покрытия (см. "Указания по приненению крупноровенерных плит в покрытиях пронышленных зданий" серия 1-237), или на специальные конструкции (горизонтальные фермы и т.п.). Примеры узлов при опирании колонн на жесткий диск покрытия приведены на листах 7 и в настоящего выпуска.

19. В случаях, когда при 12 ти метровых панелях ключи не предусмотривают колонн для $\overline{\mathbb{I}}$ и $\overline{\mathbb{I}}$ географических районов ветровой нагрязки расчетом проверена возможность установки колонн этих же высот для $\overline{\mathbb{I}}$ и $\overline{\mathbb{I}}$ географических районов с опиранием на специальные ветровые фермы по торуам зданий в уравне низа стропильных ферм или подкрановых балок.

20. В таблицах нагрузок на фунданенты приведены нагрузки, принятые при расчете колонн по схене с заделкой на уровне верха фунданента. В каждон конкретнон случае указанные нагрузки на фунданенты должны быть скорректированы с учетон фактических значений нагрузки от стени ветровой нагрузки.

K3-01-5.

BUNYEK

Jucm

92

0,53

0,56

0,57

0,57

1,18

0,55

0,58

0,59

0.58

0,62

1,22

0,45 0,55

0,45 0,55

0,45

0,45 0,57

0.45

0.90 1,06

0,90 1.10

0.90 1,12

0.90 1.14

0.90

0.45 0,52

0,45 0,55

0,45 0,55

0,45

0.45 0.58

0,45 0,58

0,45 0,59

0,45 0.59

0,45 0,59

0,90 1,16

0,90 1,18

0,90

0,90 1,18

0.45 0.58

0,45 0,60 0,61

0,45 0,60

0,45 0,60 0,62

0.45

0.90 1.20

0.90 1.20

0,90 1,20 1,23

0,45

0,45 0,58

0,60 0,61

Ключ для подбора колонн					
TITION USTA HUDUODO KOJOMH	MODILEBLIX	markentak/any	RUCATAN	מ לוווים איף פ	40.10-1
	TOP GC U DIX	φαχουρχου (Tipo	UBILUIUA	JUUNUU	10, DM).

12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 6 12 12		
Apula creno 6		
12 6 12 10 10 10 10 10 10 10	30	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	татная	NAOCKOR
Control The -01-08 The -	4. 12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PEPHO NO CEPUU CTOTO HOR PEPH	об Стальная ферн
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Craite de Craite en Craite de Craite	no and only 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTOCKO,, IL CTOCKO, B CTOCKO,, AT CTOCKO,	6° CEPUU 04-00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	КФ-8-5 КФ-8-14 КФ-8-10 КФ-8-1	17 8-75 145-8-7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6 RP-11-15 RP-11-
16,2 - ΚΦ-31-7 ΚΦ-33-8 ΚΦ-31-10 ΚΦ-31-10 ΚΦ-31-10 ΚΦ-31-11 ΚΦ-31-10 ΚΦ-33-14 ΚΦ-33-14 ΚΦ-31-10 ΚΦ-33-14 ΚΦ-31-10 ΚΦ-31-15 ΚΦ-31-		10 /0 /19-/3-/
180 - KΦ-31-15 KΦ-31		11-15-15 14-13-1
		10 15 14-19-1
#8 F9-1-9 F9-34-10 RP-34-17 RP-34-17 RP-34-15 KP-34-13 KP-34-13 KP-34-17 RP-34-15 KP-34-13 KP-34-17	KP-33-8 KP-33-16 KP-33-14 KP-33- KP-36-8 KP-36-16 KP-36-14 KP-36-16	77 NF-33
\$ 60 KP-5-2 KP-5-2 KM-1-4 KM-2-4 KM-1-3 KM-2-6 KM-2-7 KM-37-17 KM-37-17 KM-37-17 KM-37-17 KM-37-17 KM-37-17 KM-37-18 KM-27-17 KM-37-18 KM-27-18 KM-27-1		17 30-7
306 7.2 KP-7-2 KP-7-2 KP-7-2 KP-5-3 KP-5-6 KP-6-6 KP-6-6 KP-6-6 KP-6-9 K	ΚΦ-39-8 ΚΦ-39-16 ΚΦ-39-14 ΚΦ-39-	17 19-37-17 19-39-1
84 - FM-0 0 1 14-5-4 14-7-3 149-7-6 149-9-7 149-8-9 149-9-7 149-8-9 149-9-7 149-8-9 149-9-7 149-8-9 149-9-7 149-8-9 149-9-7 149-9-7 149-8-9 149-9-7 14		+= +=
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KΦ-9-5 KΦ-9-14 KΦ-9-11 KΦ-9-1	6 KP-9-15 KW-0-16
10.8 - ΚΦ-14-2 ΚΦ-15-4 ΚΦ-12-3 ΚΦ-12-6 ΚΦ-13-7 ΚΦ-13-	κφ.11-5 κφ.11-14 κφ.11-11 κφ.11-	1 7 3 70
5 7 12,6 - κφ-17-2 κφ-17-4 κφ-13-6 κφ-15-6 κφ-16-7 κφ-15-6 κφ-16-7 κφ		
14.4 - ΛΦ-32-3 ΛΦ-32-7 - ΚΦ-17-3 ΚΦ-18-7 ΚΦ-18-7 ΚΦ-18-7 ΚΦ-18-7 ΚΦ-18-10 ΚΦ-19-8 ΚΦ-19-11 ΚΦ-10-7 ΚΦ-16-12 ΚΦ		10 10 17 10 10
55 16,2 - KP-32-10 - KP-32-13 - KP-32-13 - KP-18-4 KP-18-9 KP-18-10 KP-18-1	кФ-19-5 кФ-19-14 кФ-19-11 кФ-19-	
18.0 - KP-35-10 KP-35-13 - KP-32-17 KB-32-15 KP-32-17 KB-32-17 KB-		1 10 10 10 10 10
\(\Lambda \pi \pi \righta \		
Клич для padfings have seed 7 кф-38-15 кф-38-13 кф-38-17		+= +=

Kлюч для подбора колонн продольных фахверков для I, II, III и IV районов ветровой нагрузки

nem npyky: imusiy	υπ 06лυ	Конструкц.		В	pcoma a	אטאט פי		KOHCOOU	COUCHOS BE		Haepysku	-
Noan KOHCT NOSPON	7un 1506.	покрытия и серия	4,8	5,0	7,2	8,4	9,6	10,8		P6//TUR, /		
	CKATHOR	l CEPUU	<i>ΚΦ-20</i>	KΦ-21				70,8	12,6	14,4*)	16,2*)	18,0*)
18		ПК-01-84 Ферма по		17-27	<i>ΚΦ-7-1</i>	KP-10-1	KФ-12-1	159-24	<i>አዋ-26</i>	<u>πφ-31-20</u> πφ-32-20		
-	NJOCKOR	'серии пп-01-02/62 Ферма по	K#-22	KΦ-23	KΦ-7-19	KP-10-19	KP-12-19	KP-26	KP-28	KΦ-31-23		
_	CKOTHQA	CEPUU NK-01-84		KP-21	KP-7-1	KP-10-1			74.50	KΦ-32-23 KΦ-31-20		
24	NIOCKOR	PEDMO NO CEDUU		K9-23	rm 7 (0		K90-12-1	<i>ΚΦ-24</i>	KP-26	KP-32-20	КФ-34a-20 КФ-35a-20	KΦ-37α-2
	-	ПП-01-02/62 Ферна по			KP-7-19	KΦ-10-19	KP-12-19	KΦ-26	KP-28	KP-31-23 KP-32-23	KP-340-23	19 -370-
	CROTHOR	CEPUU NK-01-84			KΦ-7-1	KP-10-1	KP-12-1	KP-24	KP-26	KP-31-20	KP-350-23	KP-380-
<i>30</i>		CTGJIS HOR DEDNO NO CEDUU NK-01-125			KΦ-7-21	KP-10-21			77.20	KP-32-20	KP-350-20	KP-370-2
	niockan	CTOJIBHOR			<u> </u>	***10-21	КФ-12-21	TP-25-21	KP-27-21	<u>КФ-31-22</u> КФ-32-22	KP-340-22	KP-370-
	L				159-7-24	KP-10-24		KP-25-24	KP-27-24	KΦ-31-25	KP-340-25	K90-370-
	אטרשטער אינו וווי ב	теле указа Фрайонов	ha Hapko Remonko	KOJOHHO	o don I u I	T, 8 3 HOME	Hamese-		2727	KP-32-25		

*) в числителе указана нарка колонны для I и I, в знаненателедля 🔟 и 🔯 районов ветровой нагрузки.

Ключ для подбора колонн торцевых фахверков для І.П.П.П.Р-08 ветровой нагрузки (при высотах зданий 3,6; 4,2 м)

Высота	Konempyk	YUR nokpum	ия и серия
वेठ मण्डल	Banka no	cepuu nk -0	1- 116
месущих констр. м.	វគ្គជាមហា វគ្គសាខាកា	СРЕВНИЙ ПРОЛЕГП 3× ПРОЛЕТНОЕО ШИ ОТОРОЙ ПРОЛЕТ 5™ ПРОЛЕТНОЮ ЗОВИМ	Cpedhuú npaiet 5-4 npaiethoeo 8dahus
3,6	<i>κ</i> ΦΗ-1	<i>κ</i> φ <i>H</i> − 2	KP-1-2
4,2	<i>ΓPH</i> −2	KP-1-2	<i>к</i> φ-3-2

PPUMBYOHUR:

- 1. Нестоположение стоек "Я" и "б" указано на листах 5 и в.
- 2. Для зданий высотой 3,8 и 4,2 н (по отнетке верха крайней колонны) со скатной кровлей для средних пролетов следует прининать железоветонные колонны в соответствии са схенани, приведенными на листе 5.
- 3. Серию стальных ферм для плоской кровли, а так же нонера выпусков серий конструкций прининать в соответствии с унифицированными типовыми секциями (серия 04-00, альбон 1).

к3-01-55 Выпуск I \mathcal{S}_{MR} подбора колонн торцевых и продальных фахверков \mathcal{S}_{MC}

KP-35-7 KP-35-10

KP-35-13

KP-35-15

K90-35-17

K90-350-20

Mapka

N. 6.

части

K 35d

к36

K37

K37a

K38

K380

Mapka

KOJOHHW

NP-35a-22

KP-350-23

KΦ-35α-25

KΦ-36-8

KP-36-11

KP-36-14

KP-35-16

KP-36-17

K9-37-7

TP-37-10

x 9-37-13

KP-37-15

KP-37-17

KP-370-20

KP-370-22

KP-370-23

KP-370-25

19-38-7

KP-38-10

KP-38-13

MP-38-16

KP-38-17

₹Ф-38α-20

KP-380-22

KP-380-23

KP-380-25

KP-39-8

KP-39-11

KP-39-14

KP-39-15

KP-39-17

Hapka

YETOJ.

HACML

722

T23

T 25

T8

711

T14

716

717

77

710

T13

715

717

120

722

723

T25

77

710

713

715

717

T20

722

T23

725

78

711

714

115

717

Сортамент колонн торуевого и продольного фахверк

							mm mopgeo		
Mapka	Mapka	Hapka	Mapka	Hapka	Mapka		Hapka	Mapka M. S.	Hapka
КОЛОННЫ	M.S.	HEMAJ. 40CMU	колонны	ж.б. части	метал. Части		KONOHHU	ж. и. Части	нетал. части
KP-1-2		72	RP-10-6		76		KP-15-14	:	714
KP-1-3		73	KP-10-9		79	1	KP-15-15	K15	715
KΦ-1-4 ·	R.I	74	KP-10-19	K10	T19	- 1	KP-15-16		716
1921-6	1	76	KP-10-21		721				
KP-2-4		TU	KP-10-24		724	Ī	KP-16-4		74
<i>አዋ-2-6</i>	K2	76	KP-11-4		74		KP-16-5		<i>T5</i>
KP-3-2	K3	72	KP-11-5		75		KP-16-7		<i>7</i> 7
19-5-2		72	KP-11-7	K11	77	١	KP-16-9		T9
19-5-3		73	KP-11-9		79		KP-16-10		T10
KP-5-4	N.5	74	KP-11-10		710		KP-16-11	X 16	711
RP-5-6		76	RP-11-11		711	-	KP-16-12	**	T12
κφ-5-9		79	59-11-12		T12	ĺ	KP-16-14		T14
KP-5-4		74	KP-11-14		714		KP-18-15		T15
KP-5-6	16	76	KP-11-15		715		KP-16-16		T16
KP-6-9		79	x9-11-16		T16				
rp-7-1		71	KP-12-1		TI		KP-17-2		72
<i>κΦ-7-2</i>].	72	KP-12-2	K12	72		KP-17-3		73
<i>πP</i> -7-3		73	KP-12-3		73		KP-17-4		74
KP-7-4		74	RP-12-4		74		KP-17-7	K17	77
KP-7-6	K7	76	KP-12-6		7-6		KP-17-10	•	T10
<i>κΦ-7-9</i>		79	KP-12-9		79		KP-17-12		712
KP-7-19		719	ΚΦ-12-19		719				
KP-7-81		721	KP-12-21		T 21		KP-18-4		<i>T4</i>
KΦ-7-24	ļ	T24	KP-12-24		T24		KP-18-5		75
<i>κφ-8-4</i>	1	74	KP-13-4		T4		KP-18-7	<u> </u>	77
<i>κΦ-8-5</i>	ļ ·	75	KP-13-5		T5		KP-18-8		78
<i>κφ-8-6</i>	K8	76	KP-13-6	K13	76		KP-18-10	K18	710
KP-8-7	4	77	KP-13-7		7.7.		KP-18-12		712
<i>κφ-8-9</i>	4	19	NP-13-9		79		KP-18-15		715
KP-8-10	-	T10	KP-13-10		710			1	
RP-8-12	4	712	KP-13-11		711				
KP-8-14	1	714	KP-13-12		712		KP 19-5		75
KP-8-15	4	T15	KP-13-14		714	1	<i>ΚΦ-19-8</i>	1	78
KP-8-16	 	715	KP-13-15		715	Ì	κΦ-19-11		711
KP-9-4	4 '	74	KP-13-16		716		KP-19-14	K19	714
κφ-9-5	-	75	xφ-14-2		72		KP-19-15		715
KP-9-7	<i>K9</i>	77	<i>πφ-14-3</i>		73		KΦ-19-16	į .	716
KP-9-9	4	79	KP-14-4	K14	74	1		1	<u> </u>
KP-9-10	-	710	KΦ-14-8		76				
KP-9-11 KP-9-12	- I	T11 T12	<i>κΦ-14-9</i>		79		κφ 20	<i>πΦ-20</i>	
KP-9-14	†	714	KP-15-4		74		κφ-21	κφ.21	
κφ-9-15	1	715	<i>ΚΦ-15-5</i>		75		кФ-22	<i>ΚΦ-22</i>	L
KP-9-16	1	T15	<i>κφ-15-6</i>	l	76		KP-23	KP-23	$\vdash = \downarrow$
KP-10-1	1	71	19-15-7	K15	77		кФ-24	KP-24	
XP-10-2-	1	72	19-15-9		79		κφ-25-21	KE5	721
KP-10-3	K10	73	KP-15-10		710		КФ-25-24		724
KP-10-4	1	74	KP-15-12	<u> </u>	T12	ı	κΦ-26	XP-26	لـــــا

ο φαχθερκο	8	•	
		4/ 6	
Марка	Mapka κ.δ.	Марка метал,	
<i>КОЛОННЫ</i>	4 d c m u		
KP-27-21	- 0-	T21	Ī
KΦ-27-24	K 27	T24	
KP-28.	<i>κ</i> P-28		
KP-31-3		T8	
KP-31-7		77	
KP-31-10		710	
KP-31-13	1.0	713	
KP-31-15		715	
KP-31-17	K31	717	
KP-31-18		T 18	
KP-31-20		720	
KP-81-22		T22	
KP-31-23		723	
KP-31-25		725	
<i>КФ-32-3</i>		73	
KP-32-7		77	
KP-32-10		T10	
KP-32-13		713	
KP-32-15		715	
K90-32-17	x 32	717	
KP -32-18		718	
KP-32-20		720	L
KP-32-22		722	L
K90-32-23		723	
KΦ-32-25		725	
кФ-33-8		78	
KP-33-11		7/1	-
KP-33-14	K33	714	L
KP-33-16		715	
KP-33-17		717	-
KP-34-7		77	-
KP-34-10		710	
KP-34-13	K34	713	-
KP-34-15	,,,,,	T15	-
KP-34-17	1	717	
KP-34a-20	 	720	
F90-340-22	1	722	
KP-340-23	K 34d	7 23	
KP-340-25	1	725	
KP-35-7		77	
KO.25-10	1	1 740	l

T10

713

715

T17

720

K35

K85 d

Технико-экононические показатели на ж.б. часть к торчевого и продольного фахверков

40 10 J	Технико-эконамические показатель
KOJOHN	на нетамическую часть колонн
	тарчевого и прадольн.фахверков

Hapka

Pacxod

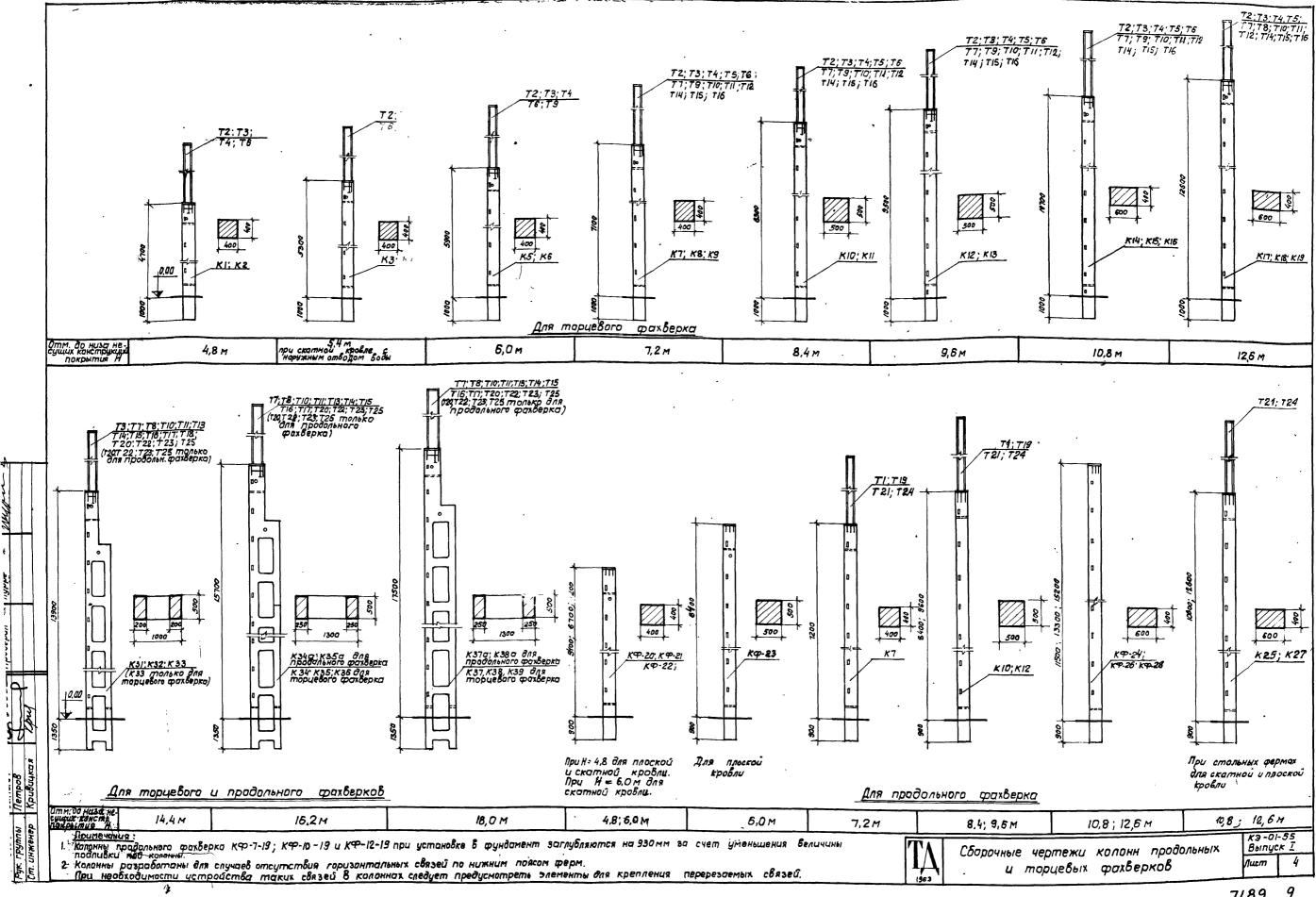
cmasu,

Расход материалов Mapka x. 6. Bec Mapka Бетон н 3 Сталь бетоно части колонн K/ 123 KI 2,3 0,91 K2 2.3 0,91 151 148 K3 2,5 1,01 K5 2,8 200 1,10 171 K6 2,8 1,10 209 3,3 1,30 224 paxbepka *K*7 K8 3,3 1,30 283 *K9* 3,3 1,30 283 300 K 10 5,8 200 2,32 230 5,8 2,32 337 K11 300 KIE 6,6 200 2,52 253 6,6 300 K13 2,62 389 300 2.81 K14 7.0 284 K15 7,0 2,81 341 400 K 16 7,0 2,81 477 K17 8,1 3,24 374 300 8.1 465 K18 3,24 K19 8,1 691 400 3,24 KP-20 2,5 1,01 127 3,0 155 KP-21 1,22 KP-22 5,2 2,08 174 5,8 2,32 208 KP-23 7,5 2,98 KP-24 304 K 25 7,0 2,80 348 KP-26 8,5 421 3,41 K 27 8,1 3,24 561 KP-28 9.7 3,86 708 X31 9,4 300 3,81 771 K32 9,4 3,81 913 K 33 9,4 3,81 1284 K34, K340 5,73 14,3 919 K35, K350 14,3 5,73 1136 x36 14,3 5,73 1333 K37, K379 6,41 16,0 960 K38, K380 16,0 6,41 1369

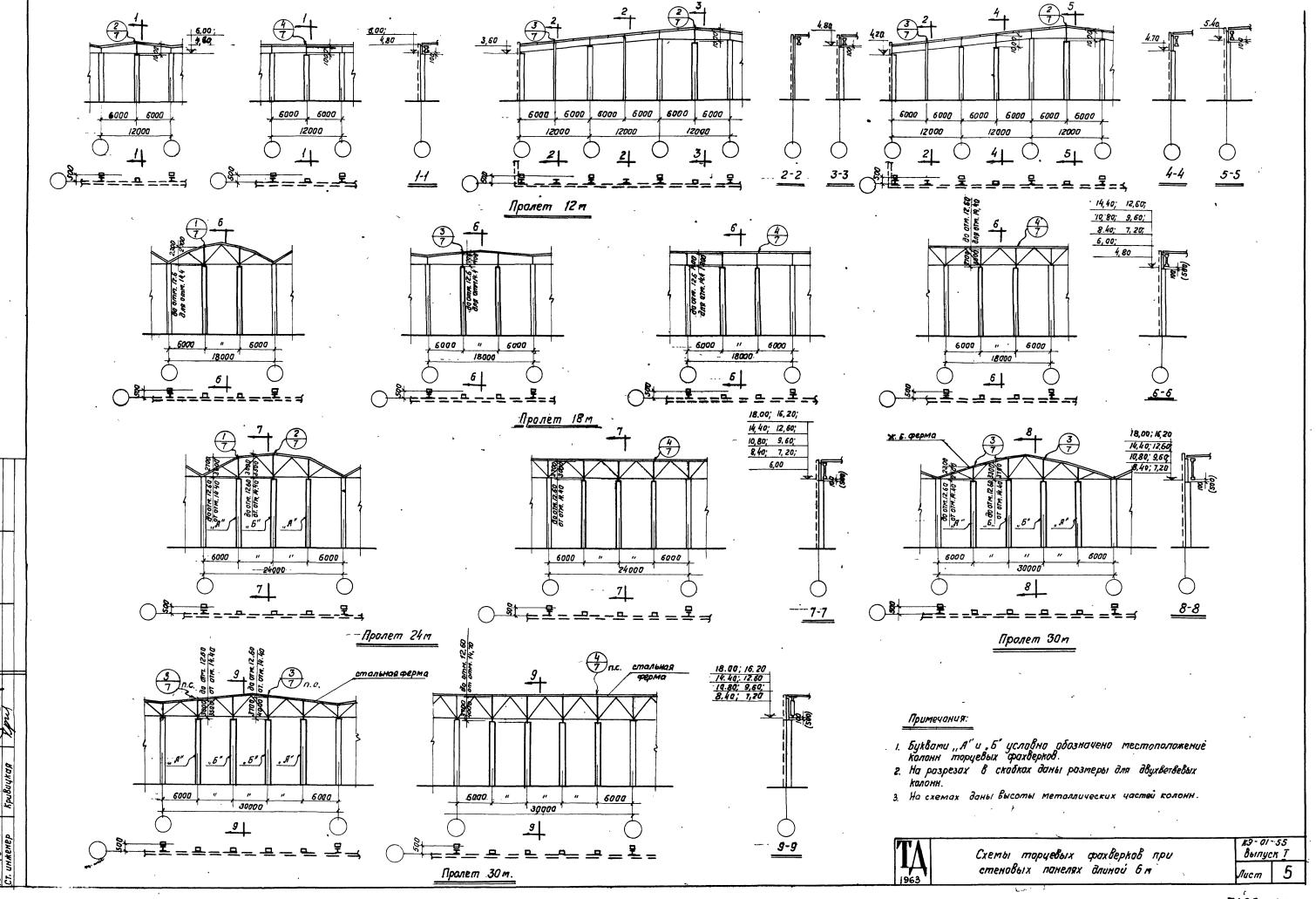
	_	cmasu,
	cmoūku	KT
	·71	36
	72	49
	73	66
	74	106
	75	159
	76	123
	77	185
Ĩ	 78	305
7	79	136
7	710	204
7	T11	338
_	712	228
	T 13	237
7	714	393
٦	715	250
٦	716	416
٦	717	448
	718	125
	T19	184
٦	T20	97
	T21	181
1	T22	220
	723	225
	T24	305
1	125	344
1	Неталь	uveckue
	· KOJ	DHHP
╛	KPM-1	152
	кФН-2	193
1		
1		

Примечание

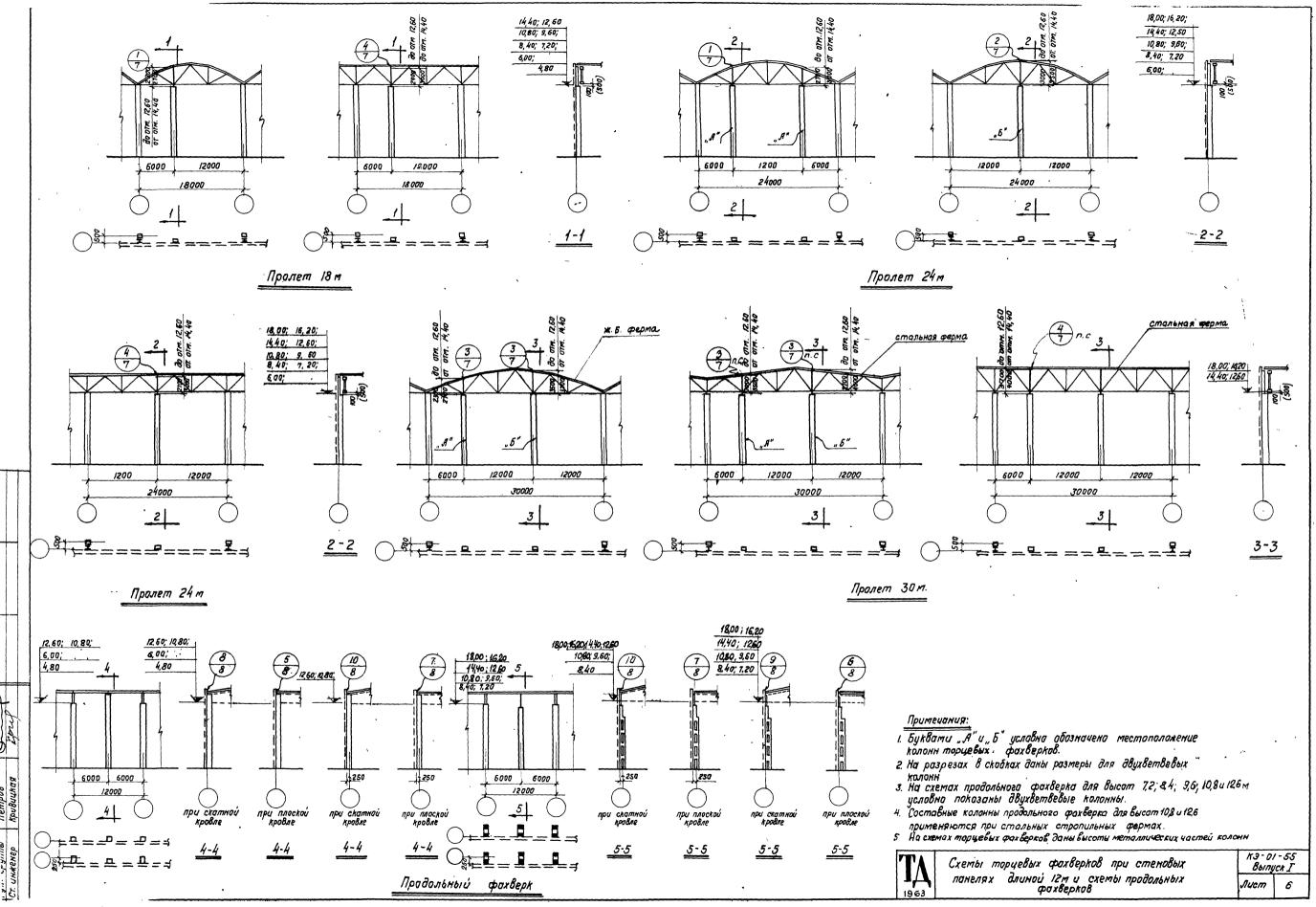
K39

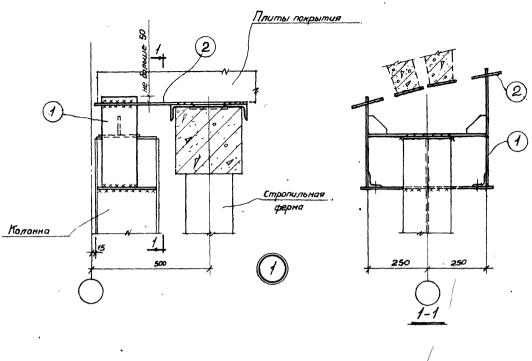

16,0

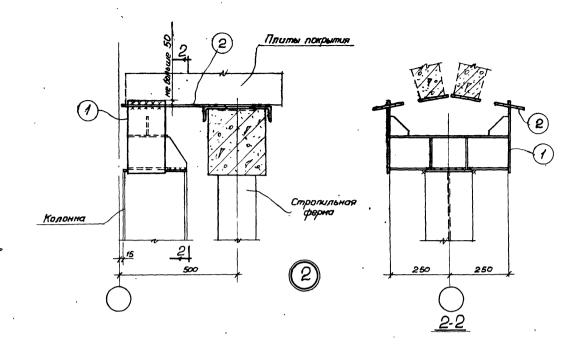
Марки железобетонной части колони номеров 4, 29 и 30 не использованы

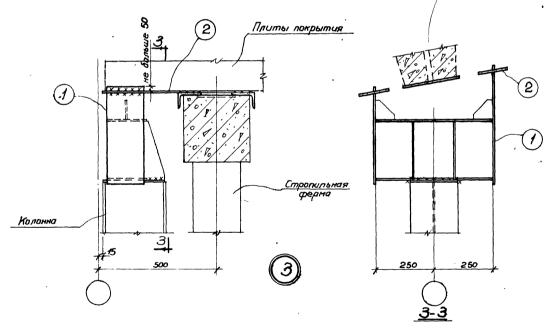

Сортамент и технико-экономические показатели на колонны торчевого и προθοπьнοεο φαχδερκόδ

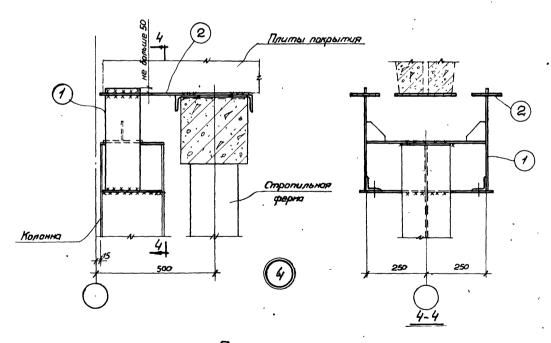
6,41


1520

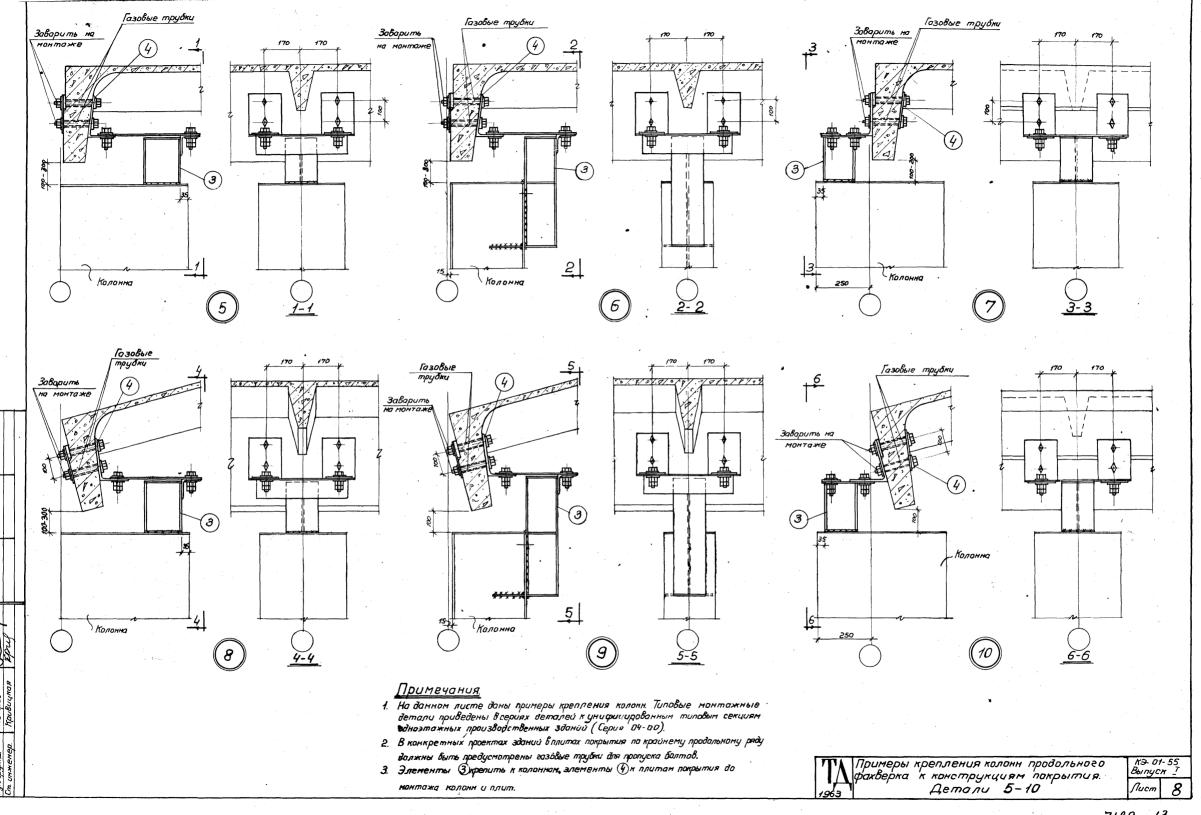








1. На даннам листе даны примеры крепления калонн. Типавые монтажные детали приведены в сериях деталей к унифицированным типавым секциям адмоэтажных производственных эданий (Серия ОЧ-00).


2. Элементы () крепить к колоннам до их монтажа; элементы (Серия ОЧ-00).

3. Крепить да установки плит покрытия.

3. Крепление элементов (1) для кождой детали может окуществляться непасредственно к колонне или через столик, в забисимости от зазоров между берхан колонны и плитой покрытия.

Примеры крепления колонн торцевого фохверка к конструкция м покрытия Детали 1-4

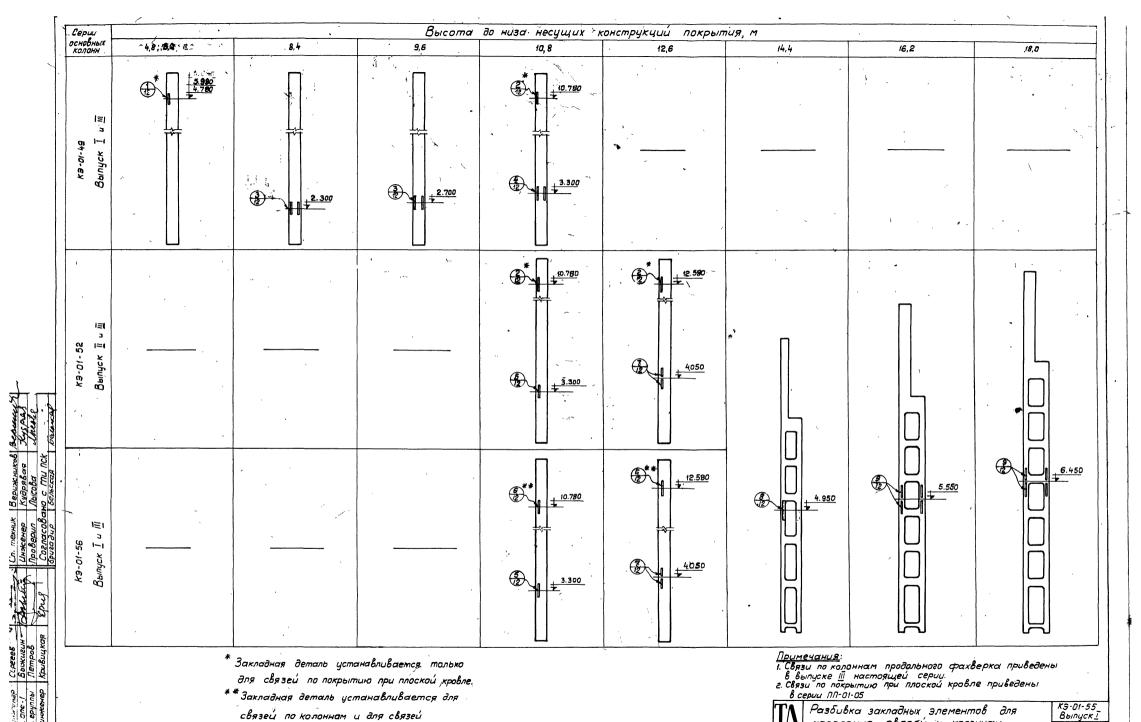
K9-01-55 Bunyar I Sucm

	cm	OUKU	PAREHLE	田		<u>]</u> .				旦	A E	MOR U	ПЛОСКОВ			A 5		-	-		<u> </u>				
	Тип кри Стено	оли Вых пан		CROTHOR U INDOCHOR 6		LKOMHO	6		12	2								R U M					~		
	nonp		UŮ	Fanky no Cepy AM NI-01-01 NK-91-06 JIR-01-118	серии	Балки па серии ПП-01-01	фернало. Серии ЛК-01-76 (ЛК-01-84)	Ферна по сериц пп-от-ог/62	фермы по серии ли-01-84	Фермы по серии пп-01-02/62	Фермы по ля- 01-76 (1 фермы лосе (по строк	CEPUCT TH-01-04) DUUNT-01-02 F)	Фермы по серии лк-01-84	Ферн ы по серии пп-01-02/62	Depris no NK-01-76(n Depris n NT-01-0	"cepau." n- b1- 84) u no cepau n2 /62	Стальна. по серии Ферна пр Серии В К	8 Фермы ЛК-01-125; 7 альбану 1 - 2065	ферми серии Ли	no r- 01- 84	CMQALHO NO CEPUU DEDMO A CEPUU DA	l e Deprid DK-dy-125; Dansdory 1 -50 (NO K = 5)			N
T	C KOPO	VIDEDY3MQ	Xene	0,7	_						<i></i>	<u>5</u>	Я, Б		8	5	R	6	A	5	R	5	Yna	ца	1111
	3,6	от ветра	Q,	0,8				=	=		=	-	<u> </u>		11.	-		=	= :			=		•	T
l	,-	Темпер. Воздейст	MTH QT	<u> </u>	=						 	 = -	=		=			=				=-			1=
Ī		Hazayana or Berpa		1,0		=			· -		-			=		=	-			-	-	-			
	4,2	Termepar Basdeict		<i>0,9</i>			 -	= _	<u> </u>					=	=-	-			=	=	-				
L		 	4,	_			=		-			-			-	=		-							
l		Нагрузна от ветра	MTM QT	1,7	1,7	1,8	3,1	1,5	4,7 2,7						=	=						=		Ą	17 W 7 W
l	4,8	Темперит. Ваздейст	MTM QT	1,9	1,9	2,0	9,5	9,5	41				=				=	=	==	=		=-		Cxem	а нагл
H		Ногрузна ат ветра	4/	1,7	0,3 +-	93	Q/ ₩-	0,1	0,2 :	7	3	. ८ <u>४ ००</u> ५५ ४४	Y ;+-		=						<u>-</u>			HOI	а наг _р
	5,4	от ветра Тепперат	QT MIM	12	रक्र-	1430	<u></u>) 			67.	***	<u>), ⊕</u> Cj. ∰.		=	=				=	=	-		- Hu C	שיייייייייי
l	-,,,	воздейст		3,8 Q6	+**	35-00 65-00			710		1 44 4 4	75	-4-	-	=	 	<u>-</u>	<u> </u>				 			
Ī		Ногоцано		1,9	1,9	2,4	3,8	4,2	6,0		4,2	5,2	7,8		_			=		=					
l	6,0	от ветра Тенперат	 	1,3 3,6	1,3 3,6	2./	0,7	0,5	3,1		0,6	4,9	3,4 0,6		 _	 = -	 	 	 -	=	 	-			
L	····	baseever.	Q7	9,5	0,5	0,3	0,1	91	41		0,1	90	0,1		_		=	=							
		Ногрузио от ветра	MTM BT	1	2,4 1,5	2,7	3.7	1,8	3,4		1,8	1,9	3,8		3,7	10	1,9	<u> 6</u>	3.4	3,9	3,8	8,9 3,9		. 1	ı l ı.
l	7,2	Температ	MTM		4,0	2,9	1,3	41	2,3		1,1	0,7	1,6		1,3	8	0,7	8	23	20	1,8	2,0			
ŀ		Маздейст Ногрузна	_ 4	 _ =	0,5 3,2	0,3 3,7	5,3	5,7	9,8		0,1 5,7	6,9	12,4		5,3	8	6,9	-8-	9,8	120	124	12,0			,当
	~ .	סי לפיז איני	Q ₇		1,7	1,8	2,0	2,1	8,9		2,1	2,2	4,3		2,0	\$	2,2	8	39	4,4	4,3	4,4		ل لـ	<u> </u>
	8,4	Темперт Воздейст	M _{TM}	=	6,6 0,7	4,5 0,5	0,2	1,4	3,6 0,3	8	0,1	0,1	2,3	0	1,7 0,2	8	0,9	ОНЕ	3,6	0,8	23	3,2	_]	
r		Hazayana	Мтн		4,1	4,6	6,4	6,8	11,2	o	6,8	8,2	13,7	<u> </u>	6,4	- W	8,2	8	11,20	14,1	13,7	14,1	<u>. </u>		
	9,6	ат ветра		<u> </u>	1,9 6,5	2,0 5,2	2,2	2,3 2,5	3,8	Ž.	2,3	1,7	2,7	- S-	2,2	7=7	2,4		3,8	2,6	4,6	4,9 2,6			
L	·	Temnepar Basaleuci		 	0,6	0,5	0,2	0,2	0,3	2	0,2	0,1	92	1 3	. 0,2	-2-	0,1	1-2-	0,3	0,2	9€	98			
		Нагрузна ат Ветра	MTM	=	5,1	5,8	8,1	8,6	14,3 4,8		8,6	f0,5	17,7 5,3	8	8,1	2,0	10,5	9	14,3	17,5	17,7 5,3	17,5			
	10,8	Температ	MTM		2,1	2,2 3,5	2,5	2,6	2,8	\ <u>-</u> \&	2,6 2,0	2,8 1,5	2,1	18	2,5	<u> </u>	2,8 1,5	\$	4,8	17	21.	1,7			
_		Basilecier.			0,3	0,3	0,2	9,1	0,2		9/	0,1	92		0,2	1	0,1	8	92	0.4	20,6	Q.1 22,0	. *		
		Hazpysna am Berpa	Q7		6,6 2,4	7,2 2,5	2,7	9,6	5,4		2,8	H,2 2,9	5,7	<u> </u>	9,2 2,7	12,1 3,0	11,2	12,1 3,0	17,3 5,4	22,0 5,9	5,7	5,9			
	12,6	Температ Воздейст	Мтм		3,1	2,8	1,9	1,8	2,5		1,8	1,4	2,1		1,9	1,2	1,4	1,2	2,5	1,9	2,/	1,9			
-		Hogoyana	MTM	=	0,2 12,5	12,5	132	18,1	33,2	 	18,1	20,1	39,2	·	17,2	21,9	206	21,9	33,2	91,5	39,2	0,1 41,5			
	ط طال	am Berpa			3,4	3,4	4,0	4,1	7,9		4,1	4,4	8,8	ļ.,	4,0	4,6	4,4	4,6	7,9	9,0	8,8	9,0			
	14,4	Tennepar. Basatecica.		=	0,2	0,2	0,1	0,1	0,1	 	0,1	0,1	0,1		1,6 0,1	0,6	0,1	0,6	1,9	0,1	0,1	0,1			
	. :	Mozpysma	MTM	=							26,2	29,9	54,7		25,1	31,7	29,9	31,7	46,2	57.7	54,7	57,7	ļ ·		
	16,2	от ветра Температ	PT MTM	=	-	+=-		= 6	+=		1,6	1,2	2,0	 	1,7	5,3 0,7	5,1	5,3	<i>9,3</i> 2,3	10,4	10,1	10,4			
		Basaeum	Q7	- ,	-	=					0,1	0,1	0,1		91	0	0,1	0 ,	0,1	9/	0,1	91	1		
		Нагрузна ат ветра	MTH					=	 -	 	27,0	31,4 5,4	57,8 10,6	 	25,4 4,9	29,9 5,6	31,4 5.4	29,9	44,5 5,4	550 5,6	57,8 10,6	55,0 5,6	<u> </u>		
	18,0	Температ	MTM				-	Ĺ ⇒′	<u> </u>		1,4	1,2	1,7		1,5	0.6	1,2	0,6	2,0	1,1	1,7	1,1]		
7/	оимеч	Busdevia a HUB.	₩7		<u> </u>	<u> </u>		L		<u> </u>	0,1	0,1	0,1	L	0,1	0,1	0,1	0	0,1	0,1	91	0,1	į		
Ê	счетн	те нагр	узки н	п фундаме к длиной Вч и панел деляются низа месу и кровлей	אחשו ושמא	фермах	חפסתפחים	m 18u24	, Im no cep	יטט	4.B mat	δπυψε πρ	иведены	расчетн	IPIS WASH	DYSKU M	а фундал необходи травых пь утноже	пенты.	27- / / / / /						

109

КЭ- 01- 55 Выпуск I

pone nok p	т констру ытия,	KUUU	.12			: 18	,				24	<u> </u>	()	<u>)</u> .		·	30			·		4
	ема торца эксение сті	•	田田		· [Æ	<u>B</u>	П	丑	A B		Ⅲ	$\hat{\mathbb{R}}$		A 6	面			H	田	*.	Улица ±М Здани
Tun	кровли		СКОТНОЯ и ПЛОСКОЯ		Скатная	ע האַ	OCKOA			Скат	HOP U	NAOCKOA				CX	атная (I NAOCK	ая			1 +20 +0
4лино	2 стеновых М	панелев	6		6	e de		1	1	6		12	Standard Control		6.	:			12			
•	покрытия покрытия	рукций	Banku no cepunn ng-of-of nk-of-nk nk-of-//b	Балки по серии пк-01-06	Болки по серии пк-01-01	Фермы по "" серью ПК-01-76 (ПК-01-84)	Фермы по серии ПП-01-02/ ₆₂	Фермы по ** серич ПК-01-84	Paprisi no cepuu nn-orozi 182	Фермы по серий пко фермы по ПП-01 (по стро	i-Tō(nK-oi- ei cepuu 02 ike A)	Фермы по серии пк-01-84	no c'epuu	Фермы серии (10	CMONSHEE NO CEPUU NO CEPUU ON-	DEDMA NK-01-125U EDMANN 1 OO DUKE F)	Фермы п серии П		CMANAHA no cepuu (pepma no cepuu (f no cmo	10 penma NK-01-1254 0 ani Samy 1 04-00 Duke B)	
ндек	С КОЛОННЫ П		277			· · · · · · · · · · · · · · · · · · ·				A	<i>5</i> -	A,B	.,.	A	Б	A	Б	A	Б	R	В	Cxema Harpusok
3	3,6	R,	0, 6	ı		1	1	_	os:	_		_	Ø j			-		_				на финдамент
	4,2	R _T	0,7	_			_	_ ·	cra				**					-				
	4,8	R ₇	0,8	0,8	0,9	1,0	1,1	2,0	100	<i>.</i> =			27								1	1
L	5,4	R,	0,9	0 , 5	1, U	++	15#	و و		<i>t:</i> -	1,2	2,4	2						<u> </u>	-/		1 11 11
<u> </u>	6,0	A,	1,0	1,0	1,0	1,2	1,2	2,4	90	1,2	1,3	2,6	9						3,4	29	3+	1
שמש,	7,2	, A ₇		1,2	1,2	1,3	1,4	2,7	N D	1,4	1,5	2,9	7 40	1,3	7,6 17	1,5	16	2,7 320°	3,4	3.3	34	
	8,4	R ₇		1,3	1,4	1,5	1, 5	3,0	3	1,5	1,6	3,3		1,5	19	1,6	1,7	347	3/8	3,6	3,81	
OXDO	9,6	R ₇		1,5	1,5	1,7	1,7	3,4	2	1,7	1,8	3,6 4,0	7	1,7	2.8	1,8	2,2	3,9	4,3	450	4,3	1]
2	10,8	R _T		1,7 2,0	1,8	1,9 2,3	2,0 2,4	3,9 4,6	5	2,0	2,1	5,0	W	2,3	2,6	2,5	2,6	4,6	5,1	5,0	5,1	
H	14,4	RT		2,4	2,4	2,6	2,6	5,2	3	2,6	2,7	5,5	7	2,6	2,9	2,7	2,9	5,2	5,9	5,5	5,9]
F	16,2	RT				`			 - 	3,0	3,1	6,3	3	3,0	3,2	3,1	5,2	5,9	6,4	6,3	6,4]
-	18.0	8-					—.	. –		3,4	3,5	7,0		3,4	3,6	3,5	3,6	6,8	7,1	7,0	7,1	1.

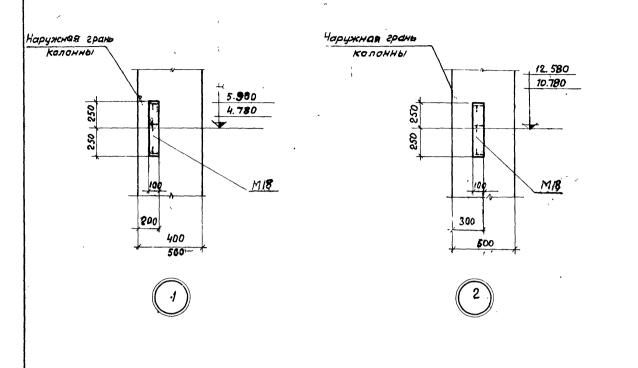

Расчетные нагрузки на фундаменты и значение	еакций от ветра, передаваемых на диск покрытия здания для колонн продольных фахверков в <u>I, II, III и IV</u> районах ветровых наг <u>ри</u> зок	٠.

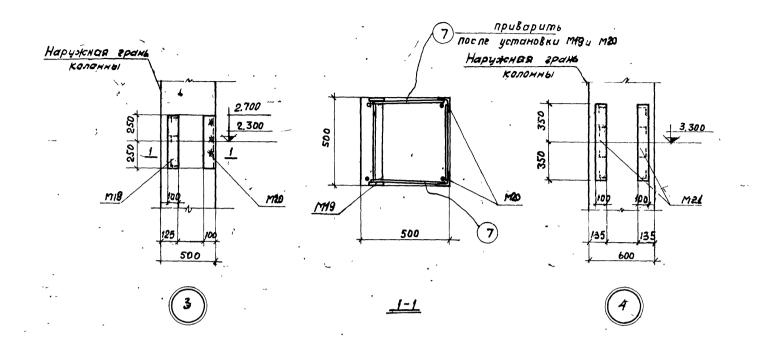
Mp no	олет конструкции окрытия, м		18										24										30																
F	Тип кровли		скатная						ΠΛΟΓΚΩΑ						Kal	nH	Qρ		плоская						Скатная									" ПЛОСКАЯ 🗼 🚶					
Серия конструкций покрытия			Балки по серии пк-01-06 Фермы по серии пк-01-76					Фермы по серии пп-01-02/62				Фермы по серии ЛК-01-76						Фермы по серии ПП-01-02/62						Фермы па 🚈 серид ПК-01-76					Стальные фермы по серии пк-01-125						Стальные фермы по альбами 1 серии 04-00				
Нагрузки		Maen or 8e M 1 M	HAPA A T	BO31	Gepar Gelicite R _T	R _T	HQ.	BETT D	Q 07 Q 7	TEMOS BOBBB MTM	opat. ocmb	R_{τ}	HOZDY Bet M TN	BKQ 0 TDQ BT	803 MT	DEPC DEUC	ат. СтВ. В т	A,	Назрі Вен М тм	3KQ 0 pa Q 7	# TPM 803 Mr	gepan gebert w Q t	78: 7	R,		iska ot ipa Bt	BO30 MTM	epam, eucts. Qz	Rr	Hazpi Bet Min	A T	6031 MT	nepam Revers A Br	R_{r}	Hazb of Re M11	#368 1 a r	Temi Bas Mr.	nepam Beucre M Q7	R,
3	4,8	_	0,9	8,0	1,5	0,8	1,5	9	1,3	10,9	1,5	1,0	=	-	T-	- -	- [L		-	Ī	7-	-	_	-	-	-	T-	-	-	-	Ξ]=				L	\perp	
bak	,	1=	-	-	1-		*	-/-				+1	-		-	1 -	-		4	-	=	-	-	1, 1	_	_	_	_	_	_	_	<u> </u>	<u></u>			<u> </u>	1		
401	6,0	1,6	1,2	5,5	0,8	0,9	2,0	6	1,5	8,0	0,9	1,2		1,2	5,	\$ 0	,8	0,9	2,6	1,5	8,0	0,		1,2	-	_	_	—	_	_	_	L	1-		<u> </u>	<u> </u>	1		> -
8	7,2	2,2		_	1,2	1,1	3,4	4 1	,8	8,7	0,9	1,4		-	9,	8 1	1,2	1,1	3,4	1,8	8,6	0.	9	1,4	22		7.2	0,9	1.1	3,0				1.3	_		2.0		
병	8.4	2,9	_	7.2	0,8	1,3	4,	3 1	,9	6,8	0,7	1,5	2,9		7,1	2 0	7,8	1,3	4,3	1,9	5,8	O,	1	1,5	2,9	1,6	5.4	0.5	1,3	42	1.9	_	0,5				3.9		
1	9,6	3,8	18	7,7	0,8	1,4	5,3	3 2	2,1	6,5	0,5	. 1,7	3,8	1,8	7,	7 0	1,8	1,4	5, 3	2,1	6.5	0,	5	1,7	3,8	1,8	7.7	0,8	1,4	5,8	2,1	4.3	04	- 1,7				0.2	
100	a 10,8	4,7	2,0	7,3	0,6	1,6	6,6	6 2	2,3	5,5	0,4	1,9	4,7	20	7,3	3 0	,6	1,6	6,6	2,3	55	0,	4	1,9	4,7	2,0	7.3	0,7	1,6	6,3	2,3.	5,8	0,4	1,9			4.5		
ā	12,6				0,4	2,0	9,	2 2	2,6	4,3	0,3	2,4	6,6						9.2					2,4	6,6	2,3	5.6	0,4	2,0	8.0	2,6	4.4	0,3	2,3	10.5	2.9	3.6	0.2	2.7
HU	2 14,4		3,1	_	1,2	2,3	18,	1 4	4,1	9,9	0,6	2,6	10,7	3,1	17,	0 1	.2	2,3	18,1	4,1	99	0,	6	2,6	10,7	3,1	17,0	1,2	2,3	18,1	4,1	2,9	0,8	2,6	21,9	4,6	9,9	0,6	29
8	16,2	1=	1=	1=	1-	1 -		_	_	_	-	_	16,2	3,9	30	2 1,	9	2,6	26,2	4,8	16,6	5 0,	9	3,0 ·	16,2	3,9	308	1,9	2,6	26,2	4,8	16,6	0,9	3, 0		_		0,9	3,2
aπ	18.0	1=	1=	1=	† =		1-	-1	=1	_	_	_	14,2	_	32	2 1	,8		27,0					3,4	14,2	3,7	32,2	1,8	3,1	27.0	5,1	19,1	1,0	3,4	29,9	5,6	19,1	1,0	3,6
Con			T	1	T	1	T	\top							T	T						T														丄			
Berco		1	1	1	1	<u> </u>	1	1	_					1	T	T		•				1													<u> </u>				1

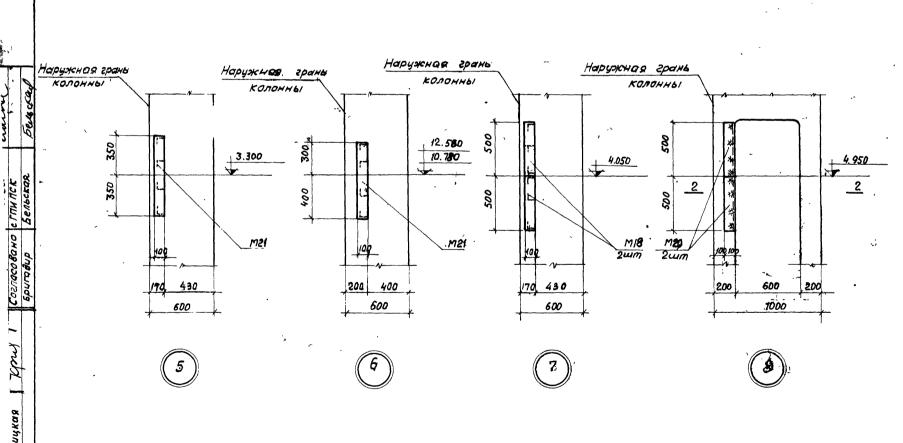
RPHMEYAHHA HA AUCTE 9

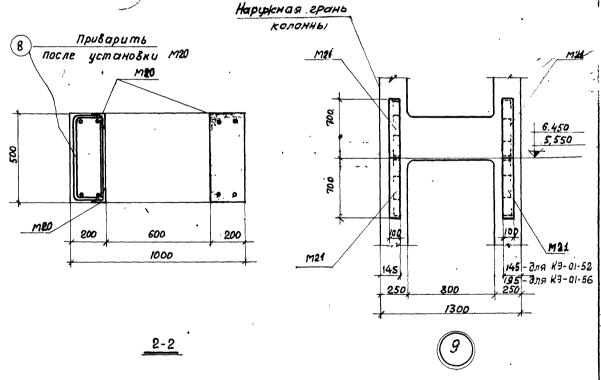
ТА Расчетные нагрузки на фундаменты колонн продольных фахдерков и реакции от ветра, передаваемые калоннами торцебых и продольных фахдерков на диск покрытия

K9-01-5




1100 1307 связей по колоннам и для связей


по покрытию при плоской кровле.


лист 7189 16

крепления связей к колоннам продольного фахверка

<u>Примечачис</u>

Закладные 2-годи м17-м20 даны в выпуской настоящей серии

Детали расположения закладных элементов кэ-01-55 выпуск 1

в колоннах продольного фахверка для пист 12

409

1307

7189 (17)