#### Государственное санитарно-эпидемиологическое нормирование Российской Федерации

#### 4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

# ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

МУК 4.1.2048-4.1.2061-06

Издание официальное

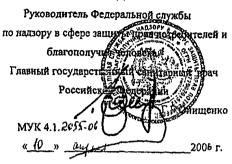
ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009—148с.
  - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
  - 2. Рекомендованы к утвержденню Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
  - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Опищенко.
    - 4. Введены впервые.

ББК 51.21

Формат 60х88/16

Печ. л. 9.25


Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

# Содержание

| 1. Методические указания по определению остаточных количеств                                                   |
|----------------------------------------------------------------------------------------------------------------|
| сульфометурон-метила в воде и почве методом высокоэффективной жидкостной                                       |
| хроматографии. МУК 4.1.2048-064                                                                                |
| 2. Методические указания по измерению концентраций глифосата в                                                 |
| атмосферном воздухе населенных мест методом газожидкостной хроматографии. МУК                                  |
| 4.1.2049-06                                                                                                    |
| 3. Методические указания по измерению концентраций Карбосульфана в воздухе                                     |
| рабочей зоны методом газожидкостной хроматографии. МУК 4.1.2050-0628                                           |
| 4. Методические указания по измерению концентраций тефлутрина в воздухе рабочей                                |
| зоны методом газожидкостной хроматографии. МУК 4.1.2051-0635                                                   |
| 5. Определение остаточных количеств метальдегида в воде, почве, овощах (капуста,                               |
| салат, Китайская капуста, шпинат, редис и др.), фруктах (яблоки, сливы и др.),                                 |
| ягодах (земляника, смородина и др.) и винограде методом газожидкостной                                         |
| хроматографии. МУК 4.1.2052-0644                                                                               |
| 6. Методические указания по определению остаточных количеств метамитрона                                       |
| в ботве и корнеплодах сахарной свеклы методом газожидкостной хроматографии.                                    |
| МУК 4.1.2053-0658                                                                                              |
| 7. Методические указания по определению остаточных количеств Прохлораза в воде,                                |
| почве, зерне и соломе зерновых колосовых культур методом высокоэффективной                                     |
| жидкостной хроматографии. МУК 4.1.2054-0667                                                                    |
| 8. Методические указания по определению остаточных количеств флудиоксонила в                                   |
| зерне и масле сои методом высокоэффективной жидкостной хроматографии. МУК                                      |
| 4.1.2055-0680                                                                                                  |
| 9. Методические указания по определению остаточных количеств оксифлуорфена                                     |
| в семенах и масле подсолнечника методом газожидкостной хроматографин.                                          |
| МУК 4.1.2056-0691                                                                                              |
| 10. Методические указания по определению остаточных количеств карбоксина                                       |
| в клубнях картофеля методом высокоэффективной жидкостной хроматографии.                                        |
| MYK 4.1.2057-06                                                                                                |
| 11. Методические указания по определению остаточных количеств флуазифоп-п-бутила                               |
| в семенах и масле рапса, подсолнечника, зерне и масле сои, зерне гороха и луке по                              |
| основному метаболиту флуазифоп-п кислоте методом капиллярной газожидкостной                                    |
| хроматографии. МУК 4.1.2058-06109                                                                              |
| 12. Методические указания по определению остаточных количеств прометрина в                                     |
| семенах и масле подсолнечника и сои, зерне и масле кукурузы, зерне гороха, клубнях                             |
| картофеля и корнеплодах моркови методом высокоэффективной жидкостной                                           |
| хроматографии. МУК 4.1.2059-06117                                                                              |
| 13. Методические указания по определению остаточных количеств никосульфурона                                   |
| в масле кукурузы методом высокоэффективной жидкостной хроматографии.                                           |
| MYK 4.1.2060-06                                                                                                |
| 14. Методические указания по определению остаточных количеств абамектина в                                     |
| ягодах и соке винограда, перце и баклажанах методом высокоэффективной жилкостной угометографии MVК 4.1.2061-06 |
| WURKICTHOU XDOMETOTOROUM INIVERSE 1/DOI-NO.                                                                    |

#### **УТВЕРЖДАЮ**



Дата введения: с Імал 2006.

# методические указания по определению остаточных количеств флудиоксонила в зерне и масле сои методом высокоэффективной жидкостной хроматографии

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения массовой концентрации флудиоксонила в зерне и масле сои в диапазоне 0,02-0,2 мг/кг.

Флудноксонил – действующее вещество фунгицида Максим, КС (25 г/л), фирма производитель Сингента Кроп Протекцин АГ (Швейцария)

4-(2.2-дифтор-1,3-бензодиоксол-4-ил)-пиррол-3-карбонитрил (IUPAC)



C<sub>12</sub>H<sub>6</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> Мол. масса: 248.2

Бесцветное кристаллическое вещество без запаха. Температура плавления: 199,8°C. Давление паров при 25°C:  $3.9 \times 10^{-4}$  мПа. Коэффициент распределения ноктанол/вода:  $K_{OW}$  log P = 4.12. Растворимость ( $r/дм^3$ ) при 25°C: ацетон - 190, этанол - 44. н-октанол — 20, толуол — 2,7, гексан — 0,008, вода — 0,0018.

В биологически активных почвах в аэробных условиях флудиоксонил быстро разлагается или переходит в прочносвязанное состояние:  $DT_{50} \approx 10-25$  дней.

Краткая токсикологическая характеристика

Острая пероральная токсичность ( $LD_{50}$ ) для крыс - > 2000 мг/кг; острая дермальная токсичность ( $LD_{50}$ ) для крыс - > 2000 мг/кг; острая ингаляционная токсичность ( $LC_{50}$ ) для крыс - > 2600 мг/м³ воздуха. Флудиоксонил не оказывает раздражающего действия на слизистые оболочки глаз и кожу кроликов и не обладает тератогенным, мутагенным и онкогенным эффектами. Фунгицид практически нетоксичен для птип, рыб, пчел, диких животных, дожденых червей, дафпий и водорослей.

Рекомендуемый норматив для флудиоксонила в зерпе и масле сои -0.02 мг/кг.

Область применения препарата

Флудиоксопил – контактный фунгицид широкого спектра действия с продолжительной активностью. Высокоэффективен против снежной плесени, твердой головни, гельминтоспориозной и фузариозной корневых гнилей на зерновых злаках, а также ризоктониоза, склеротиниоза, серой гнили и альтернарноза на винограде, косточковых плодовых, овощных и декоративных культурах.

Зарегистрирован в России под торговым названием Максим, КС (25 г/л) в качестве фунгицида для предпосевного протравливания семян зерновых культур, гороха, а также для обработки клубней картофеля перед закладкой на хранение. В настоящее время проходит регистрационные испытания в качестве протравителя семян сои.

#### 1. Метрологические характеристики метода

Метрологические характеристики метода представлены в таблицах 1 и 2.

Таблица 1 Метрологические параметры

|                              | Метрологические параметры, P = 0,95, n = 20 |                                                        |                                            |                                           |                                                |                                                  |
|------------------------------|---------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Анализи-<br>руемый<br>объект | Предел<br>обнару-<br>жения,<br>мг/кг        | Диапазон определя-<br>емых кон-<br>центраций,<br>мг/кг | Среднее<br>значение<br>опреде-<br>ления, % | Стандарт-<br>ное откло-<br>нение,<br>S, % | Относи-<br>тельное<br>отклоне-<br>ние<br>DS, % | Довери-<br>тельный<br>интервал<br>среднего,<br>% |
| Зерно                        | 0,02                                        | 0,02 - 0,2                                             | 82,5                                       | 3,8                                       | 1,7                                            | ± 3,5                                            |
| Масло                        | 0,02                                        | 0,02 - 0,2                                             | 82,7                                       | 3,6                                       | 1,6                                            | ± 3,4                                            |

 $\label{eq:Tadouta} \mbox{Таблица 2}$  Полнота определения флудиоксонила в модельных матрицах ( n = 5)

|         | Внесено              | Открыто        | Доверительный      |
|---------|----------------------|----------------|--------------------|
| Матрица | флудиоксонила, мг/кг | флудиоксонила, | интервал среднего, |
| ]       |                      | %              | %                  |
|         | 0,02                 | 80,0           | 4,5                |
| Zanyo   | 0,04                 | 81,6           | 3,7                |
| Зерно   | 0,10                 | 83,6           | 3,5                |
|         | 0,20                 | 84,7           | 3,1                |
|         | 0,02                 | 80,3           | ±4,1               |
| Масло   | 0,04                 | 82,0           | ±3,9               |
|         | 0,10                 | 83,7           | ±3,5               |
|         | 0,20                 | 85,0           | ±2,1               |

#### 2. Метод измерений

Методика основана на определении вещества с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым детектором. Контроль флудиоксонила в матрицах осуществляется по содержанию вещества после экстракции его из зерна и масла ацетонитрилом, очистки экстракта перераспределением в системе несмещивающихся растворителей, а также на колонке с оксидом алюминия.

Количественное определение проводится методом абсолютной калибровки.

### 3. Средства измерений, вспомогательные устройства,

# реактивы и материалы

#### 3.1. Средства измерений

| Жидкостный хроматограф с ультрафиолетовым           | Номер Госреестра |
|-----------------------------------------------------|------------------|
| детектором с переменной длиной волны (фирмы         |                  |
| Клачет, Германия)                                   |                  |
| Весы аналитические ВЛА-200                          | ΓΟCT 24104       |
| Весы лабораторные общего назначения с наибольшим    | <b>ΓΟCT 7328</b> |
| пределом взвешивания до 500 г и пределом допустимой |                  |
| погрешности +/- 0,036 г                             |                  |

| Колбы мерные вместимостью 2-100-2, 2-1000-2       | FOCT 1770        |
|---------------------------------------------------|------------------|
| Меры массы                                        | <b>ΓΟCT 7328</b> |
| Пипетки градуированные 2-го класса точности       | ГОСТ 29227       |
| вместимостью 1,0; 2,0; 5,0; 10 см <sup>3</sup>    |                  |
| Пробирки градуированные с пришлифованной пробкой  | ГОСТ 1770        |
| вместимостью 5 см <sup>3</sup>                    |                  |
| Цилиндры мерные 2-го класса точности вместимостью | <b>FOCT 1770</b> |
| 25, 50, 100, 500 и 1000 см <sup>3</sup>           |                  |

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

#### 3.2. Реактивы

Флудиоксонил, аналитический стандарт с содержанием

д.в. 99,8% (Сингента, Швейцария)

| Ацетонитрил, хч                   | ТУ 6-09-3534-87 |
|-----------------------------------|-----------------|
| Вода бидистиллированная           | FOCT 6702       |
| н-Гексан, хч                      | ТУ 6-09-3375    |
| Натрий сернокислый, безводный, хч | ΓΟCT 4166       |
| Этиловый эфир уксусной кислоты, ч | FOCT 22300      |
| Эфир диэтиловый                   | FOCT 6265-74    |

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

#### 3.3. Вспомогательные устройства, материалы

| Ваниа ультразвуковая, модель D-50, фирма Branson Instr. С         | о. (США)          |
|-------------------------------------------------------------------|-------------------|
| Воронка Бюхнера                                                   | <b>FOCT 0147</b>  |
| Воронки делительные вместимостью 100 см3                          | ΓΟCT 25336        |
| Воронки конусные диаметром 30-37 и 60 мм                          | <b>FOCT 25336</b> |
| Дефлегматор елочный                                               | <b>FOCT 9737</b>  |
| Колба Бунзена                                                     | <b>FOCT 5614</b>  |
| Колбы плоскодонные вместимостью 250 см <sup>3</sup>               | ΓΟCT 9737         |
| Колбы круглодонные на шлифе вместимостью 25 и 150 см <sup>3</sup> | <b>FOCT 9737</b>  |
| Колонка хроматографическая стеклянная, длиной 25 см               | <b>ΓΟCT 9737</b>  |
| Мельница электрическая лабораторная                               | TY 46-22-236      |
| Оксид алюминия нейтральный (Вельм, Германия) 1 степени            |                   |
| активности для колоночной хроматографии                           |                   |

Стаканы химические вместимостью 100 и 500 см<sup>3</sup> Стекловата

Ротационный вакуумный испаритель ИР-1М или ТУ 25-11-917 ротационный вакуумный испаритель В-169 фирмы Висћі (Швейцария) Установка для перегонки растворителей Хроматографическая колонка стальная, длиной 15 см, внутренним диаметром 4 мм, содержащая Кромасил 100-С18 (5 мкм)

Шприц для ввода образцов в жидкостной хроматограф вместимостью 50 - 100 мм<sup>3</sup> (Hamilton, США)

Допускается применение другого оборудования с аналогичными или лучшими характеристиками.

#### 4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на жилкостной хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313-03 «Предельно допустимые концептрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

#### 5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя с опытом работы на жидкостном хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

#### 6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20+5) °C и относительной влажности не более 80%.
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

#### 7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, подвижной фазы для ВЭЖХ, кондиционирование хроматографической колонки, установление градуировочной характеристики, подготовка колонки с оксидом влюминия.

#### 7.1. Очистка органических растворителей

#### 7.1.1. Очистка и-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до прекращения ее окращивания в желтый цвет, затем водой до нейтральной реакции промывных вод, перегоняют над поташом.

#### 7.1.2. Очистка этилацетата

Этилацетат промывают последовательно 5%-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сущат над безводным карбонатом калия и перегоняют.

#### 7.1.3. Очистка диэтилового эфира

Растворитель предварительно встряхивают со свежеприготовленным раствором железного купороса, а затем последовательно промывают 0,5%-ным раствором перманганата калия, 5%-ным раствором гидроксида натрия и водой, после чего сущат над хлористым кальцием и перегоняют.

#### 7.2. Подготовка колонки с оксидом алюминия для очистки экстракта

Нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом кране) суспензию 10 г оксида алюминия V степени активности в 20 см³ гексана (оксид алюминия V степени активности по Брокману получают добавлением 15% воды к оксиду алюминия I степени активности). Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку промывают 20 см³ смеси гексан-этилацетат (8:2, по объему) со скоростью 1-2 капли в сек., после чего она готова к работе.

### 7.3. Проверка хроматографического поведения флудиоксонила на колонке с оксидом алюминия

В круглодонную колбу вместимостью 10 см<sup>3</sup> помещают 0,5 см<sup>3</sup> градуировочного раствора № 1 флудиоксонила с концентрацией 10 мкг/см<sup>3</sup> в ацетонитриле (п. 7.6.2), раствор упаривают досуха, остаток растворяют в 0,6 см<sup>3</sup> этилацетата, помещая в ультразвуковую ванну на 1 мин., добавляют 2,4 см<sup>3</sup> гексана, перемешивают, вновь

помещают в ультразвуковую баню на 1 мин. Раствор наносят на колонку, подготовленную по п.7.2. Промывают колонку 50 см<sup>3</sup> смеси гексан-этилацетат (8:2, по объему) со скоростью 1-2 капли в сек. Фракционно (по 5 см<sup>3</sup>) отбирают элюат, упаривают, остатки растворяют в 1 см<sup>3</sup> ацетонитрила, помещая в ультразвуковую ванну на 1 мин., вносят 1 см<sup>3</sup> подвижной фазы, подготовленной по п. 7.4., перемещивают и анализируют на содержание флудиоксонила по п.9.4.

#### 7.4. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью 1000 см<sup>3</sup> помещают 500 см<sup>3</sup> ацетонитрила, 500 см<sup>3</sup> бидистллированной воды, перемешивают, фильтруют через мембранный фильтр.

#### 7.5. Кондиционирование хроматографической колонки

Промывают колонку подвижной фазой (приготовленной по п. 7.4.) при скорости подачи растворителя 1 см<sup>3</sup>/мин не менее 2-х часов до установления стабильной базовой линии.

#### 7.6. Приготовление градуировочных растворов

7.6.1. Исходный раствор флудиоксонила для градуировки (концентрация 100 мкг/см<sup>3</sup>). В мерную колбу вместимостью 100 см<sup>3</sup> помещают 0,010 г флудиоксонила, растворяют в 40-50 см<sup>3</sup> ацетонитрила, доводят ацетонитрилом до метки, тщательно перемещивают.

Раствор хранят в морозильной камере при температуре не выще  $-18^{\circ}$ C в течение 3-х месяцев.

7.6.2. Раствор флудиоксонила №1 для градуировки (концентрация 10 мкг/см³).

В мерную колбу вместимостью 100 см<sup>3</sup> помещают 10 см<sup>3</sup> исходного раствора флудиоксонила с концентрацией 100 мкг/см<sup>3</sup> (п.7.6.1.), разбавляют ацетонитрилом до метки. Этот раствор используют для приготовления рабочих градуировочных растворов №№ 2-5.

Для приготовления проб зерна и масла с внесением при оценке полноты извлечения флудиоксонила из исследуемых образцов используют ацетоновый раствор флудиоксонила с концентрацией 10 мкг/см<sup>3</sup>.

Градуировочный раствор № 1 и ацетоновый раствор флудиоксонила хранят в морозильной камере при температуре не выше  $-18^{\circ}$ с в течение месяца.

- В 4 мерные колбы вместимостью 100 см<sup>3</sup> помещают 0.5, 1.0, 2.5 и 5.0 см<sup>3</sup> градуировочного раствора № 1 флудиоксонила с концентрацией 10 мкг/см<sup>3</sup> (п.7.6.2),

доводят до метки подвижной фазой, приготовленной по п. 7.4., тщательно перемешнвают, получают рабочие растворы NeNe 2-5 с концентрацией флудиоксонила 0.05, 0.1, 0.25 и 0.5 мкг/см<sup>3</sup>, соответственно.

Растворы готовят непосредственно перед использованием.

#### 7.7. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость высоты пика (мм) от концентрации флудиоксонила в растворе (мкг/см<sup>3</sup>), устанавливают методом абсолютной калибровки по 4-м растворам для градуировки.

В инжектор хроматографа вводят по 20 мм<sup>3</sup> каждого градуировочного раствора (п.7.6.3) и анализируют в условиях хроматографирования по п. 9.4. Осуществляют не менее 3-х парадлельных измерений.

#### 8. Отбор и храмение проб

Отбор проб производится в соответствии с правилами, определенными ГОСТом 10852-86 «Ссмена масличные. Правила приемки и методы отбора проб».

Пробы зерна высущивают до стандартной влажноски и хранят в холодильнике при температуре не выше 4°С. Масло хранят в стеклянной или полиэтилсновой таре в холодильнике при температуре не выше 4°С. В некоторых случаях масло получают из зерна сои экстракцией органическими неполярными растворителями (пстролейный и диэтиловый эфиры) непосредственно перед проведением анализа.

#### 9. Выполнение определения

#### 9.1. Экстракция флудиоксонила

- 9.1.1.Зерно. Образец размолотого зерна массой 10 г помещают в плоскодонную колбу вместимостью 250 см<sup>3</sup>, добавляют 100 см<sup>3</sup> ацетонитрила и помещают в ультразвуковую ванну на 5 мин. Раствор (с осадком) фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см<sup>3</sup>. Осадок на фильтре промывают 25 см<sup>3</sup> ацетонитрила. Экстракт и промывную жидкость, объединенные в мерном цилиндре, перемешивают, измеряют объем раствора и ½ его часть (эквивалентную 5 г образца) переносят в круглодонную колбу. Далее проводят очистку экстракта по п. 9.2.
- 9.1.2. Масло. Образец масла массой 5 г вносят в делительную воронку вместимостью 100 см<sup>3</sup>, добавляют 10 см<sup>3</sup> гексана, перемешивают. В воронку вносят 30 см<sup>3</sup> ацетонитрила, интенсивно встряхивают воронку в течение 2-х мин. После полного разделения фаз нижний ацетонитрильный слой отделяют и собирают в химический стакан вместимостью 100 см<sup>3</sup>. Операцию экстракции масляной фазы повторяют еще

дважды, используя по 20 см<sup>3</sup> ацетонитрила. Дальнейшую очистку объединенного ацетонитрильного экстракта проводят по п. 9.2.

# 9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Экстракты, полученные по пп. 9.1.1. и 9.1.2., переносят в делительную воронку вместимостью 200 см<sup>3</sup>, прибавляют 20 см<sup>3</sup> гексана и воронку интенсивно встряхивают в течение 2-х мин. После разделения фаз нижний ацетонитрильный слой переносят в круглодонную колбу и упаривают на ротационном вакуумном испарителе досуха при температуре 40°C. Остаток в круглодонной колбе растворяют в 20 см<sup>3</sup> смеси ацетонитрил-вода (3:7, по объему) и переносят в делительную воронку вместимостью 100 см<sup>3</sup>. В воронку вносят 20 см<sup>3</sup> смеси гексан-диэтиловый эфир (4:1, по объему), интенсивно встряхивают воронку в течение 2-х мин. После разделения фаз верхний органический слой отделяют, фильтруют через слой безводного сульфата натрия, помещенный на бумажный фильтр в конусной воронке, в круглодонную колбу вместимостью 100 см<sup>3</sup>. Операцию экстракции водно-ацетонитрильной фазы повторяют еще дважды, используя по 15 см<sup>3</sup> смеси гексан-диэтиловый эфир (4:1, по объему). Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха на роторном испарителе при температуре 30°C.

#### 9.3. Очистка экстракта на колонке с оксидом алюминия

Сухой остаток в круглодовной колбе, полученный по п.9.2., растворяют в 0,6 см<sup>3</sup> этилацетата, помещая в ультразвуковую ванну на 1 мин., добавляют 2,4 см<sup>3</sup> гексана, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор наносят на колонку, подготовленную по п. 7.2. Колбу обмывают 3 см<sup>3</sup> смеси гексанэтилацетат (8:2, по объему), которые также наносят на колонку. Промывают колонку 35 см<sup>3</sup> смеси гексан-этилацетат (8:2, по объему) со скоростью 1-2 капли в сек., отбрасывают первые 10 см<sup>3</sup> элюата и собирают последующие 25 см<sup>3</sup> в круглодонную колбу вместимостью 100 см<sup>3</sup>. Раствор упаривают досуха на роторном испарителе при температуре 40°C. Остаток в колбе растворяют в 1 см<sup>3</sup> ацетонитрила, помещая в ультразвуковую ванну на 1 мин., вносят 1 см<sup>3</sup> подвижной фазы, подготовленной по п. 7.4., перемешивают и анализируют на содержание флудиоксонила по п. 9.4.

#### 9.4. Условия хроматографирования

Жидкостной хроматограф с ультрафиолетовым детектором (фирмы Knauer, Германия)

Колонка стальная длиной 15 см, внутренним диаметром 4 мм, содержащая Кромасил 100-С18 (5 мкм)

Температура колонки: комнатная

Подвижная фаза: ацетонитрил-вода (50:50, по объему)

Скорость потока элюента: 0,8 см3/мин

Рабочая длина волны: 268 нм

Чувствительность: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм3

Ориентировочное время выхода флудиоксонила: 10,5 - 11 мин.

Линейный диапазон детектирования: 1 - 10 нг

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 0,5 мкг/см<sup>3</sup>, разбавляют подвижной фазой, приготовленной по п. 7.4.

Альтернативная подвижная фаза: Диасорб 130-С16

Ориентировочное время выхода флудиоксонила: 9,6 - 10.3 мин.

#### 10. Обработка результатов анализа

Содержание флудиоксонила рассчитывают методом абсолютной калибровки по формуле:

Х - содержание флудиоксонила в пробе, мг/кг;

Н1 - высота пика образца, мм;

Но - высота пика стандарта, мм;

А - концентрация стандартного раствора флудиоксонила, мкг/см<sup>3</sup>;

V - объем экстракта, подготовненного для хроматографирования, см<sup>3</sup>;

m - масса анализируемой части образца (г) / для зерна и масла - 5 г/.

#### 11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ ИСО 5725-1-6.2002 «Точность (правильность и прецизионность) методов и результатов измерений».

#### 12. Разработчики

Талалакина Т.Н., науч. сотр.; Макеев А.М., зав. лаб., канд. биол. наук

ВНИИ фитопатологии, 143050 Московская обл., п/о Большие Вяземы

592-92-20

Подпись руки Талалакиной Т.Н. и Макеера А.М. заверяю

Зав. канцелярией ВНИИФ

(Вайфлис Г.Г.)