типовои проект 407—3—13

140

КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ МОЩНОСТЬЮ ДО 2×1000 ква БЕЗ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ 6-10 кв ДЛЯ ПРОМЫШЛЕННЫХ УСТАНОВОК

КОМПЛЕКТНАЯ ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ МОЩНОСТЬЮ 400 ква ХМЕЛЬНИЦКОГО ЗАВОДА ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ (ВСТРОЕННАЯ)

АЛЬБОМ №35

СТРОИТЕЛЬНАЯ ЧАСТЬ

СОСТАВ ПРОЕКТА ПОДСТАНЦИИ:

ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ: АЛЬБОМЫ №№1, 7 СТРОИТЕЛЬНАЯ ЧАСТЬ АЛЬБОМЫ №№21, 35, 35/69

типовой проект 407—3—13

КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ МОЩНОСТЬЮ ДО 2×1000 ква БЕЗ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ 6-10 кв ДЛЯ ПРОМЫШЛЕННЫХ УСТАНОВОК

КОМПЛЕКТНАЯ ТРАНСФОРМАТОРНАЯ ПОДСТАНЦИЯ МОЩНОСТЬЮ 400 ква ХМЕЛЬНИЦКОГО ЗАВОДА ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ (ВСТРОЕННАЯ)

АЛЬБОМ №35

СТРОИТЕЛЬНАЯ ЧАСТЬ

СОСТАВ ПРОЕКТА ПОДСТАНЦИИ.

ЭЛЕКТРИЧЕСКАЯ ЧАСТЬ АЛЬБОМЫ Nenel. 7 СТРОИТЕЛЬНАЯ ЧАСТЬ АЛЬБОМЫ Nene21. 35,35/69

PA3PA5OTAH

ГОСУДАРСТВЕННЫМИ ПРОЕКТНЫМИ ИНСТИТУТАМИ ТЯЖПРОМЭЛЕКТРОПРОЕКТ (ЭЛЕКТРИЧЕСКАЯ ЧАСТЫ ПРОМСТРОЙПРОЕКТ (СТРОИТЕЛЬНАЯ ЧАСТЬ)

ввелен в деиствие

ТЯЖПРОМЭЛЕКТРОПРОЕКТОМ ДИРЕКТИВНОЕ УКАЗАНИЕ

No 1426 OT 30-XI 1965 r

ПРОМСТРОЙПРОЕКТОМ

ПРИКАЗ

№ 184 OT 13-XI 1365r.

ЦЕНТРАЛЬНЫЙ ИНСТИТУТ ТИПОВЫХ ПРОЕКТОВ МОЖВА 1996

СОДЕРЖАНИЕ АЛЬБОМА

Марка Лист	Содержание листа	Стр.	Марка Лист	Содержание листа	Стр.
-	Общие указания	3	AC-5	План расположения заземляющих проводников	9
AC-I	План; Разрезы I-I; 2-2;				
	Фасад	5	AC-6	Расход материалов, специфика-	
AC-2	План и разрезы фундаментов	6	10 0	ции, перечень примененных	
AC-8	План каналов и приямков	7		стандартов	10
AC-4	Ханалы и приямки, разрезы I-I; 2-2: 3-3: 4-4: 5-5	8			

ОБШИЕ УКАЗАНИЯ

І. В альбоме № 35 даны рабочие чертежи строительной части проекта встроенной комплектной трансформаторной подстанции мощностью 400 ква Хмельницкого завода трансформаторных подстанций.

Электрическая часть проекта разработана институтом Тяж-промэлектропроект и дана в альбома № 6.

2. Проект должен приниматься к строительству только после предварительного выголнения проектной работы по привязке его к конкретным условиям строительной площадки.

При привязке руководствоваться кроме указаний данного альбома, также указаниями альбома № 21 "Общие материалы". Альбом № 21 должен выдаваться на строительство одновременно с данным альбомом.

- 3. Проект предназначен для размещения помещения подстанции у наружной стены внутри одноэтажных производственных зданий, а также в первых этажах многоэтажных зданий в этажерок, имеющих сетку колони каркаса 6 х 6 м 6 х 9 м.
- 4. Ленточные фундаменты под стены выполнять из бетона мар-ки 100.

Сечение фундаментов и отметку заложения уточнить при привязке, исходя из конкретных условий.

С внешней сторовы фундамента наружной стены, на уровне подошвы, заложить завемлитель согласно проекту.

Засыпку заземляющего проводника производить грунтом не содержащим строительного мусора и шлака, с уплотнением.

5. Приямки и каналы выполнять из бетона марки 100. При бетонировании стен приямков и каналов заложить закладные марки и оставить гнезда по проекту, которые после монтажа стальных конструкций залить бетоном марки 200 на мелком гравии.

Стальные решетки в маслосборных ямах засыпать слоем гравия толщиной 250 мм, крупностые 30-50 мм:

6. Газовые трубы для подвода набелей прокладывать в процессе возведения фундаментог под наблюдением электромонтажников. Трубы снаружи и изнутри покрыть битумным составом /2 части битума марки II и I часть керосина/, на концы труб поставить деревянные пробки.

7. Толщина стен 380 мм принята для всех климатических зон. Кладку стен выполнять из красного или силикатного кирпича марки 75 на растворе марки 25. Во время кладки заложить закладные элементы по проекту. Внутренние поверхности стен выполнять с подрез-кой швов.

Из производственных помещений категорий Г и Д в помещение подстанции должна быть сделана нормальная одностворчатая дверь.

Размещение двери на плане и включение ее в спецификацию осуществлять при привязке.

- 8. Каменные конструкции не рассчитаны на ведение кладки в зимних условиях методом замораживания.
- 9. Гидроизоляционный слой на отметке 0,05 выполнять из цементного раствора состава I : 2 толичной 20 мм.
- 10. Покрытием помещения подстанции служит покрытие /перекрытие/ цеха, в который подстанция встраивается. В случае необходимости / при размещении подстанции в пролете, оборудованном краном, при большой высоте цеха и др./ над помещением подстанции может быть сделано свое перекрытие по индивидуальному проекту. При этом высота помещения в чистоте не должна быть ниже указанной в проекте. Толщина стен должна быть проверена на дополнительную нагрузку.
- II. Пол в помещении бетонный из бетона марки 200 с уклоном 2% в сторону приямка под трансформатором.
- 12. Внутренние поверхности стен и потолок белить известковым раствором.
- ІЗ. Откосы проемов оштукатурить известновым раствором, цоколь — цементным раствором.
- 14. Ворота, жалюзийные решетки окрашивать лаком АЛ-177 или эмалью XB-125 /ГОСТ 10144-62/.
- I5. За отметку ± 0.000 принята отметка пола цеха, планировочная отметка земли — 0.150.

POMETPONTPOEKT	KTII 400/6-10	<i>108886-</i> 407-3-18 Альбом №35
r Moceba	Эбщие Указания	MAPER - SINCT
		.3595-47 W

16. Вентиляция помещения подстанции естественная. Приток осуществляется через жалюзийные решетки, установленные в нижней части стен и ворот; вытяжка через вытяжные шахты в верхней части стены, противоположной воротам.

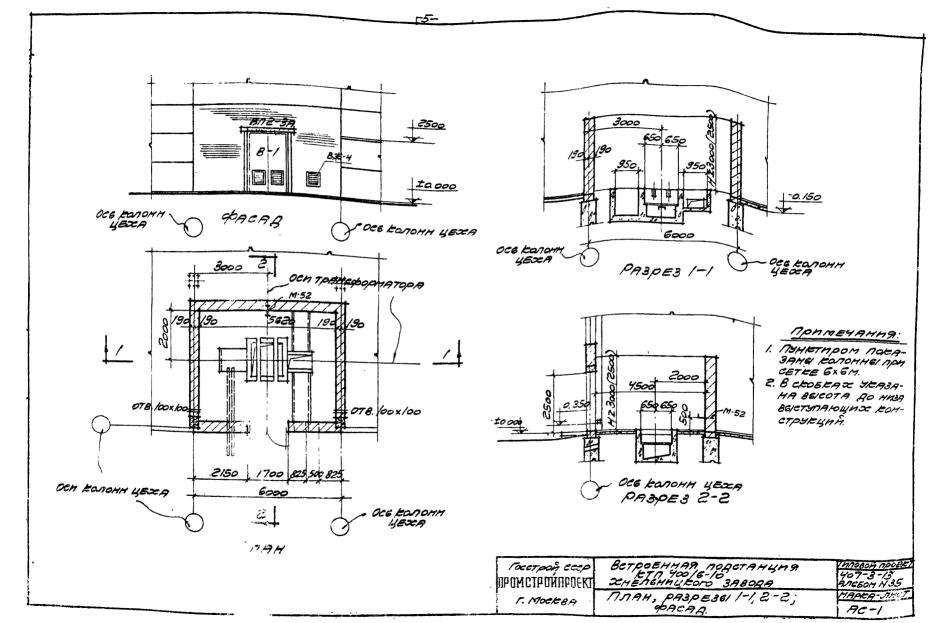
Ресчет вентиляции произведен при условиях, изложенных в пояснительной записке в альбоме № 21 "Общие материалы".

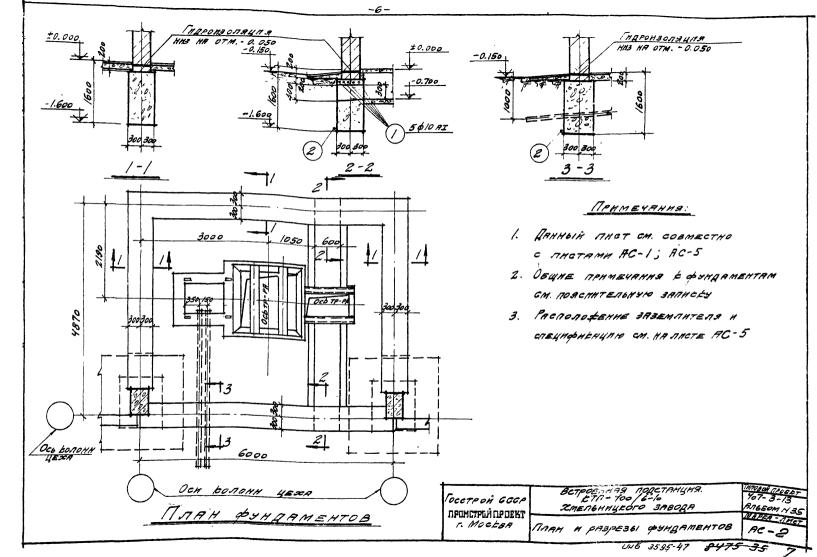
Сечение шахты принять по таблице:

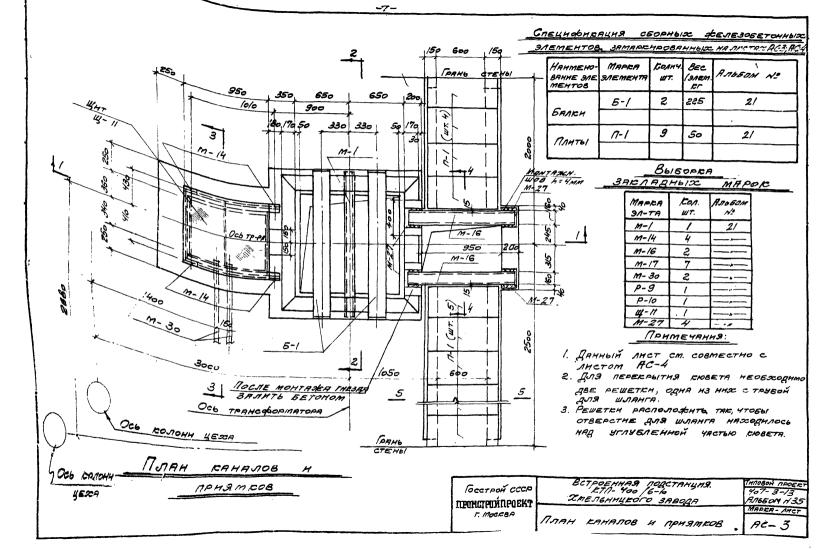
При высоте от пола подстанции до верха покрытия цеха
от 4,8 до 7,2 м
от 7,2 до 10,8 м
0,8 м2
0,6 м2
0,48 м2

При высоте от пола до верха покрытия более 10,8 м сечение шахт определять расчетом при привязке. Шахты должны выводиться на I м выше кровли и накрываться зонтом.

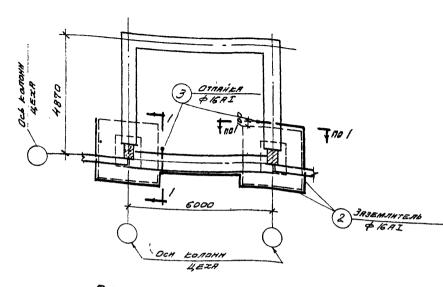
В случае невозможности устройства вытяжных шахт, вентиляцию осуществлять по индивидуальному проекту.

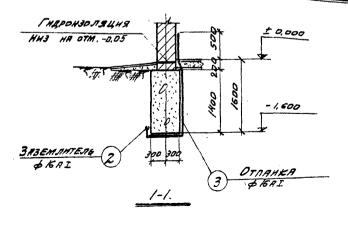

Для поддержания в зимний период температуры в помещении подстанции $+5^{\circ}$ при расчетной наружной температуре -40° установить нагревательные приборы типа $\Pi T-10-2$, 220 в, мощностью I квт, подключенные к осветительной сети. Комичество приборов принимать:


когда покрытием подстанции является покрытие цеха — 2 шт, когда покрытием подстанции является междуэтажное перекрытие — I шт.


17. Смета составлена в соответствии с положениями, изложенными в пояснительной записке к альбому k 21 "Общие материалы".

Объемы работ по фундаментам и стенам условно подсчитаны по 3-м внутренним стенам на минимальную высоту, указанную на чертеже и должны быть уточнены при привязке.


Объемы работ по наружной стене, включая фундамент, ворота, жалюзийные решетки и т.д. в смету не включены и должны быть учтены при привязке. Объемы работ по вытяжным шахтам с зонтами также в смету не включены.



-3-

ПЛЯН РАСПОЛОФЕНИЯ ЗАЗЕМЛЯЮЩИХ ПРОВОДНИКОВ.

CREUNDHERUNG APMATYPHI NA 13 NEMENT							BUSOPER RAMATYPUI NR SAEMEHT			
80/8 802 80/8/88 8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	,N2 103	3cens	ø mm.	Aruna mm .	WT.	WT.	RAWHA	ф им.	0614, R. 9. AMHR M.	BEC Er.
	/_	1,500	AI	1500	_	10	15.0	/0 AI	15	9
			+		_	ļ		HTO	ro:	9
	2	ОБЩЯЭ ДЛИНА	K	=	=	_	14.7	16 PI	20	32
	3	500 230 1420 B	16 AZ	2800		2	5,6	-	00:	32
	WANTER A STATE OF THE STATE OF	1	2 OSWAS ATHAA 3 STO 20 WE	1	2 OSWAS ATWHA K 3 STO 20 WAS 16 DROWN	1 1500 RANHA KOR. 1 1500 RI 1500 2 05448 ATHHA RI RI 3 570 20 100 RI 1500 RI 1500	1	1 1500 1500 10 15:0	1	1 1500

CHE LUMPHERLUS CEOPHOIX LENESOESTONHOIX

ЭЛЕМЕНТОВ, ЗАМАРЕИРОВАННЫХ НА SMCTAZ AC-

HAWMENOBAMIE BIEMENTOB.	MAPKA ЭЛЕМЕНТОВ	KON14.	CEC ISAEM. KC.	CTANGAPT H RABBOM Nº
Перемычки	512-3A	/	345	CEPHA CT-03-01 NACT 8. RABBOM Nº2/
	5-12	2	27	CEPNS MIN-03-02 ANOT 33-1. AND 50MIT

PHMEYAHHA:

- 1. LANHOIH SHOT CM. COBMECTHO C SHCTAMH AC-1; AC-2.
- 2. СОЕДИ НЕНИЕ ЗАЗЕМЛЯЮЩИХ ПРОВОДНИКОВ
 ПРОИЗВОДИТЬ СВАРЬОЙ ВНАХЛЕСТКУ С ПЕРЕПУСКОМ
 НА 100мм.
- 3. MECTA CBAPEN ROKPOITO FORSYUM GUTYMOM.

TOCCTPON CCCP	BCTPO E HHAR	TMAOBON APOEKT 407-3-13 RAOBOM N35
nponction npoekt	ANAH PACHONOSERMAS BASEMNONUMSE HPOBOGHNEOB	MAPLA- JINCT AC-5

190	2000	MATERHANOS

17-	5€	TOH	17.3	C	THI	6,5	_]
MAHMEHOBAHHE	Majo,299 150	MADEA	4000	KARCE	ERRO	MOO. KAT BCTŠKA	Horo
KOMETPYEYHH	150	200	/// or 0	RI	AL	BCTSEN	
C600H6/E ACETIE30SETOHH6/E							
GANKH REDEMBIYKH		0,15					15,1
БАЛКИ		0,18				_	20
MAHTEI KAHANOB			0,18				18
HTOro		05/	05/	322	209		531
MOHOMHTH		7/	En			OMM	
OTAENGHEIE				9			9
CTEPOCHH				3			
HTOro	_			9			9
CTANGI	161E	je	OHC	TPS	rey	MM	
BOPOTA		_				162,1	162,1
DEANHOSH			_	_			11,8
CTANGHGIE		_		19,6			60,6
CTA 176481E WHT61					_	54,4	54,4
BARMARHEIE MAPEH				3,9	1,6	2220	227,5
3A3EMJAHUME NPOBOQHHEM			_	32,0			32,0
HTOro		-	ļ	-		1015	cuns
		 					548,4
BCETO		9,51	0,51	96,7	22,5	491,3	6/0,5

C E J	= 30	5670	2 3.16
-	47.	Er	CTEMPART H
5A	TE	7	TE PEMBIYKH
6-12	1	345	CEMA CT- 03-0; LESSON MY-03-02 CEPMA MY-03-02 AMBOM 17
-			
		AM	
5-/	z	225	AN660M 21
17.00			
			9 HA 708
17-1	9	50	AN660M 21.
,			

+A CEOPHRIST

	ren	THE PARTY NAME OF	94119	AEPE8.	RMHBIZO H
6 CTA 776	4612.		43,QE.		-
HARMEHO3A HHE 113AE1148	MAD	,	A1166	"Ист	MOHME YAHNE
BOPOTS	5-1	1	2/	7,5	
Намозн	896-4	2	2/	16	
CTANGUE TOH	P-10	/	2/	+8 - 48	
CTANGHEIE WHTEI	W-11	1	21	37	
	M-1 M-14		2/	50. - 52	
BAKNAD HSIE	M-16	2		- -//-	
MAPEH	M-17 M-30			- 57	
	11-42	. 2	y	- 60	
	M-51	1		62	
	M-52 M-53	,1 B		- 63	
	17 30			- 63	

MEDEVENS APHMEHENHOIX & APOERTE CTAMBAPTOS M THROSSIX MEPTENCEN

Mudop	HANMEHOBAHHE	ANC TOL
CE,049 CT-03-0/	THROBEIE RETARTH I KOHCTPYRYHH 3RAHHA H COOPYXEHHA CEOPHEIE XETE3OEETOHHEIE TEREMEIYEH RTA ORHOSTARCHEX NOOMEIW TEHHEIX 3RAHHA.	8
	ТИПОВВІЕ ДЕТАЛИ И КОНСТРУКЦИН ЗДАНИЙ И СООРУЖЕНИЙ. ПЕРЕМВІЧКИ. ПОДОХОНИВІЕ ПЛИТВІ.	33-/

Госстрой СССР ПРОИЗГРОЙ ПРОЕКТ	2MENGHHUEDTO 3ABORA.	740000 1100EET 407- 3-13 Ang 600 N35
1	РАСЖОД МАТЕРНАЛОВ СПЕЦИФИКАЦИИ. ПЕРЕЧЕНЕ ПРИМЕНЕННЫХ СТАНДАРТОВ.	MOOMO
	UHB. 35.95-47 8	475-35 11

LIEHTPAJISHMÉ MHOTMI (T. TMITOPOTO IIPOEKTMPOBAHMI POSTOS I DEFE

Свердловскай силиал

€20062 г.Сверпловск-22, у. .Генеральская 3-А

Заказ # 1504 лнв. # 3645-47-праж 140