АВТЭОЭ ЭШНЕОМЧОТ АВТЭОЭ ОЛОНЫКОМОТВА АВТЭОЭ ОЛОНЖИВДОП ОЛОНЬКОВОТОВ В ТЕМЕТОВ В ТЕМЕТ

Технические требования и условия проведения испытаний OCT 37.001. 016-70

Утвержден 28/XII 1970 г.

Срок введения установлен

c 1/X 1973 r.

раздела 2, за исключением п. 2.1.2,

n. 2.1.2

c 1/1 1975 r. c 1/X 1975 r.

Настоящий отраслевой стандарт распространяется на все виды автотранспортных средств предназначенных для эксплуатации на автомобильных дорогах общей сети СССР*.

Стандарт устанавливает требования к тормозным системам автотранспортных средств, пормативы эффективности торможений, типы испытаний по определению эффективности тормозных систем, а также условия проведения этих испытаний.

Стандарт не распространяется на автотранспортиме средства, максимальная скорость которых не превышает 20 км¹ч, а также на автотранспортные средства с двигателем, имеющие менее четырех колес, если их полная масса не превышает 1 т.

1. КЛАССИФИКАЦИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ

1.1. Автотранспортные средства по назначению и весовым данным подразделяются на категории и подкатегории, указанные в табл. 1.

^{*} Основные термины, принятые в настоящем стандарте, и их определения приведены в приложении I_{\cdot}

Таблица 1

КЛАССИФИКАЦИЯ АВТОТРАНСПОРТНЫХ СРЕДСТВ

Категория	Поакатегория	Тип	Полцая масса, т	Примечание
M	M_1	Автотранспортные средства с двигателем, предназначенные для перевозки пассажиров Автотранспортные средства с двигателем, предназначенные для перевозки пассажиров и имеющие не более 8 мест для сидения, кроме места водителя, а также для перевозки мелких грузов при полной массе, соответствующей полной массе базовой модели легкового автомобиля		В данную категорию входят легковые автомобили, автобусы и автопоезда В данную подкатегорию включаются созданные на базе легковых автомобилей модификации: пикапы, универсалы и т. п.
	M_2	Автотранспортные средства с двигателем, предназначенные для перевозки пассажиров и имеющие более 8 мест для сидения, кроме места водителя	До 5	
N	M_3	То же Автотранспортные средства с двигателем, предназначенные для перевозки грузов	Свыше 5	В дапную категорию входят грузовые автомобили, автомобили-тя-гачи и автопоезда
1	N_1	То же	До 3,5	там и автопосода
	N_2	»	Свыше 3,5 до 12	
· · · · · · · · · · · · · · · · · · ·	N_3	»	Свыше 12	
0	Ì	Прицепы и полуприцепы		
1	O_{1}	То же	До 0,75	
	O_2	»	Свыше 0,75 до 3,5	
	O_3	»	Свыше 3,5 до 10	
ł	O_4	»	Свыще 10	

- 1.2. При определении подкатегории автотранспортного средства необходимо учитывать следующие положения:
- а) полной массой полуприцена условно считается полная масса полуприцена без массы, которая в статическом положении переносится с полуприцепа на тягач;
- б) полной массой седельного автомобиля-тягача является масса тягача в снаряженном состоянии с добавлением части полной массы полуприцепа, которая в статическом положении переносится на тягач. При наличии полезной нагрузки на самом тягаче ее масса включается в полную массу автомобиля-тягача;
- в) сочлененное автотранспортное средство категории M, состоящее из единиц, нерасцепляемых в процессе эксплуатации, рассматривается как одно автотранспортное средство.

2. ТРЕБОВАНИЯ К ТОРМОЗНЫМ СИСТЕМАМ

2.1. Общие требования

- 2.1.1. Автотранспортное средство, за исключением специально оговоренных случаев, должно иметь рабочую, запасную и стояночную тормозные системы.
- 2.1.2. Автотранспортные средства подкатегорий M_3 и N_3 , а также предназначенные для эксплуатации в горных местностях автотранспортные средства подкатегорий N_2 и O_4 должны быть оборудованы вспомогательной тормозной системой.
- 2.1.3. Тормозные системы могут иметь общие элементы. Однако в любом случае на автотранспортном средстве должно быть не менее двух независимых органов управления разных тормозных систем.
- 2.1.4. Расположение органов управления тормозных систем должно обеспечивать удобство управления тормозными системами, а также не должно создавать опасность для водителя и пассажиров в случае дорожно-транспортного происшествия.
- 2.1.5. Тормозная система должна удовлетворять требованиям настоящего стандарта вне зависимости от вибраций, возникающих при работе автотранспортного средства, и от износа, коррозии и старения ее элементов в условиях эксплуатации, для которых предназначено данное автотранспортное средство.
- 2.1.6. Рабочая, запасная и стояночная тормозные системы должны воздействовать на поверхности трения, постоянно и жестко связанные с колесами автотранспортного средства при помощи деталей, которые не должны выходить из строя при эксплуатации.
- 2.1.7. Тормозные системы после обкатки автотранспортного средства, проведенной согласно инструкции предприятия-изготовителя, должны обеспечивать одинаковое распределение тормозных сил между колесами далной оси. Допустимое отклонение не должно превышать 15 % наибольшего значения тормозной силы.

2.1.8. Тормозные системы должны обеспечивать предписанную эффективность торможения без регулировки зазоров после нагрева тормозных механизмов, а также при допустимой степени износа накладок.

Износ фрикционных поверхностей тормозных механизмов должен легко компенсироваться системой ручного или автоматического

регулирования.

• 2.1.9. Устройства, не относящиеся к тормозным системам не должны получать энергию из аккумуляторов энергии тормозных систем в случае, если при выходе из строя источника энергии во время движения автотранспортного средства работа данных устройств или их неисправность приводит к падению уровня энергии в этих аккумуляторах ниже 90 % номинального значения.

2.1.10. Аппараты тормозного привода должны быть изготовлены и установлены таким образом, чтобы попадание пыли и грязи в их рабочие полости при эксплуатации автотранспортного сред-

ства не нарушало их работоспособность.

2.1.11. Расположение и крепление элементов магистралей тормозных систем должны обеспечивать их сохранность в эксплуатации, а также при поломке трансмиссии и рулевого управления ав-

тотранспортного средства.

2.1.12. Аппараты тормозного привода, элементы магистралей резервуары тормозной жидкости и аккумуляторы энергии не должны располагаться в непосредственной близости от тех частей автотранспортного средства, которые могут вызвать их недопустимый нагрев.

2.1.13. Время растормаживания любой тормозной системы не должно превышать 150 % времени срабатывания при равном тем-

пе воздействия на орган управления этой системы.

2.1.14. Такие элементы тормозных систем, как тормозная педаль и ее кронштейн, главный тормозной цилипдр, тормозной кран, соединения между тормозной педалью и главным тормозным цилипдром или тормозным краном, воздухораспределитель, колесные тормозные цилиндры, узлы регулировочных рычагов и разжимных кулаков и подобные им элементы считаются элементами гарантированной прочности.

Элементы гарантированной прочности не должны выходить из строя по поломкам на протяжении всего срока службы автотранс-

портного средства в любых условиях эксплуатации.

2.1.15. Элементы тормозных систем должны быть легко доступны для технического обслуживания.

2.2. Требования к рабочей тормозной системе

2.2.1. Рабочая тормозная система должна обеспечивать регулирование скорости и остановку автотранспортного средства вне зависимости от его скорости, нагрузки и величин уклонов дорог, для которых оно предназначено.

2.2.2. Рабочая тормозная система должна действовать на все колеса автотранспортного средства Действие рабочей тормозной системы должно быть плавным и рационально распределяться осям автотранспортного средства.

2.2.3. Водитель должен иметь возможность управлять рабочей тормозной системой со своего рабочего места, не отрывая обеих рук от рулевого управления. Исключение допускается при управлении специальными автотранспортными средствами, предназначен-

ными для инвалидов.

2.2.4. Привод рабочей тормозной системы автотранспортных средств категорий M и N и поджатегории O_4 должен иметь не менее двух контуров. При отказе какого-либо контура (контуров) оставшийся исправным контур (контуры) должен обеспечивать торможение автотранспортного средства с эффективностью не менее 30 % значения, предписанного для рабочей тормозной системы данного автотранспортного средства.

2.2.5. При использовании в рабочей тормозной системе источников энергии, кроме мускульной силы водителя и вакуумных устройств, необходимо иметь для каждого контура привода либо свой источник энергии, либо автономный аккумулятор энергии при об-

щем источнике энергии для всей тормозной системы.

При повреждении какого-либо контура привода источник энергии не должен прекращать питание исправных контуров.

- 2.2.6. В рабочих тормозных системах, имеющих аккумуляторы энергии, ее запас должен даже при неработающем источнике энергии обеспечивать не менее пяти торможений автотранспортного средства с эффективностью, предписанной для его рабочей тормозной системы.
- 2.2.7. Запас хода органа управления рабочей тормозной системы должен обеспечивать предписанную эффективность торможения и работоспособность тормозной системы в эксплуатации. Ход этого органа управления при непсправности какого-либо контура тормозного привода должен обеспечивать предписанную ность торможения с первого воздействия на этот орган управления. 2.3. Требования к запасной тормозной системе

2.3.1. Запасная тормозная система должна обеспечивать остановку автотранспортного средства в случае выхода из строя рабочей тормозной системы при условии, что в тормозных системах одновременно не может произойти более одного отказа. Действие запасной тормозной системы должно быть плавным-

2.3.2. Автотранспортные средства категории О могут не иметь запасной тормозной системы.

2.3.3. В случае отсутствия на автотранспортном средстве автономной запасной тормозной системы ею считается и должен выполнять ее функции каждый контур рабочей тормозной системы или стояночная тормозная система.

- 2.3.4 Водитель должен иметь возможность управлять запасной тормозной системой со своего рабочего места, контролируя при этом по крайней мере одной рукой рулевое управление.
- 2.3.5. Орган управлення запасной тормозной системы может быть как независимым, так и общим с рабочей тормозной системой или со стояночной тормозной системой.
- 2.3.6. При общем органе управления рабочей и запасной тормозных систем связь между этим органом и элементами их передаточных механизмов не должна ухудшаться в процессе эксплуатации.
- 2.3.7. При налични независимых органов управления рабоней и запасной тормозных систем одновременное приведение в действие этих органов управления не должно ухудшать тормозные свойства автотранспортного средства как в случае исправности тормозных систем, так и в случае выхода из строя одной из них.
- 2.3.8. Повреждение какого-либо элемента, кроме элементов гарантированной прочности, а также всякие другие неисправности тормозных систем не должны препятствовать тому, чтобы с помощью запасной тормозной системы или систем, выполняющих ее функцию, можно было бы затормозить автотранспортное средство с эффективностью, не меньшей, чем предписанная для торможения запасной тормозной системои.
 - 2.4. Требования к стояночной тормозной системе
- 2.4-1. Стояночная тормозная система должна обеспечивать неподвижность автотранспортного средства на подъеме и спуске даже при отсутствии водителя.
- 2.4.2. Водитсль должен иметь возможность управлять стояночной тормозной системой одиночного автотранспортного средства и автопоезда со своего рабочего места.
- 2.43. В тормозном приводе стояночной тормозной системы может использоваться любой вид энергии, однако удержание в заторможенном состоянии тормозных механизмов этой системы должно осуществляться устройством, деиствующим чисто механическим способом (без применения нетвердых тел).
- 2 4.4. Стояночная тормозная система должна иметь орган управления и передаточный механизм привода, независимый от рабочей тормозной системы.
- 2.4.5. При общем органе управления рабочей и запасной тормозных систем стояночная тормозная система должна быть такон, чтобы ее можно было приводить в действие во время движения автотранспортного средства для его остановки. Действие стояночной тормозной системы в этом случае должно быть плавным.
- 2.4.6. Любой усилитель, используемый в стояночной тормозной системе, может иметь автономный аккумулятор энергии. При выходе из строя этого аккумулятора действие стояночной тормозной системы должно обеспечиваться любым другим аккумулятором энергии.

2.5. Требования к вспомогательной тормозной системе

2.5.1: Вспомогательная тормозная система должна обеспечивать поддержание постоянной скорости автотранспортного средства и регулирование ее самостоятельно или одновременно с рабочей тормозной системой с целью разгрузки последней.

2.5.2. Водитель должен иметь возможность управлять вспомогательной тормозной системой со своего рабочего места, контролируя при этом по крайней мере одной рукой рудсвое управ-

ление.

2.6. Требования к тормозным системам автопоездов, автомобилей-тягачей, прицепов (полуприцепов)

2.6.1. При торможении автомобиля-тягача любой тормозной системой рабочая тормозная система прицепа (полуприцепа) должна срабатывать с эффективностью, не нарушающей устойчивость движения автопоезда. Это требование должно выполняться и при выходе из строя какого-либо контура привода рабочей тормозной системы автомобиля-тягача.

2.6.2. Автомобиль-тягач должен иметь устройство, позволяющее затормозить автопоезд рабочей тормозной системой автомобилятягача при выходе из строя тормозной системы прицепа (полуприцепа) или при разрушении соединительных трубопроводов. Эффективность такого торможения должна быть не менее предписанной для запасной тормозной системы автопоезда.

2.6.3. При разрыве сцепного устройства во время движения рабочая тормозная система прицена должна автоматически обеспечивать его остановку с эффективностью, не хуже предписанной в табл. 3 и 4 для соответствующего автопоезда. Это требование не распространяется на одноосные прицены полной массой не более 1,5 т при условии, что они оборудованы дополнительным сцепным устройством (цепями, тросами и т. п.), которое при разрыве главного сцепного устройства не позволяет дышлу касаться дороги и обеспечивает управление прицепом.

2.6.4. В случае разгерметизации одного из соединительных трубопроводов автопоезда водитель должен иметь возможность привести в действие тормозные механизмы прицепа (полуприцепа) с помощью рабочей или запасной тормозной системы автомобиля-тягача или с помощью специального органа управления, если только эта разгерметизация не вызывает автоматического затормажива-

ния прицепа (полуприцепа).

2.6.5. На прицепах (полуприцепах) подкатегории O_1 рабочая тормозная система не обязательна. Однако если такой прицеп (полуприцеп) разрешено сцеплять с автомобилем-тягачом подкатегории M_1 или с автотранспортным средством, имеющим снаряженную массу меньше удвоенной полной массы прицепа (полуприцепа), последний должен удовлетворять требованиям, предъявленным к автотранспортным средствам подкатегории O_2 .

2.6.6. Рабочая тормозная система прицепа (полуприцепа) подкатегории O_2 должна образовывать с рабочей тормозной системой автомобиля-тягача непрерывную, полунепрерывную или инершион-

ную тормозную систему автопоезда.

2.6.7. Инерционную тормозную систему допускается применять на прицепах подкатегории O_2 только при условии, что полная масса прицепа не превышает 1,5 т и составляет не более 60% полной массы автомобиля-тягача.

Инерционная тормозная система должна приводиться в действие только во время и вследствие торможения автомобиля-тягача.

- 2.6.8. Рабочая тормозная система прицепов (полуприцепов) подкатегорий O_3 и O_4 должна образовывать с рабочей тормозной системой тягача непрерывную или полунепрерывную тормозную систему автопоезда.
- 2.6.9. Прицеп (полуприцеп), имеющий рабочую тормозную систему, должен иметь также стояночную тормозную систему для его затормаживания при отсоединении от автомобиля-тягача. Эта стояночная тормозная система должна с соблюдением требований безопасности приводиться в действие водителем или другим лицом. находящимся на дороге.

Прицепы, предназначенные для перевозки пассажиров, должны иметь, кроме того, орган управления стояночной тормозной системы, расположенный внутри прицепа.

2.7. Требования к системам сигнализации и контроля

- 2.7.1. При отказе какого-либо элемента тормозного приводящем к нарушению основных функций последнего, сигнализирующее устройство должно подавать водителю акустический или оптический сигнал красного цвета.
- 2.7.2. Сигнал должен подаваться не позднее момента приведения в действие органа управления тормозной системы и быть легко различимым в любых условиях эксплуатации.
- 2.7.3. Возможная неисправность какого-либо элемента сигнализирующего устройства не должна приводить к потере эффективности торможения.
- 2.7.4. При использовании в тормозной системе аккумуляторов энергии тормозная система должна иметь сигнализирующее устройство, подающее акустический сигнал о падении уровня энергии в аккумуляторах ниже 65% номинального значения.

2.7.5. Водитель должен иметь возможность легко контролиро-

вать исправность сигнализирующих устройств.

2.7.6. Резервуары тормозной жидкости должны быть изготовлены и установлены таким образом, чтобы можно было, не открывая их, контролировать уровень жидкости.

2.7.7. Для обеспечения в эксплуатации контроля за состоянием тормозных систем, использующих полностью или частично пневматические тормозные приводы, в каждом контуре последних должно быть предусмотрено устройство, позволяющее подключать контрольную аппаратуру. Конструкция этого устройства должна обеспечивать герметичность тормозного привода.

3. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ ТОРМОЗНЫХ СИСТЕМ

3.1. Общие требования

3.1.1. Эффективность тормозных систем должна определяться дорожными испытаниями.

3.1.2. Эффективность тормозных систем составного автотранспортного средства должна определяться как для автопоезда, так и его автомобиля-тягача-

3.1.3. Автотранспортные средства категории O должны проходить испытания в составе автопоезда. Эффективность тормозных систем одиночных автотранспортных средств категории O может определяться стендовыми испытаниями.

3.1.4. Испытания по определению эффективности тормозных систем допускается проводить способами, эквивалентными спосо-

бам, установленным настоящим стандартом.

3.2. Условия проведения испытаний

3.2.1. Состояние автотранспортного средства и его агрегатов должно соответствовать техническим условиям предприятия-изготовителя.

3.2.2 Автотранспортные средства перед определением эффективности тормозных систем должны пройти обкатку в соответствии с инструкцией предприятия-изготовителя.

3.2.3. Автотранспортное средство должно иметь полную массу и ее распределение по осям в соответствии с техническими условиями предприятия-изготовителя. В случае нескольких вариантов распределения полной массы по осям испытания должны проводиться с таким распределением, при котором осевые массы пропорциональны максимально допустимым нагрузкам на оси.

Испытания городских автобусов должны проводиться при допу-

стимых предельных нагрузках.

- 3.2.4. Испытания автотранспортных средств, в тормозных приводах которых используются аккумуляторы энергии, должны начинаться при нормальных значениях параметров, характеризующих запас энергии.
- 3.2.5. Агрегаты трансмиссии ходовой части, кроме тормозных механизмов, должны быть предварительно прогреты.

3.2.6. Износ рисунка протектора шин должен быть равномерным и не должен превышать 50 %.

3.2.7. Участок дороги, на котором проводятся испытания, должен быть прямым и горизонтальным. Допускаются продольные уклоны не более 0,5%.

- 3.2.8. Поверхность участка дороги, на котором проводятся испытания, должна иметь твердое сухое ровное связанное покрытие и обеспечивать хорошее сцепление колес с дорогой.
- 3.2.9. Испытания должны проводиться при температуре окружающей среды от минус 5 до плюс 30°С.
- 3.2.10. Испытания должны проводиться при скорости ветра не более 3 м/с.
- 3.2.11. Температура наружной поверхности тормозного барабана или диска, замеренная пепосредственно перед каждым испытанием, должна быть в пределах от 50 до 100°С.
- 3.2.12. Испытання считаются недействительными и доджны быть повторены, если в процессе торможения автотранспортное средство разворачивается на угол свыше 8° или выходит за габариты коридора шириной 3,5 м. При торможении водитель не должен исправлять траекторию движения автотранспортного средства с помощью рулевого управления, если только этого не требует безопасность движения
 - 3.3. Определение эффективности рабочей тормозной системы
- 3.3.1. Критериями оценки эффективности рабочей тормозной системы при дорожных испытаниях являются величина тормозного пути и величина установившегося замедления.
- 3.3.2. Критериями оценки эффективности рабочей тормозной системы при стендовых испытаниях являются величина суммарной тормозной силы, развиваемой в контакте колес с опорной поверхностью, и время, прошедшее с начала торможения до момента, когда давление в колесном тормозном аппарате, находящемся в наименее благоприятных условиях, достигнет значения, соответствующего предписанной величине суммарной тормозной силы.
- 3.3.3. Величины критериев оценки эффективности рабочей тормозной системы могут определяться непосредственно или с помощью пересчета результатов дорожных испытаний по методу, изложенному в приложении 2.
- 3.3.4. Испытания по определению эффективности рабочей тормозной системы разделяются на три типа: испытания «ноль», испытания I, испытания II.
- 3.3.5. Испытання «ноль» предназначены для определения эффективности рабочей тормозной системы при холодных тормозных механизмах.
- 3.3.6. Испытаниям «поль» подвергаются все автотранспортные средства
- 3.3.7. Испытания «ноль» должны проводиться с соблюдением условий, изложенных в подразделе 3.2, и должны повторяться на автотранспортном средстве не имеющем полезной нагрузки. В последнем случае в автотранспортном средстве, кроме водителя, может находиться лицо, проводящее испытания, и располагаться необходимая испытательная аппаратура и оборудование.

- 3.3.8. Испытания «ноль» проводятся как с двигателем, отсоединенным от трансмиссии, так и с двигателем, соединенным с ней
- 3.3.9. Испытания «ноль» с двигателем, отсоединенным от трансмиссии, заключаются в определении величин критериев оценки эффективности при торможении, режим которого задан в подразделе 4.1.

Автотранспортное средство считается удовлетворительно прошедшим испытания «ноль», если показанная им эффективность торможения соответствует нормативам, приведенным в подразделе 4.1.

3.3.10. Испытания «ноль» с двигателем, соединенным с трансмиссией, заключаются в определении величин критериев оценки эффективности полных торможений, произведенных с разных начальных скоростей. При этом значение наибольшей начальной скорости торможения должно равняться 80 %, а наименьшее значение—30 % максимальной скорости автотранспортного средства. Результаты данных испытаний должны фиксироваться в протоколе испытаний.

Примечание. Максимальной скоростью v_{\max} является максимальная скорость автотранспортного средства, объявленная предприятием-изготовителем в технических условиях на данное автотранспортное средство.

- 3.3.11. Испытания 1 предназначены для определения эффективности рабочей тормозной системы при нагретых тормозных механизмах.
- 3.3.12. Испытаниям I подвергаются все автотранспортные средства.
- 3.3.13. Автотранспортные средства, которые подвергаются испытаниям I, должны иметь полную массу.
- 3.3.14. Испытания I состоят из двух этапов: предварительного, во время которого тормозные механизмы нагреваются, и основного, во время которого определяется эффективность рабочей тормозной системы.
- 3.3.15. Предварительный этап испытаний I автотранспортных средств категорий M и N и подкатегорий O_1 и O_2 (в составе автопоезда) проводится способом последовательных торможений, режим которых должен соответствовать табл. 2. Испытания должны проводиться при соблюдении условий, изложенных в подразделе 3.2, за исключением п. 3.2.3.
- 3.3.16. Предварительный этап испытаний I автотранспортных средств подкатегорий O_3 и O_4 проводится способом непрерывного торможения их в составе автопоезда. За время предварительного этапа тормозные механизмы должны нагреваться так, чтобы количество поглощенной ими энергии было равно количеству энергии, поглощаемой за тот же промежуток времени тормозными механизмами данного автотранспортного средства, двигающегося со

РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ЭТАПА ИСПЫТАНИЙ І

Подкатегория автотранс- портного средства	Начальная скорость тормо- жения v _o , км/ч	Конечная скорость торможения с _к , км/ч	Длительность цикла тормо- жения т _ц , с	Число тормо- жений, <i>т</i>
$egin{array}{c} M^{f _2}_{f _2} \ M_{f _1} \end{array}$	0,8 v _{max} , но не более 120 0,8 v _{max} , но не более 100 0,8 v _{max} , но не более 60 0,8 v _{max} , но не более 120 0,8 v _{max} , но не более 60 0,8 v _{max} , но не более 60	$egin{array}{l} 0,5v_0 \ 0,5v_0 \ 0,5v_0 \ 0,5v_0 \ 0,5v_0 \ 0,5v_0 \ \end{array}$	45 55 60 55 60 60	15 15 20 15 20 20

Примечания:

1. Длительностью цикла торможения $\tau_{\rm ц}$ является время, прошедшее меж-

ду началом двух последовательных торможений.

2. Если в силу характеристик автотранспортного средства не представляется возможным выдержать предписанное значение длительности цикла торможения, это значение можно увеличить таким образом, чтобы, помимо времени, необходимого для торможения и ускорения автотранспортного средства, в каждом цикле имелся отрезок времени для движения с постоянной скоростью, который был бы не более 10 с.

3. Усилие, триложенное к органу управления рабочей тормозной системы, должно обеспечивать при первом последовательном торможении установившееся замедление равное 3 м/c^2 . Это усилие должно сохраняться постоянным во время остальных торможений.

4. Разгон автотранспортного средства после торможения до заданной на-

чальной скорости должен производиться максимально быстро.

скоростью 40 км/ч по спуску с постоянным уклоном 7% на расстоянии 1,7 км. При этом двигатель автомобиля-тягача должен быть отсоединен от трансмиссии.

Предварительный этап испытаний должен проводиться при соблюдении условий, изложенных в подразделе 3.2, за чсключением пп. 3.2.3 и 3.2.8.

3.3.17. Основной этап испытаний I должен проводиться аналошчно испытаниям «ноль» с отсоединенным двигателем не позднее чем через 45 с после окончания предварительного этапа. При проведении основного этапа испытаний I должны соблюдаться условия, изложенные в подразделе 3.2, за исключением п. 3.2.11.

Допускается основной этап испытаний I проводить на участке дороги с продольным уклоном более 0,5 %. При этом результаты испытаний должны быть пересчитаны по методу, изложенному в приложении 2.

- 3.3.18. Автотранспортное средство считается удовлетворительно прошедшим испытания I, если выполняются следующие условия:
- а) величины тормозного пути и установившегося замедления соответствуют нормативам, приведенным в подразделе 4.1;

б) величина тормозного пути не превышает 165 % величины

тормозного пути, определенной при испытаниях «ноль».

3.3.19. Испытания II предназначены для определения эффективности рабочей тормозной системы при движении на затяжных спусках.

- 3.3.20. Испытаниям II подвергаются все автотранспортные средства.
- 3.3.21. Автотранспортные средства, которые подвергаются испытаниям II, должны иметь полную массу.
- 3.3.22. Испытания II состоят из двух этапов: предварительного, во время которого тормозные механизмы нагреваются, и основного, во время которого определяется эффективность рабочей тормозной системы.

3.3.23. Предварительный этап испытаний II проводится способом непрерывного торможения.

Во время предварительного этапа тормозные механизмы должны нагреваться так, чтобы количество поглощаемой ими энергии было равно количеству энергии, поглощаемой за тот же промежуток времени тормозными механизмами данного автотранспортного средства, движущегося со скоростью 30±5 км/ч по спуску с постоянным уклоном 6% на расстоянии 6 км. При этом в трансмиссии должна быть включена передача, при которой выполняются следующие условия:

- а) число оборотов двигателя не превышает числа оборотов, соответствующего максимальной мощности последнего;
- б) обеспечивается максимально возможная в данных условиях эффективность торможения двигателем.

Предварительный этап испытаний должен проводиться при соблюдении условий, изложенных в подразделе 3.2, за исключением пп. 3.2.3 и 3.2.8.

3.3.24. Основной этап испытаний II должен проводиться аналогично испытаниям «ноль» с отсоединенным двигателем не позднее чем через 45 с после окончания предварительного этапа. При проведении основного этапа испытаний II должны соблюдаться условия, изложенные в подразделе 3.2, за исключением п. 3.2.11.

Допускается основной этап испытаний II проводить на участке дороги с продольным уклоном более 0,5 %. При этом результаты испытаний должны быть пересчитаны по методу, изложенному в приложении 2.

- 3.3.25. Автотранспортное средство считается удовлетворительно прошедшим испытания II, если показанная им эффективность соответствует нормативам, приведенным в подразделе 4.1.
 - 3.4. Определение эффективности запасной тормозной системы
- 3.4.1. Критериями оценки эффективности запасной тормозной системы при дорожных испытаниях являются критерии, приведенные в п. 3.3.1.

Величины этих критериев должны определяться при торможе-

нии, режим которого задан в п. 4.2.

3.4.2. Критериями оценки эффективности запасной тормозной системы при стендовых испытаниях являются критерии, приведенные в п. 3.3.2.

3.4.3. Величины критериев оценки эффективности запасной тормозной системы могут определяться непосредственно или с помощью пересчета результатов испытаний по методу, изложенному в приложении 2.

3.4.4. Испытания запасной тормозной системы проводятся ана-

логично испытаниям «ноль» с отсоединенным двигателем.

3.4.5. Автотранспортное средство считается удовлетворительно прошедшим испытания по определению эффективности запасной тормозной системы, если показанная им эффективность соответствует нормативам, приведенным в подразделе 4.2.

3.5. Определение эффективности стояночной тормозной системы

3.5.1. Критерием оценки эффективности стояночной тормозной системы является величина суммарной тормозной силы, развиваемой тормозными механизмами этой системы.

3.5.2. Величина критерия оценки эффективности стояночной тормозной системы может определяться непосредственно или с по-

мощью пересчета результатов испытаний.

3.5.3. Автотранспортные средства, которые подвергаются испытаниям по определению эффективности стояночной тормозной сис-

темы, должны иметь полную массу.

3.5.4. Испытания по определению эффективности стояночной тормозной системы должны проводиться на участке дороги, имеющем продольный уклон, равный величине, которая задана техническими условиями на данное автотранспортное средство, но не менее 25%.

Испытания должны проводиться при направлении автотранспортного средства вверх и вниз по уклону. Двигатель автотранс-

портного средства должен быть отсоединен от трансмиссии.

3.5.5. Испытания по определению эффективности стояночной тормозной системы должны проводиться при соблюдении условий, изложенных в подразделе 3.2, за исключением пп. 3.2.3, 3.2.7 и 3.2.12.

3.5.6. Автотранспортное средство считается удовлетворительно прошедшим испытания по определению эффективности стояночной тормозной системы, если показанная им эффективность соответствует нормативам, приведенным в подразделе 4.3.

3.6 Определение эффективности вспомогательной тормозной

системы

3.6.1. Критерием оценки эффективности вспомогательной тормозной системы является величина суммарной тормозной силы, развиваемой тормозными механизмами этой системы.

3.6.2. Величина критерия оценки эффективности вспомогательной тормозной системы может определяться непосредственно или с помощью пересчета результатов испытаний.

3.6.3. Автотранспортные средства, которые подвергаются испытаниям по определению эффективности вспомогательной тормоз-

ной системы, должны иметь полную массу.

3.6.4. Испытания по определению эффективности вспомогательной тормозной системы должны проводиться торможением этой системой автотранспортного средства при его движении по спуску, имеющему заданные в подразделе 4.4 значения уклона и длины.

Испытания должны проводиться при соблюдении условий, изло-

женных в подразделе 3.2, за исключением пп. 3.2.3 и 3.2.7.

При испытаниях допускается включение передачи, при которой число оборотов двигателя не превышает числа оборотов, соответ-

ствующего максимальной мощности последнего.

3.6.5. Автотранспортное средство считается удовлетворительно прошедшим испытания по определению эффективности вспомогательной тормозной системы, если показанная им эффективность соответствует нормативам, приведенным в лодразделе 4.4.

4. НОРМАТИВЫ ЭФФЕКТИВНОСТИ ТОРМОЗНЫХ СИСТЕМ

4.1. Нормативы эффективности рабочей тормозной системы

4.1.1. Нормативы эффективности рабочей тормозной системы

при дорожных испытаниях приведены в табл. 3 и 4.

- 4.1.2. При определении эффективности рабочей тормозной системы автотранспортных средств категории О во время стендовых испытаний величины критериев должны иметь следующие значения:
- а) при непрерывной или полунепрерывной рабочей тормозной системе автопоезда тормозная сила в процентах доли полной массы, приходящейся на соответствующую ось в статическом положении, должна составлять:

до 1 января 1975 г. 45 %, с 1 января 1975 г. 56 %.

При инерционной рабочей тормозной системе автопоезда такая эффективность должна обеспечиваться при толкающем усилии в сцепном устройстве, не превыщающем 6 % полной массы прицепа;

- б) время, прошедшее с начала торможения до момента, в который давление в колесном тормозном аппарате, находящемся в нанименее благоприятных условиях, достигнет значения, соответствующего предписанной величине тормозной силы, должно быть не более 0,6 с. При этом время приведения в действие органа управления рабочей тормозной системы должно быть не более 0,2 с.
 - 4.2. Нормативы эффективности запасной тормозной системы
- 4.2.1. Нормативы эффективности запасной тормозной системы при дорожных испытаниях приведены в табл. 5 и 6.

OCT 37.001.016—7

НОРМАТИВЫ ЭФФЕКТИВНОСТИ РАБОЧЕЙ ТОРМОЗНОЙ СИСТЕМЫ (Действуют до 1 января 1975 г.)

	pr-	<u>.</u>	rop-	aB-	Допус	тимые значения	критериев о	це н ки эффекти	вности при и	испытаниях
	испо	o rp al a	11 ₅ 70	ympi ie 60	H	0ль"		I	II	
Тип автотранс- портного средства	Категория автотраиспорт пого средства	Подкатегория автотран- спортного средства	Начальная скорость можепия v_0 , км/ч	Усилие на органе управ- ясиия Р _{пед} , кгс, не болес	Тормозной путь S ₀ , м, не более	Установившееся замедление fycr' м/с², не менее	Тормозной путь S _I , м, не более	Установившееся замедление јуст, мјс², не менее	Тормозной путь SII, м, не более	$\mathcal{Y}_{CTAHOBИВШееCS}$ замедление j_{YCT} , м/с², не менее
Одиночные		M_1	80	50	43,2	7,0	54,0	5,4	57,5	5,0
автотранспорт-	М	M_2	60		25,8	7,0	32,3	5,3	34,3	4,9
ные средства и а втопоезда		M_3	00		32,1	6,0	40,1	4,5	42,7	4,1
Одиночные		N_1	70		4 4,8		56,0	4,1	59,6	3,8
автотранспорт-		N_2	50	.	25,0	ļ	31,3	4,0	33,3	3,7
ные средства		N_3	40	70	17,2		21,5	4,0	22,9	3,6
Автопоезда	N	N ₁	70		46,9	5,5	58,6	4,1	62,4	3,8
***DI OHOCOMA		N_2	50		26,5		33,1	4,0	35,2	3,7
		<i>N</i> 3	40	1	18,4		23,0	3,9	24,5	3,6

НОРМАТИВЫ ЭФФЕКТИВНОСТИ РАБОЧЕЙ ТОРМОЗНОЙ СИСТЕМЫ (Действуют до 1 января 1975 г.)

		ن	тор-	ab-	Допуст	имые значения	критериев о	ценки эффекти	вности при и	пспытаниях
	HC-	траг		ymp; ie 60	"н	0ль"		I		II
Тип автотранс- портного средства	Категория автотранс- портного средства	Подкатегория автотранс- портного средства	Начальная скорость можения то км:ч	Усилие на органе управ- ления Р пед, ктс, не более	Тормозной путь Ѕо, м, не более	Установившееся замедление јуст м;с², не мене е	Тормозной путь S ₁ , м, не более	Установившееся замсяление јуст м.с², не менее	Тормозной путь SII, м, не более	Установившееся замедление <i>fyct</i> , м/с², не менее
Одиночные		M_1	80	50	50,7	5,8	63,4	4,4	67,4	4,1
автотранспорт-	М	M M_2	60		36,7	5,0	45,9	3,8	48,8	3,5
ные средства и автопоезда		M_3		}		0,0	40,9	0,0	10,0	0,0
Одипочные		N_1	70		53,1	4,4	66,4	3,4	70,6	3,1
автотранспорт-		N_2	50		29,2		36,5	3,3	38,8	0,1
ные средства		N_3	40	70	19,9		24,9		26,5	3,0
Автопоезда	N	N ₁	70		55,2		69,0		73,4	3,1
1101100000		N_2	50		30,7		38,4		40,8	3,0
ţ		N_3	40		21,1		26,4	3,2	28,1	2,9

Примечания к табл. 3 и 4:

1. Нормативные значения тормозного пути и установившегося замедления

даны для торможения на горизонтальной дороге.

2. Если автотранспортное средство не может развить начальную скорость торможения, указанную в табл. З и 4, торможение должно производиться с максимальной скорости данного автотранспортного средства. В этом случае нормативное значение тормозного пути должно быть рассчитано согласно пп. 4-6 данных примечаний подстановкой в формулы значений максимальной скорости.

3. Предписанные величины усилия на органе управления должны быть по-

лучены за время не более 0,2 с.

4. Нормативные значения тормозного пути для испытаний «ноль» рассчитаны:

$$s_0$$
 в табл. 3 по формулам $s_0 \cdot 0.10v_0 + \frac{{v_0}^2}{150}$ — для подкатегории $\mathbf{M_1}$;

$$S_0 = 0,15v_0 + \frac{{v_0}^2}{130}$$
 — для подкатегорий M_2 и M_3 ;

$$S_0$$
<0,15 v_0 + $\frac{{v_0}^2}{115}$ — для одиночных автотранспортных средств категории N ;

$$S_0 < 0.18v_0 + \frac{{v_0}^2}{115}$$
— для автоноездов категории N ;

б) в табл. 4 по формулам

$$S_{0^{\circ}}$$
 (0,10 $v_0+rac{{v_0}^2}{182}$ — для подкатегорий M_1 и M_2 ;

$$S_0 < 0,15v_0 + \frac{{v_0}^2}{143}$$
— для одиночных автотранспортных средств категории N ;

$$S_0 \le 0$$
, $18v_0 + \frac{{v_0}^2}{143}$ — для автопоездов категории N .

б. Нормативные значения тормозного пути для испытаний I и II рассчитаны исходя из нормативных значений для испытаний «ноль» по формулам

$$S_{\rm I} \ll 1,25S_{\rm 0}$$
 и $S_{\rm II} \ll 1,33S_{\rm 0}$.

6. Нормативные значения установившегося замедления при испытаниях I и II рассчитаны по формуле

$$j_{
m ycr} > \frac{{v_o}^2}{.26(KS_0 - Av_0)}$$
 ,

где K=1,25 для испытаний I;

K = 1,33 для испытаний H;

A = 0,10 для подкатегорий M_1 ;

A=0.10 для подкатегорий M_2 в табл. 4;

A = 0,15 для подкатегорий M_2 в табл. 3;

A=0.15 для подкатегорий M_3 и одиночных автопранспортных средств категории N;

A = 0.18 для автопоездов категории N.

Таблица 5 НОРМАТИВЫ ЭФФЕКТИВНОСТИ ЗАПАСНОЙ ТОРМОЗНОЙ СИСТЕМЫ (Действуют до 1 января 1975 г.)

	автотранспорт- ва	автотранс- тва	1b T0p-	Усилие на ления Р _{пел}	органе управ- . кгс, не болес		начения крнте- эффективности пытаниях
Тип автотран- спортного средства	Категория автотра пого средства	Подкатегория авт портного средства	Началыгая скорость можения vo, км ч	Ручной оргаи управления	Ножной орган управления	Тормозной путь Ѕ _т , м, не более	Устаиовившееся замедление јуст, м/с², не менее
Одиноч-		M_1	80	40	50	93.3	2,9
ные авто- транспорт- ные средст- ва и авто- поезда	М	$M_2 M_3$	60			64,4	2,5
Одиноч- ные авто- транспорт- ные средст- ва	N	$N_1 N_2 N_3$	70 50 40	60	70	95,7 51,0 33,8	2,2
Автопоезда	:	N_1 N_2 N_3	70 50 40			97, 8 52, 5 35, 0	

Таблица 6 НОРМАТИВЫ ЭФФЕКТИВНОСТИ ЗАПАСНОЙ ТОРМОЗНОЙ СИСТЕМЫ (Действуют до 1 января 1975 г.)

TD.	авто- ого	рия ав- отного	рия ав- тного	ьная ско- торможе- . км ч	Усилие на ления ^Р пед	органе управ- , кгс, не болсе	Допустимые значения критерисв оценки эффективности при испытаннях	
Тип автотранс- портного средства	Категория авт транспортного средства	Полкатегория ан тотранспортного средства	Начальная рость торм ния v_0 . км	Ручной орган уп- равления	Ножпой орган уп- равления	Тормозной путь S _T , м, не бо- лее	Устано- вившеся замедле- лис јуст, м.с², не	
Одиноч-		M_1	_80	40	50	90,1		
ные авто- транспорт- ные сред- ства и авто- поезда	М	$M_2 M_3$	60			52,2 55,2	3,0	
Одиноч- ные авто- траиспорт- ные средст- ва	N	$N_1 N_2 N_3$	70 50 40	60	70	79,0 42,5 28,4	2,8	
Автопоезда		N_1 N_2 N_3	70 50 40			81,1 44,0 29,6		

Примечания к табл. 5 и 6:

1. Нормативные значения тормозного пути и установившегося замедления

даны для торможения на горизонтальной дороге.

2. Если автотранспортное средство не может развить начальную скоростъ торможения, указанную в табл. 5 и 6, торможение должно производиться с максимальной скорости данного автотранспортного средства. В этом случае нормативное значение тормозного пути должно быть рассчитано согласно п. 4 данных примечаний подстановкой в формулы значений максимальной скорости.

3. Предписанные величины усилия на органе управления должны быть по-

лучены за время не более 0,2 с.

4. Нормативные значения тормозного пути рассчитаны:

а) в табл. 5 по формулам

$$S_{T} \!\!<\!\! 0,10v_{0} \!+\! \frac{v_{0}^{2}}{75} \!-\!$$
для категории $M_{1};$ $S_{T} \!\!<\!\! 0,15v_{0} \!+\! \frac{{v_{0}}^{2}}{65} \!-\!$ для подкатегорий M_{2} и $M_{3};$ $S_{T} \!\!<\!\! 0,15v_{0} \!+\! \frac{{v_{0}}^{2}}{57,5} \!-\!$ для одиночных автотранспортных средств категории $N;$ $S_{T} \!\!<\!\! 0,18v_{0} \!+\! \frac{{v_{0}}^{2}}{57,5} \!-\!$ для автопоездов категории $N;$ $S_{T} \!\!<\!\! 0,18v_{0} \!+\! \frac{{v_{0}}^{2}}{78} \!-\!$ для подкатегорий M_{1} и $M_{2};$ $S_{T} \!\!<\!\! 0,10v_{0} \!+\! \frac{{v_{0}}^{2}}{78} \!-\!$ для подкатегории $M_{3};$ $S_{T} \!\!<\!\! 0,15v_{0} \!+\! \frac{{v_{0}}^{2}}{71,5} \!-\!$ для одиночных автотранспортных средств категории $N;$ $S_{T} \!\!<\!\! 0,18v_{0} \!+\! \frac{{v_{0}}^{2}}{71,5} \!-\!$ для автопоездов категории $N.$

- 4.2.2. При определении эффективности запасной тормозной системы автотранспортных средств категории O во время стендовых испытаний величины критериев должны иметь следующие значения:
- а) тормозная сила в процентах доли полной массы, приходящейся на соответствующую ось в статическом положении, должна составлять:

до 1 января 1975 г. 23 %,

с 1 января 1975 г. 28 %;

б) время, прошедшее с начала торможения до момента, в который давление в колесном тормозном аппарате, находящемся в наименее благоприятных условиях, достигнет значения, соответствующего предписанной величине тормозной силы, должно быть не более 0,6 с. При этом время приведения в действие органа управления запасной тормозной системы должно быть не более 0,2 с.

4.3. Нормативы эффективности стояночной тормозной системы

4.3.1. Эффективность стояночной тормозной системы должна быть такой, чтобы суммарная тормозная сила, развиваемая тормозными механизмами этой системы, соответствовала величине уклона, заданного техническими условиями на автотранспортное средство, но была не менее 24% полной массы.

4.3.2. Предписанная эффективность должна быть получена при усилии на органе управления: ручном—не более 40 кгс; ножном—не более 50 кгс для автотранспортных средств подкатегории M_1 и не более 70 кгс для автотранспортных средств остальных подкатегорий.

4.4 Нормативы эффективности вспомогательной тормозной системы

- 4.4.1. Эффективность вспомогательной тормозной системы должна обеспечивать без применения иных тормозных систем спуск автотранспортного средства со скоростью $30\pm~2~$ км/ч по уклону 7% протяженностью 6~ км.
- 4.4.2. Для автотранспортных средств, у которых в качестве вспомогательной тормозной системы использован только двигатель без применения в его системах специальных тормозных устройств, скорость при таких испытаниях должна иметь постоянную величину, лежащую в интервале 30 ± 5 км/ч.

5. ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

5.1. При испытаниях по определению эффективности тормозных систем автотранспортных средств должна быть обеспечена следующая точность замера параметров:

тормозного пути		±2,5%;
начальной скорости торможения		$\pm 1,5\%;$
установившегося замедления .		$\pm 1.5\%;$
тормозной силы		$\pm 1.5\%;$
усилия на органе управления .		$\pm 3.0\%$;
давления в приводе		$\pm 3.0\%$;
времени		$\pm 0.02 c$.

6. ОБЪЕМЫ ИСПЫТАНИЙ ПО ОПРЕДЕЛЕНИЮ ЭФФЕКТИВНОСТИ ТОРМОЗНЫХ СИСТЕМ

6.1. Во время приемочных испытаний новых и модифицированных моделей все типы автотранспортных средств должны испытываться в полном объеме настоящего стандарта.

6.2. Во время контрольных испытаний эффективность тормозных систем должна определяться только при полной массе автотранс-

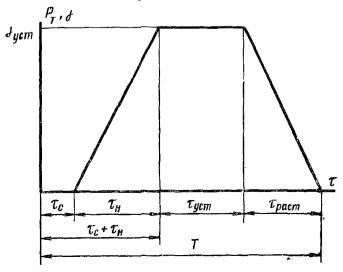
портных средств согласно табл. 7.

Таблица 7 ОБЪЕМ КОНТРОЛЬНЫХ ТОРМОЗНЫХ ИСПЫТАНИЙ

	Тормозные испытания			
Тормозная система	при кратких контрольных испытаниях автотранспортных средств	при длительных контроль- ных испытаниях автотравс- портных средств		
Рабочая Запасная Стояночная Вспомогательная	«Ноль» По подразделу 3.4 По подразделу 3.5	«Ноль», I и по п. 2.6.3 По подразделу 3.4 По подразделу 3.5 По подразделу 3.6		

Замена

OH 025 334—69 отменена.


ПРИЛОЖЕНИЕ 1

ОСНОВНЫЕ ТЕРМИНЫ, ПРИНЯТЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ОПРЕДЕЛЕНИЯ

и их определения					
Термин	Определение термина	Примечание			
Автотранспортное средство Торможение	Транспортное средство, тяговое усилие которого с помощью двигателя создается за счет сцепления его колес или колес буксирующего транспортного средства с дорогой, не оборудованной специальными направляющими устройствами для колес Создание и изменение искусственного сопротивления движению автотранспортного средства или отдельных его единиц с целью регулирования скорости его движения или удержания его неподвижным относительно опорной поверх-				
Полное торможение	пости Торможение, в результате которого автотранспортное средство останавливается				
Частичное тормо- жение	Торможение, в результате которого автотранспортное средство изменяет скорость в некоторых пределах, отличных от пуля				
Тормозная система	Совокунность устройств, предназначеных для осуществления торможения	Тормозная система обычно состоит из ис- точника энергии, тор- мозного привода и тор- мозных механизмов			
Рабочая тормозная система	Тормозная система, предназначенная для регулирования скорости автотранспортного средства в любых условиях движения				
Запасная тормоз- ная система Аварий- ная тормозная сис- тема	Тормозная система, предназначенная для остановки автотранспортного средства в случае полного или частичного выхода из строя рабочей тормозной системы				
Стояпочная тормозная система	Тормозная система, предназначенная для удержания автотранспортного средства неподвижным относительно опорной поверхности				

Термин	Определение термина	Примечание
Вспомогательная тормозная система (замедлитель, тормоз-замедлитель)	Тормозная система, предназначенная для длительного поддержания скорости движения постоянной нли для ее регулнрования в пределах, отличных от нуля	мостоятельно, так и сов-
Непрерывная тор- мозная система-	Тормозная система автопоезда, имеющая общий орган управления и общий источник энергии для всех единиц даи-	
Полунепрерывная тормозная система	Тормозная система автопоезда, имеющая общий орган управления и автономные источники или аккумуляторы энергии на различных единицах данного автопоезда	
Инерционная тор- мозная система	Тормозная система прицепных автотранспортных средств, использующая в качестве сигнала включения инерцию прицепных единиц при их приближении к автомобилю-тягачу	
Источник энергии	Совокупность устройств, предназначенных для обеспечения тормозной системы энергией, необходимой для торможения	
Тормозиой привод	Совокупность устройсти, предназначенных для передачи энергии от ее источника к тормозным механизмам и управления энергией в процессе ее передачи с целью осуществления торможения	Тормозной привод обычно состоит из органа управления, передаточного механизма и аккумуляторов энергии
Тормозной меха- низм	Устройство, предназначенное для непосредственного создания и наменення искусственного сопротивления движению	Функции тормозного механизма вспомогательной тормозной системы выполняют замедлитель
Контур привода	автотранспортного средства Независимая часть тормоз- ного привода, остающаяся ра- ботоспособной при выходе из строя остальной части приво-	и двигатель
Орган управления	да Совокупность устройств, предназначенных для подачи сигнала, в результате которого	

Термин	Определение термина	При м ечани е
	энергия от ее источника пере-	
	дается к тормозным механиз- мам или происходит количест- венное регулирование этой	
Пород дарогите - 4	энергии	
Передаточный ме- ханизм	Совокупность устройств, предназначенных для передачи	
	энергии от ее источника к тор- мозным механизмам	
Акжумулятор энер-	Устройство, предназначен-	
Гин	ное для превращения кинети-	
	ческой энергии рабочего тела тормозной системы в потенци-	
	альную с целью обеспечения	
	постоянной возможности осу- ществить торможение	
Элемент тормозиой	Единичное устройство из	
СИСТЕМЫ	числа устройств, совокупность которых составляет тормозную	
_	систему	
Эффективность тор- можения	Качественная мера торможения, характеризующая способ-	
RMHSMOM	ность тормозной системы соз-	
	давать необходимое искусст-	
	венное сопротивление движе- нию автотранспортного средст-	
_	ва	
Тормозные свойства	Меры количественной оценки способности тормозной систе-	
	мы осуществлять необходимое	
	Схема тормозной днаграммы	-

Термин	Определение термина	Примечание
Тормозная диат- рамма Тормозная сила	торможение автотранспортно- го средства Графическая зависимость за- медления или тормозной силы от времени Внешняя сила, создаваемая посредством тормозных меха-	Схема тормозной диаг- раммы изображена на чертеже На чертеже обозначена Рт
2	низмов в местах контактов колес с опорной поверхностью и имеющая своим следствием торможение автотранспортного средства	
Замедление	Пространственно-временная мера изменения движения, характеризующая изменение скорости автотранспортного средства в данное мгновение	Замедление выражает- ся пределом отношения изменения скорости к соответствующему про- межутку времени при стремлении этого проме- жутка к нулю
Начало торможе- ния	Момент времени, в который тормозная система получает сигнал о необходимости осу-	-
Конец торможения	ществить торможение Момент времени, в который происходит полное исчезновение искусственного сопротивления движенню автотранспортного средства или оста-	
Время торможения	новка последнего Период времени от начала до конца торможения	На чертеже обозначено <i>Т</i>
Время запаздыва- ния	Период времени от начала торможения до момента времени, в который появляется замедление (тормозная сила)	На чертеже обозначено т _с
Время нарастания замедления (тормоз- ной силы)	Период времени от момента времени, в который появляется замедление (тормозная сила), до момента времени, в который замедление (тормозная	На чертеже обозначено т _н
Время срабатыва- ния	сила) становится постоянным Период времени от начала торможения до момента времени, в который замедление (тормозная сила) становится постоянным	На чертеже обозначено $ au_c + au_n$
Время растормажи- вания	Период времени от момента времени, в который замедление (тормозная сила) перестает быть постоянным, до конца торможения	На чертеже обозначено т _{раст}

Термин	Определение термина	Примечание
Время установив- шегося торможения	Период времени, в который замедление (тормозная сила) постоянна	На чертеже обознач е но ^х уст
Установившееся за- медление	Средияя величина замедле- ния за время установившегося торможения	На ч е ртеже обозначено ју ст
Начальная с корость торможения	· · · ·	
Конечная скорость торможения	Скорость автотранспортного средства относительно дороги в момент конца торможения	
Тормозной путь	Расстояние, проходимое автотранспортным средством с начала до конца торможения	

МЕТОД РАСЧЕТА ЭФФЕКТИВНОСТИ ТОРМОЗНЫХ СИСТЕМ АВТОТРАНСПОРТНЫХ СРЕДСТВ ПО РЕЗУЛЬТАТАМ ДОРОЖНЫХ ИСПЫТАНИЙ

- 1. Определение величины критериев оценки эффективности торможения изтормозной диаграммы
 - 1.1. Определение величины установившегося замедления.

Величина установившегося замедления определяется непосредственно экспериментальной записи тормозной диаграммы.

1.2. Определение величины тормозного пути.

Величина тормозного пути определяется по следующим формулам: для полного торможения

$$S_{\rm T} = v_0 \left(\tau_{\rm c} + \frac{\tau_{\rm H}}{2} \right) + \frac{v_0^2}{2j_{\rm ycr}} - \frac{j_{\rm ycr}\tau_{\rm H}^2}{24} ; \tag{1}$$

для частичного торможения

$$S_{\rm T} = v_0 \tau - \frac{j_{\rm ycr}}{2} (\tau - \tau_{\rm c}) (\tau - \tau_{\rm c} - \tau_{\rm H}) - \frac{j_{\rm ycr} \tau_{\rm H}^2}{6}$$
, (2)

где S_{τ} — тормозной путь, м:

v₀ — начальная скорость торможения, м/с;

т - время частичного торможения, с;

тс — время запаздывания, с;

тн - время нарастания замедления, с;

ј_{уст} — установившееся замедление, м/с².

Примечания:

- 1. При выводе формул (1) и (2) принято, что естественные сопротивления движению малы, а отклонение продольного уклона дороги от горизонтали не превышает 0.5%.
 - 2. В формулах (1) и (2) допустимо пренебречь последним слагаемым.
- 2. Расчет эквивалентных значений установившегося замедления и тормозного пути

В случае, если торможение, имеющее целью определение эффективности тормозной системы, производилось на дороге с продольным уклоном, превышающим 0,5%, и начальная скорость торможения отличалась от заданной, полученные в результате такого торможения величины тормозного пути и установившегося замедления должны быть приведены к соответствующим величинам параметров торможения, эквивалентного данному реальному торможению. Критерием эквивалентности торможений является равенство тормозных сил в любой момент

2.1. Определение величины установившегося замедления.

Величина установившегося замедления эквивалентного торможения определяется по следующей формуле:

$$j_{\text{yer } =} j_n - g \left(1 - \frac{1}{\delta} \right) \sin \alpha, \tag{3}$$

еще $j_{\rm II}$ — величина установившегося замедления, зарегистрированная при испытаниях деселерографом, м/с 2 ;

g — ускорение свободного падения, м/с²;

в — коэффициент учета инерции вращающихся масс автомобиля;

— угол продольного уклона дороги, град.

В случае, если реальное торможение производилось при двигателе, отсоедиченном от трансмиссии, допустимо принять

$$j_{\text{ycr.}3} \approx j_{\text{fi}}$$
 (4)

2.2. Определение величины тормозного пути (для случая полного торможения).

Величина тормозного шути эквивалентного торможения определяется по формулам (индекс «э» обозначает параметры эквивалентного торможения, индекс «р» — параметры реального торможения):

а) для торможения на дороге с уклоном и при начальной скорости торможения, величины которых значительно отличаются от заданных стандартом,

$$S_{\text{T 3}} = \frac{v_{09}^{2} \left(2S_{\text{T p}} - 2v_{0p}\tau_{\text{c}} - v_{0p}\tau_{\text{H}}\right)}{2k\left[v_{0p}^{2} + \frac{g}{\delta}\left(2S_{\text{T,p}} - 2v_{0p}\tau_{\text{c}} - v_{0p}\tau_{\text{H}}\right)\sin\alpha\right]} + v_{09}\left(\tau_{\text{c}} + \frac{\tau_{\text{H}}}{2}\right), \quad (5)$$

где $k = \frac{G_{\rm a,p}}{G_{\rm a,s}}$ — отношение массы автомобиля, проходящего испытания, к заданной массе автомобиля;

б) для торможения на горизонтальной дороге при начальной скорости торможения, значительно отличающейся от заданной стандартом,

$$S_{\tau,9} = \frac{v_{09}^2}{v_{0p}^2} S_{\tau,p} + v_{09} \left(\tau_c + \frac{\tau_H}{2} \right) \left(1 - \frac{v_{09}}{v_{0p}} \right) ; \tag{6}$$

в) для торможения на дороге с уклоном более 0,5% и при начальной скорости торможения, отличающейся от заданной стандартом не более чем на 3 км/ч.

$$Sr.s = \frac{\delta v_{0s}^2 S_{T.p}}{\delta v_{0s}^2 + 2gS_{T.p} \sin \alpha} . \tag{7}$$

В данном случае величина тормозного пути может определяться по номограмме (см. вкладку), где i — уклон дороги, %;

јэ и јр — среднее по пути замедление соответственно эквивалентного и реального торможений.

ПРИМЕР ПОЛЬЗОВАНИЯ НОМОГРАММОЙ

При торможении на уклоне 2,8% с начальной скорости v_{0p} =62 км/ч получен тормозной путь $S_{T,p}$ =32 м. Необходимо определить тормозной путь эквивалентного торможения на горизонтальной дороге с начальной скорости v_{0p} =60 км/ч.

Из соответствующей 32 м отметки на шкале тормозных путей восстанавливается вертикаль до пересечения с гиперболой v=62 км/ч. Через точку пересече-

ния проводится горизонталь до шкалы Cc, в результате чего на последней мелется отметка, соответствующая величине среднего по пути замедления. Эта отметка соединяется прямой с точкой на шкале Aa, соответствующей заданному уклону. Точка пересечения этой прямой со шкалой Ba соединяется прямой с точкой A, и последняя прямая продолжается до пересечения со шкалой Cc. Через полученную таким образом точку на шкале Cc проводится горизонталь до гиперболы v = 60 км/ч, и из точки пересечения опускается вертикаль на никалу тормозных путей, где определяется искомая величина тормозного пути, равная 28.5 м.