ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАПИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

УТВЕРЖДАЮ
Заместитель Председателя
Г/обударственного комитета РФ
закране окуужающей среды
А.А.Соловьянов

КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ ВОД

МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МАССОВОЙ КОНЦЕНТРАЦИИ СУЛЬФАТ-ИОНОВ В ПРОБАХ ПРИРОДНЫХ И СТОЧНЫХ ВОД ТУРБИДИМЕТРИЧЕСКИМ МЕТОДОМ

ПНД Ф 14.1:2.159-2000

Методика допущеня для целей государственного экологического контроля

> Москва 2000 г. (издание 2005 г.)

Методика рассмотрена и одобрена научно-техническим советом ФГУ «Федеральный научно-методический центр анализа и мониторинга окружающей среды МПР России».

Протокол № 1 заседания НТС от 20.01.2005 г.

1 ВВЕДЕНИЕ

Настоящий документ устанавливает методику выполнения измерений (МВИ) массовой концентрации сульфат-ионов турбидиметрическим методом природной, а также неопалесцирующих, неокрашенных или слабоокрашенных проб сточной воды, содержащей не более 5 мг/дм³ железа.

Диапазон измеряемых концентраций от 10 до 1000 мг/дм³ сульфат-ионов. При более высокой концентрации сульфат-ионов (до 10000 мг/дм³) допускается разбавление проб дистиллированной водой.

Мешающее влияние карбонатов и гидрокарбонатов устраняют соляной кислотой (в составе осадительной смеси).

2 ПРИПИСАННЫЕ ХАРАКТЕРИСТИКИ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ И ЕЕ СОСТАВЛЯЮЩИХ

Настоящая методика обеспечивает получение результатов анализа с погрешностью, не превышающей значений, приведённых в Таблипе 1.

Таблица 1 Диапазон измерений, значения показателей точности, повторяемости и воспроизводимости методики

Диапазон	Показатель	Показатель	Показатель
измерений,	точности	повторяемости	воспроизводимости
мт/дм³	(границы относи-	(относительное сред-	(относительное сред-
	тельной погреш-	неквадратическое от-	неквадратическое от-
ļ	ности при вероят-		клонение воспроизво-
	ности Р=0,95),	мости)	димости),
	±δ, %	σ,,%	σ_{R} ,%
от 10 до 50 вкл.	20	6	8
св. 50 до 1000 вкл.	15	4	6

Значения показателя точности методики используют при:

– оформлении результатов измерений, выдаваемых лабораторией;

- оценке деятельности лабораторий на качество проведения испытаний;
- оценке возможности использования результатов измерений при реализации методики в конкретной лаборатории.

3 СРЕДСТВА ИЗМЕРЕНИЙ, ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА, РЕАКТИВЫ И МАТЕРИАЛЫ

При выполнении измерений массовой концентрации сульфатионов применяют следующие средства измерения, реактивы, вспомогательные устройства, материалы и растворы

3.1 Средства измерения и стандартные образцы

- Прибор для фотометрического анализа (фотометр, фотоэлектроколориметр или спектрофотометр, позволяющий измерять оптическую плотность в диапазоне 600 - 670 нм в кюветах с толщиной поглощаюшего слоя 30 и 50 мм.
- Весы лабораторные общего назначения (например, ВЛР-200, ВЛА-200) по ГОСТ 24104-2001.
- Меры массы по ГОСТ 7328-2001.
- Колбы мерные вместимостью 100, 50, 25 см³ 2-го класса точности по ГОСТ 1770-74.
- Пипетки с одной отметкой 2-го класса точности вместимостью 5,10, $25,50\,\mathrm{cm}^3$ по $\Gamma\mathrm{OCT}$ 29169 91.
- Пипетки градуированные 2-го класса точности вместимостью 1, 2, 5, 10 см³ по ГОСТ 29227-91.
- Государственный стандартный образец состава раствора сульфатиона (1мг/см³) ГСО 7253-96.

Примечание. Допускается использование средств измерения и стандартных образцов с аналогичными или лучшими метрологическими характеристиками. Средства измерения должны быть поверены в установленные сроки.

3.2 Реактивы

- Вода дистиллированная по ГОСТ 6709-72.
- Барий хлористый, ч.д.а. по ГОСТ 4108-72
- Глицерин, ч.д.а. по ГОСТ 6259-75.
- Кислота борная, х.ч. по ГОСТ 9656-75.
- Кислота соляная, х.ч. по ГОСТ 3118-77.

3.3 Вспомогательные устройства и материалы

- Фильтры обеззоленные "синяя лента" по ТУ 6-09-1678-86
- Колбы конические вместимостью 25, 100, 500, 1000 см³ по ГОСТ 25336-82. Воронки лабораторные по ГОСТ 25336-82
- Бутыли стеклянные и полиэтиленовые для хранения вспомогательных растворов, а также для хранения и транспортировки проб.

3.4 Приготовление растворов для анализа

3.4.1. Приготовление осадительной смеси

60 г хлорида бария и 30 г борной кислоты растворяют при нагревании в 500 - 600 см³ дистиллированной воды и охлаждают. Приливают 200 см³ глицерина, 50 см³ концентрированной соляной кислоты, разбавляют дистиплированной водой до 1000 см³, перемешивают и оставляют на 2 -3 дня. Затем приготовленный раствор декантируют с осадка.

3.4.2. Рабочий раствор сульфат-иона, массовая концентрация 100 мг/ды³

В мерную колбу вместимостью 50 см³ помещают 5 см³ ГСО состава раствора сульфат-иона (массовая концентрация 1 мг/см³), разбавляют до метки дистиллированной водой и тщательно перемешивают. Срок хранения полученного раствора - 3 месяца.

Примечание. При использовании ГСО с концентрацией сульфатиона 10 мг/см³ необходимо приготовить промежуточный раствор с концен-трацией 1 мг/см³, разбавляя в мерной колбе 5 см³ раствора ГСО до 50 см³ дистиллированной водой

4 МЕТОД ИЗМЕРЕНИЯ

Метод измерения массовой концентрации сульфат-иона основан на образовании стабилизированной суспензии сульфата бария в солянокислой среде с последующим измерением светорассеяния в направлении падающего луча (в единицах оптической плотности)

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При выполнении измерений массовой концентрации сульфатионов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019-79

Помещение должно соответствовать требованиям пожаробезопасно-сти по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83. Содержание вредных веществ в воздухе не должно превышать допустимых значений по ГОСТ 12.1.005-88. Организация обучения работающих безопасности труда по ГОСТ 12.0.004-90.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ОПЕРАТОРА

К выполнению измерений и обработке результатов допускают специалиста, имеющего высшее или среднее специальное химическое образование или опыт работы в химической лаборатории, прошедшего соответствующий инструктаж, освоившего метод в процессе тренировки и уложившегося в нормативы оперативного контроля при выполнении процедур контроля погрешности.

7 УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

При выполнении измерений в лаборатории должны быть соблюдены следующие условия:

температура воздуха 20±5°С;

атмосферное давление 84,0-106,7 кПа (630-800 мм рт.ст); влажность воздуха не более 80% при температуре 25°С;

напряжение в сети 220 \pm 22 В; частота переменного тока 50 \pm 1 Γ ц.

8 ОТБОР ПРОБ

Отбор проб производится в соответствии с требованиями ГОСТ Р 51592-2000 "Вода. Общие требования к отбору проб".

Объем отбираемой пробы составляет не менее 100 см³. Пробу можно не консервировать, однако при наличии соединений серы иных форм (сульфиты, сульфиды, тиосульфаты) проба должна быть проанализирована в течение 2 час.

9 ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

При подготовке к выполнению измерений должны быть проведены следующие работы: приготовление вспомогательных (п.3.4) и градуиро-вочных растворов (п.9.1) и градуировка фотометра (спектрофотометра).

9.1 Приготовление градуировочных растворов

В шесть мерных колб вместимостью 50 см³ помещают по 20 см³ осадительного раствора по п.З.4.1 и затем в пять из них приливают по каплям 2,0; 4,0; 6,0; 8,0; 10,0 см³ рабочего раствора сульфат-иона с концентрацией 100 мг/дм³, что соответствует его содержанию 0,2; 0,4; 0,6; 0,8; 1,0 мг в 50 см³, и затем содержимое всех колб (включая колбу, в которую сульфат-ион не добавляли) разбавляют до метки дистиллированной водой.

Растворы перемешивают в течение 30 сек и через 5-10 мин измеряют оптическую плотность каждого раствора относительно раствора, приготовленного без сульфат-ионов.

Примечание. Измерения для каждого раствора должны производиться строго в одно и то же время после добавления раствора сульфат-ионов.

9.2 Построение градуировочного графика

Через 5-10 мин после приготовления растворов по п.9.1 измеряют оптическую плотность (не менее пяти отсчетов) полученных растворов при длине волны 600 - 670 нм в зависимости от спектральных характеристик светофильтра, входящего в комплект прибора. При использовании спектрофотометров измерения производят при длине волны 650 нм. Толщина поглощающего слоя - 30 или 50 мм, раствор сравнения - первый градуировочный раствор (без сульфат-иона).

Вычисляют среднее арифметическое полученных значений оптической плотности и строят градуировочный график в координатах оптическая плотность - содержание сульфат-ионов в растворах градуировочной серии, мг.

Рекомендуется для хранения и обработки градуировочного графика использовать возможности микропроцессора прибора и программы для ПЭВМ.

9.3 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят при смене партий реактивов, но не реже одного раза в месяц. Средствами контроля являются вновь приготовленные образцы для градуировки (не менее 3 образцов из приведенных в п.9.1). Измеряют оптическую плотность (не менее 5 измерений) и находят среднее арифметическое полученных значений

Градуировочную характеристику считают стабильной при выполнении для каждого образца для градуировки следующего условия:

$$|X-C| \leq 1,96\sigma_{R_a}$$

где X — результат контрольного измерения массовой концентрации сульфат-ионов в образце для градуировки;

 ${\it C}$ — аттестованное значение массовой концентрации сульфат-ионов в образце для градуировки;

 σ_{R_n} — среднеквадратическое отклонение внутрилабораторной прецизионности, установленное при реализации методики в лаборатории.

Примечание. Допустимо среднеквадратическое отклонение внутрилабораторной прецизионности при внедрении методики в лаборатории устанавливать на основе выражения: $\sigma_{R_z} = 0.84 \, \sigma_R$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов анализа.

Значения σ_R приведены в Таблице 1.

Если условие стабильности градуировочной характеристики не выполняется только для одного образца для градуировки, необходимо выполнить повторное измерение этого образца с целью исключения результата, содержащего грубую погрешность.

Если градуировочная характеристика нестабильна, выясняют причины и повторяют контроль с использованием других образцов для градуировки, предусмотренных методикой. При повторном обнаружении нестабильности градуировочной характеристики строят новый градуировочный график.

10 ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Пробу сточной воды фильтруют через фильтр "синяя лента", отбрасывая первые порции фильтрата. Затем анализируют две аликвотные порции воды. Содержание сульфат-ионов в аликвотной порции должно составлять 0,2 - 1,5 мг, желательно 0,5 - 1,5 мг.

В три мерные колбы вместимостью 50 см³ помещают по 20 см³ осадительной смеси по п.3.4.1, затем в две из них по каплям вносят 1-20 см³ анализируемой пробы. Содержимое всех колб быстро доводят до метки дистиллированной водой, перемешивают в течение 30 сек и через 5-10 мин (точное значение времени выдержки должно быть таким же, как и при приготовлении градуировочных растворов) измеряют оптическую плотность растворов проб относительно раствора, приготовленного без введения пробы. Условия измерения оптической плотности те же, что и при построении градуировочной зависимости.

Вычисляют среднее арифметическое полученных значений оптической плотности для каждого из двух растворов проб и находят при помощи градуировочной зависимости содержание сульфат-ионов в стобранной аликвотной порции анализируемой пробы воды, мг.

Примечание. Если содержание сульфат-ионов в аликвотной порции пробы оказывается менее 0,2 мг или более 1,5 мг, то анализ повторяют, изменив аликвотную порцию.

11 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Массовую концентрацию сульфата вычисляют по формуле:

$$X = 1000 \cdot Q/V$$

где X - массовая концентрация сульфат-ионов в пробе, мг/дм³;

Q - содержание сульфат-ионов в аликвотной порции пробы, найденное по градуировочному графику, мг; V - объем аликвотной порции пробы, см³.

За результат измерения X_{cp} принимают среднее арифметическое значение двух параллельных определений X_1 и X_2

$$X_{\varphi} \approx \frac{X_1 + X_2}{2},$$

для которых выполняется следующее условие:

$$|X_1 - X_2| \le r \cdot (X_1 + X_2)/200$$
, (1)

где г - предел повторяемости, значения которого приведены в Таблице 2.

Таблица 2 Значения предела повторяемости при вероятности P=0,95

Диапазон измерений, мг/дм ³	Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллель-
от 10 до 50 вкл.	ных определений), т, % 17
св. 50 до 1000 вкл.	11

При невыполнении условия (1) могут быть использованы методы проверки приемлемости результатов параллельных определений и установления окончательного результата согласно раздела 5 ГОСТ Р ИСО 5725-6.

Расхождение между результатами измерений, полученными в двух лабораториях, не должно превышать предела воспроизводимости. При выполнении этого условия приемлемы оба результата измерений, и в качестве окончательного может быть использовано их среднее арифметическое значение. Значения предела воспроизводимости приведены в Таблице 3.

Таблица 3 Зпачения предела воспроизводимости при вероятности Р=0,95

Диапазон	Предел воспроизводимости	
измерений, мг∕дм ³	(относительное значение допускаемого расхождения между двумя резульгатами измерений, полученными в разных лабораториях). R, %	
от 10 до 50 вкл.	22	
св. 50 до 1000 вкл	17	

При превышении предела воспроизводимости могут быть использованы методы оценки приемлемости результатов анализа согласно раздела 5 ГОСТ Р ИСО 5725-6.

12. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результат измерения X_{cp} в документах, предусматривающих его использование, может быть представлен в виде: $X_{cp} \pm \Delta$, P=0.95,

где Δ - показатель точности методики.

Значение Δ рассчитывают по формуле: $\Delta = 0.01 \cdot \delta \cdot X_{ep}$. Значение δ приведено в таблице 1.

Допустимо результат измерения в документах, выдаваемых лабораторией, представлять в виде: $X_{ep} \pm \Delta_s$, P=0.95, при условии $\Delta_s < \Delta$, где

 X_{cp} — результат измерения, полученный в соответствии с прописью методики;

 $\pm \Delta_s$ - значение характеристики погрешности результатов измерений, установленное при реализации методики в лаборатории, и обеспечиваемое контролем стабильности результатов измерений.

Примечание. При представлении результата измерения в документах, выдаваемых лабораторией, указывают:

- количество результатов парадлельных определений, использованных для расчета результата измерения;
- способ определения результата измерения (среднее арифметическое значение или медиана результатов параллельных определений).

13. КОНТРОЛЬ КАЧЕСТВА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ ПРИ РЕАЛИЗАЦИИ МЕТОДИКИ В ЛАБОРАТОРИИ

Контроль качества результатов измерений при реализации методики в лаборатории предусматривает:

- оперативный контроль процедуры измерений (на основе оценки погрешности при реализации отдельно взятой контрольной процедуры);
- контроль стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости,

среднеквадратического отклонения внутрилабораторной прецизионности, погрешности).

13.1 Алгоритм оперативного контроля процедуры измерений с использованием метода добавок

Оперативный контроль процедуры измерений проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\kappa} = |X_{\varpi} - X_{\varpi} - C_{\delta}|$$

где X_{ϕ} — результат измерения массовой концентрации сульфатионов в пробе с известной добавкой — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11.

 X_{φ} — результат измерения массовой концентрации сульфатионов в исходной пробе — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11.

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{\mathbf{A}, \chi_{\mathbf{\varphi}}^{'}}^{2} + \Delta_{\mathbf{A}, \chi_{\mathbf{\varphi}}}^{2}},$$

где $\Delta_{s,X_{\mathbf{o}}'}$, $\Delta_{s,X_{\mathbf{o}}}$ - значения характеристики погрешности результатов

измерений, установленные в лаборатории при реализации методики, соответствующие массовой концентрации сульфат-ионов в пробе с известной добавкой и в исходной пробе соответственно.

Примечание. Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_s = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Процедуру измерений признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (2)

При невыполнении условия (2) контрольную процедуру повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.2 Алгоритм оперативного контроля процедуры измерений с применением образцов для контроля

Оперативный контроль процедуры анализа проводят путем сравнения результата отдельно взятой контрольной процедуры K_{κ} с нормативом контроля K.

Результат контрольной процедуры К, рассчитывают по формуле

$$K_{\epsilon} = |C_{co} - C|$$

где C_{φ} — результат измерения массовой концентрации сульфатионов в образце для контроля — среднее арифметическое двух результатов параллельных определений, расхождение между которыми удовлетворяет условию (1) раздела 11;

С – аттестованное значение образца для контроля.

Норматив контроля К рассчитывают по формуле

$$K = \Delta$$
...

где $\pm \Delta_{a}$ - характеристика погрешности результатов измерений, соответствующая аттестованному значению образца для контроля.

Примечание. Допустимо характеристику погрешности результатов измерений при внедрении методики в лаборатории устанавливать на основе выражения: $\Delta_s = 0.84 \cdot \Delta$, с последующим уточнением по мере накопления информации в процессе контроля стабильности результатов измерений.

Процедуру измерений признают удовлетворительной, при выполнении условия:

$$K_{\kappa} \leq K$$
 (3)

При невыполнении условия (3) контрольную процедуру повторякот. При повторном невыполнении условия (3) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

Периодичность оперативного контроля процедуры измерений, а также реализуемые процедуры контроля стабильности результатов измерений регламентируют в Руководстве по качеству лаборатории.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ

ФГУП «УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ВИСТИТУТ МЕТРОЛОГИИ» -ГОСУДАРСТВЕНЬЦЙ НАУЧНЫЙ МЕТРОЛОГИЧЕСКИЙ ЦЕНТ? ATHE URALS RESEARCH INSTITUTE FOR METROLOGYS-STATE SCIENTIFIC METROLOGICAL CENTRE

620219, EmrepanSypr. FCH-824, yx. Koscnospuelkova, 4, m6. 224 Фан: (3432) 502-117 Dopt. 224, 4. Клановатичуніца й Татафон: (3432) 502-295 620219, СвР-824, Eustrinique, E-mail: peneva@miin.ru Russia Faz: (3432) 502-117 Phone: (3432) 502-295 E-mail: paneva@milim.ru

СВИДЕТЕЛЬСТВО № 224.01.03,341/2004 CERTIFICATE

об аттестации метолики выполнения взменений

Методика выполнения измерений <u>массовой концентрации сульфат-чонов в пробак природных и</u> сточных вод турбидиметрическим методом.

разработанная <u>ФГУ «Пентр экологического контроля и сматила» МПР России (г. Москва).</u> аттестована в соответствии с ГОСТ Р 8.563-96.

Аттестация осуществлена по результатам <u>метрологической знатернизы материалое по разработ-</u> ке методили выполнения измерений.

В результате аттестации установлено, что методика соответствует предывляемым к ней метрологическим требованиям и обладает следующими основными метрологическими карактеристиками:

1. Диапазон измерений, значения показателей точности, повторяемости, воспроизводимости Пиапазон измере-Показатель точности Показатель повторяе-Показатель BOCHDON3-HINTE, MIT/IIM³ (гранины относительной мости COTROCETENANOE волимости (относительпогрешности при вероитсреднежвалратическое отное среднежнадратическое клюнение OTKHOHEHIKE востооязвостя Р=0.95), ±5, % DOSTODECMO-CTE), On % водимости), од % от 10 до 50 вкл. 20 6 8 св. 50 по 1000 вкл. 15 6

Диапазон измерений, значения пределов повторяемости и воспроизводимости при вероятности Р=0.95

Диапизон измере-	Предел повторяемости	Предел воспроизводимости	
ний, мг/дм (относительное значение допускаемс распождения между двуми результа		рескожиения можду двуми результата-	
	мя парапленьямх определений), г, %	ми измерений, полученными в развых лабораторних), R, %	
от 10 до 50 вкл.	17	22	
св. 50 до 1000 вил	11	17	

- 3. При реализации методики в наборатории обеспечивают:
- оперативный контроль процедуры измерений (на основе оценки погрешности при реализации отдельно вытой контрольной процедуры);
- контрола стабильности результатов измерений (на основе контроля стабильности среднеквадратического отклонения повторяемости, среднеквадратического отклонения внутрилабораторной прецизионности, когрепляюти).

Алгориты оперативного контроля процедуры измерений приведен в документе на методику выполнения измерений.

Процедуры контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по вычеству лаботичеству результатов выполняемых измерений регламентируют в Руководстве по вычеству лаботичеству по выполняемых измерений регламентируют в Руководстве по вычеству по выполняемых измерений регламентируют в Руководстве по вычеству по выполняемых измерений регламентируют в Руководстве по выполняемых измерений регламентируют в регламентируют в Руководстве по выполняемых измерений регламентируют в Руководстве по выполняемых измерений в по выполняемых и в по выполняемых и в по выполняемых и в по выполняемых и в по выстраний в по выполняемых и в по выстраний в по выполняемых и в по выстраний в по выстраний в по выстраний в по выстраний в по выполняемых и в по выстраний в по вы

4. Дата выдачи свидетельно 23.12.004
Зам. директора по Вучной рафия

С.В. Медвелевских