УТВЕРЖЛАЮ

РУКОВОДЯЩИЙ ДОКУМЕНТ

ОПРЕДЕЛЕНИЕ МЕХАНИЧЕСКИХ СВОИСТВ СТАЛИ МЕТОДОМ ВЛАВЛИВАНИЯ ИНЛЕНТОРА

РД 302-07-20-93 Введен впервые

Лата введения

ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий руководящий документ (РД распространяется на стали марок 25Л, I2хI3н9ТЛ, ОЗХIЗН1ОТ, I4ХI7Н2, IОХІ7НІЗМЗТ (ЭИ432, ОбХН2ЭМДТ (ЭИ943 и устанавливает метод определения характеристик механических свойств: временного сопротивления, предела текучести, относительного удлинения и относительного сужения по результатам измерений твердости, определяемой вдавливанием индентора.

Метод следует применять в тех случаях, когда по условиям производства требуется проведение большого количества испытаний при стабильном уровне сдаточных характеристик механических свойств, а так же при определении механических свойств на деталях и изделиях

2. HOPMATUBHLE CCLURU

В настоящем РД использованы ссылки на следующие стандарты: ГОСТ 9012 Металлы и сплавы. Метод измерения твердости по Бринеллю.

FOCT 18835	Металлы. Метод измерения пластической твердости.
FOCT 1497	Металлы. Методы испытания на растяжение.
FOCT 23677	Твердомеры для металлов. Общие технические требо- вания.
РД 5.9280-90	Металлы. Методы определения механических свойств методом вдавливания инденгора. Типовая методика.
FOCT 2276I	Металлы и сплавы. Метод измерения твердости по Бри- неллю переносными твердомерами статического действия

з. ОПРЕДЕЛЕНИН И ОБОЗНАЧЕНИЯ

3.І. Определения и условные обозначения величин, используемых в настоящем РД указаны в табл.І.

Условные обозначения	Определение
НВ	Твердость по Бринеллю
нд	Пластическая твердость
Д	Диаметр вдавливаемого шарика
d	Среднее арифметическое измерение взаимно перпендикулярных диаметров отпечатка
P_{I} , P_{2}	Нагрузки, последовательно прилагаемые к образцу, Р ₂ Р _I
hi, he	Глубины отпечатков, измеренные после снятия нагрузок P _I и P ₂ соответственно
GE HB	Временное сопротивление, полученное по твердости НВ
Go. 2	Предел текучести (условный), полученный по твердости НД
$\delta^{^{_{\mathit{H}}\mathfrak{D}}}$	Относительное удлинение, полученное по твердости НД
Y 48	Относительное сумение, полученное по твердости НД

4. ОСНОВНЫЕ ПОЛОЖЕНИЯ

4.1. Сущность метода — определение механических свойств сталей расчетным путем по уравнениям парной регрессии, полученных математико-статистической обработкой результатов имеющихся серийных стандартных испытаний или специально проведенных парных испытаний на растяжение и твердость.

5. МЕТОЛ ОТБОРА ПРОБ

- 5.І. Измерение твердости проводится на образцах от полуфабрикатов или литейных проб. на отливках или изделиях.
- 5.2. Для проведения парных испытаний отбираются заготовки одной марки чили несколько марок близких по составу и структуре) в трех состояниях: с минимальным, средним и максимальным уровнем прочности.
- 5.3. При изготовлении образцов на твердость и растяжение необходимо соблюдать требования НТД, касающиеся места их вырезки из заготовок, а также принимать меры против возможных изменений свойств металла, возникающих в результате механической обработки.
- 5.4. Подготовка образцов к испытаниям на твердость, размеры образцов, качество подготовки поверхности должны соответствовать: при определении твердости по Бринеллю iB-ГОСТ 9012; при определении пластической твердости иД-ГОСТ 1000.

6. AIIIIAPATYPA

- 6.1. Определение значении твердости НВ, и производится на твердомерах типа ТШ Бринелль по ГОСТ 25677.
 - 6.2. Для определения пластической твордости ИД (см.приложение

- к ГОСТ 18335) твердомеры должны быть оснащены приспособлениями для измерения глубины отпечатков с ценой деления 0,01 мм. Цена деления устройства для измерения диаметра отпечатка при определении НВ не более 0,05 мм.
- 6.3. Определение механических свойств по твердости при серийных испытаниях готовых деталей и изделий может производиться с помощью переносных твердомеров по ГОСТ 22761.

7. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИСПЫТАНИИ

- 7.І. Для проведения парных испытаний отбираются заготовки, размеры которых и шероховатость поверхности должны обеспечить возможность определения твердости по видам испытаний, указанных в п.5.4, а также возможность вырезки не менее, чем трех образцов на растяжение. Допускается измерение твердости на головках образцов на растяжение.
- 7.2. Испытание на растяжение проводится в соответствии с ГОСТ 1497 на образцах пятикратной длины с диаметром расчетной части 10 мм. Допускается применять образцы пятикратной длины с диаметром расчетной части 5-6 мм.
- 7.3. Испытание на твердость по Бринеллю НВ производится на приборе ТШ при нагрузках IOOO, 30OO кгс индентором с диаметром шарика IO мм в соответствии с требованиями ГОСТ 90I2.
- 7.4. Пластическая твердость НД определяется на приборе ТШ с помощью устройства для измерения глубины отпечатков путем последовательного вдавливания шарового индентора нагрузками $P_{\rm I}$ и $P_{\rm 2}$ ($P_{\rm 2} > P_{\rm I}$) с измерением остаточных глубин отпечатков $h_{\rm I}$ и $h_{\rm 2}$.

Значение числа твердости расчитывается по формуле:

$$HII = \frac{P_2 - P_I}{I \cdot (h_2 - h_I)}$$

- 7.5. Значение НВ и НД могут определяться в процессе одного измерения. Для этого после измерения величин h_1 и h_2 измеряется диаметр полученного отпечатка и по нему определяется величина НВ.
- 7.6. Выбор нагрузки и диаметра шарика индентора для каждой марки стали определяется уровнем твердости материала и осуществляется в соответствии с таблицей 2.

Таблица 2

	Пластическая твердость, НД			Твердость по Бринеллю, нВ	
Марка стали	Д , мм	Р _I , кгс	P ₂ , кгс	Д, мм	P, krc
I4XI7H2	10	I50 0	3000	10	3000
25.1 12x18H9TЛ 03x18H10T 3N-432 3N-943	IO	500	1000	10	1000

- 7.7. Значения твердости по Бринеллю и пластической твердости рассчитывается как среднее арифметическое значение результатов не менее трех измерений.
- 7.8. Для установления зависимостей между твердостью и характеристиками растявения рекомендуются следующие пары "характеристика растяжения твердость":

временное сопротивление
$$\mathcal{G}_{\ell}$$
 – \mathcal{B} ; предел текучести \mathcal{G}_{ℓ} – \mathcal{U} ;

39.93 312 00

относительное удлинение δ - НД; относительное сужение Ψ - НД.

7.9. Рекомендации по математико-статистической обработке результатов испытаний приведены в РД 5.9280-90 (п.3.4, 4.1 - 4.3 приложение).

8. ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК МЕХАНИЧЕСКИХ СВОЙСТВ

8.І. Расчетные значения временного сопротивления $\mathcal{G}_{\mathcal{B}}^{\mathcal{H}\mathcal{B}}$ определяются по результатам измерения твердости $\mathcal{H}\mathcal{B}$ в соответствии с таблицами приложения \mathcal{A} :

для стали 25Л — таблица АI; для стали I2XI8Н9ТЛ — таблица АЗ; для стали I4XI7Н2 — таблица АБ; для стали ОЗХІВНІОТ — таблица АВ; для стали ОИ-432 — таблица АІО; для стали ЭИ-943 — таблица АІ2.

Расчетные значения предела текучести G_{0} χ^{HD} , относительного удлинения δ^{HD} , относительного сужения ψ^{HD} определяются по результатам измерения пластической твердости НД в соответствии с таблицами:

для стали 25Л — таблица А2 (δ^{HD}); для стали I2XI8H9TЛ — таблица А4 (δ^{HD}); для стали I4XI7H2 — таблица А6 (δ^{HD}); таблица А7 (δ^{HD}); для стали О8XI8HIOT — таблица А9 (δ^{HD}) δ^{HD} 0, для стали ЭИ—432 — таблица АІІ (δ^{HD} 0, δ^{HD} 1), для стали ЭИ—943 — таблица АІЗ (δ^{HD} 0, δ^{HD} 1).

8.2. Минимально и максимально допустимые значения твердости, расчитанные для каждой марки стали по допустимым значениям механических характеристик в соответствии с полученными уравнениями регрессии должны соответствовать значениям, приведенным в табл.3.

Допустимые значения твердости по Бринеллю НВ и пластической твердости НД для различных марок стали

Пластическая Твердость НВ, твердость НД, не более Марка стали не менее 25.II T20 210 I2XI8H9TJI 100 **190** 220 250 250 350 HRCa (37-42,5) HRC 3 300 450 TOTH81X50 TOO 170 ЭИ432 130 180

Таблица З

140

8.3. При получении значений твердости НВ и НД меньше или больше допустимых значений, указанных в табл.3, следует проводить испытание данного материала на растяжение по ГОСТ 1497.

120

*⊒*1943

3.4. Периодически, от каждой 50-р партии плавки) для всех марок стали следует проводить испытания на твердость и растяжение. При этом механические свойства, расчитанные по твердости, сравниваются со значениями, полученными при испытаниях на растяжение. Расхождение между расчетными значениями механических свойств и характеристиками растяжения должно составлять не более:

по временному сопротивлению ± 5%; по пределу текучести ± 7%; по относительному удлинению ± 10%; по относительному сужению ± 12%.

Если значение расхождений выше указанных, то определение механических свойств производят по ГОСТ I497.

8.5. Периодически, не реже одного раза в 2 года, а также при неоднократных случаях несоответствия фактических и расчетных значений механических свойств необходимо проводить серию парных испытаний с последующей статистической обработкой полученных данных для корректировки коэффициентов полинома.

Объем выборки для статистической обработки должен составлять не менее 30 испытаний для каждой марки стали.

Главный инженер

Заместитель главного инженера

Заместитель директора НТИЦ

Начальник отдела 161

Начальник отдела 933

Руководитель темы

Б.М.Орехов

Э.А.Макаров

Р.И. Хасанов

А.А.Косарев

С.Г.Ольковская

н.и. Чуващова

приложение А

Таблица расчетных значений механических характеристик по результатам измерения твердости

Расчетные значения временного сопротивления $6^{\prime}_{\ \ B}$ НВ стали 25Л

Таблица AI

HB krc/mm ²	6 HB		НВ кгс/мм ²	б	B B
	MIla	krc/mm ²	KI'C/MM	Mila.	Krc/mm2
105	449	45,8	135	549	56
I06	452	46, I	I36	552	56,3
107	455	46,4	137	555	56,6
108	459	46,8	138	559	57
109	462	47,I	139	562	57,3
IIO	465	47,4	I40	565	57,6
III	468	47,7	I41	569	58
112	472	48,I	142	572	58,3
113	475	48,5	I43	575	58,6
I I 4	478	48,8	144	579	59
II5	482	49,2	145	582	59,3
I I6	485	49,5	I46	585	59,6
117	488	49,8	I47	589	60
118	491	50,I	148	592	60,3
119	495	50,5	149	595	60,6
120	496	50,6	150	599	61,1
121	500	51	151	602	61,4
122	503	51,4	I52	605	61,7
123	507	51,7	153	608	62
124	511	52, I	I54	612	62,3
125	514	52,4	I55	615	62,7
126	518	52,8	I56	618	63
127	52I	53,I	I57	62I	63,3
123	525	53,5	158	624	63,6
129	528	53,8	I59	628	64
I3 0	531	54,I	160	631	64,3
131	535	54,5	161	634	64,6
132	538	54,8	162	637	64,9
I33	542	55,2	163	640	65,2
134	545	55,5	164	643	65,5

39.93 318 OH

Продолжение таблицы АІ

HB 2	n i Vn	
KPC/MM	MIIa	кгс/мм
165	647	65,9
166	650	66,2
167	653	66,6
I68	656	66,9
I69	659	67,2
170	662	67,5
171	665	67,8
172	669	68,2
173	672	68,4
174	675	68,8
I75	678	69,1
I76	63I	69,4
177	684	69,7
178	687	70
179	690	70,3
I80	694	70,7
181	697	71
I82	700	71,3
I83	703	71,7
I&4	706	72
I35	709	72,3
186	712	72,6
187	715	72,9

НД кгс/мм ²	δ ^{HD} , %	Щ кгс∕мм ²	δ ^{HD} %
105	40,7	138	31,5
106	40,4	139	31,2
107	40,1	140	31,0
B0I	39,8	I4.	30,7
109	39,6	142	30,5
110	39,3	I 43	30,3
III	39,0	I44	30,I
II2	38,7	I 45	29,8
113	38,4	I46	29,6
114	38,I	I47	29,4
115	37,7	I4 8	29,2
116	37,4	I49	28,9
117	37,1	150	28,7
118	36,8	I5I	28,5
II3	36,6	I52.	28,3
120	36,3	I 53	28,I
121	36,0	154	27,9
122	35,7	I55	27,7
123	35,4	I56	27,5
I24	35,I	157	27,3
125	34,8	I58	27,1
126	34,6	I59	26,9
127	34,3	I60	26,7
128	34,0	161	26,5
129	33,7	162	26,4
130	33,5	163	26,2
131	33,2	I64	26,0
132	33,0	I65	25,9
133	32,7	I66	25,7
I34	32,4	167	25,5
I35	32,2	168	25,3
I36	32,0	169	25,2
137	31,7	170	25,0
			•

39.93 319 OU

Продолжение таблицы А2

	,		
НД кгс/мм ²	б, ^{нд} %		
171	24,9		
172	24,7		
173	24,6		
174	24,4		
175	24,3		
176	24 , I		
177	24,0		
178	23,8		
179	23,7		
I80	23,6		
181	23,4		
182	23,3		
183	23,2		
I84	23, I		
185	22,9		
I86	22,8		
I87	22,7		
I88	22,6		
I89	22,5		
190	22,4		
191	22,3		
192	22,2		
193	22,1		
I94	22,0		
I95	21,9		
I96	2I,8		
197	21,7		
198	21,6		
199	21,5		
200	21,4		
201	21,3		
202	21,3		
203	21,2		
204			
205	21,1		
200	21,1		

Таблица АЗ Расчетные значения временного сопротивления бу НВ стали 12X18Н9ТЛ

HB 2	б,	НВ	HB	б нВ	
Krc/mm ²	MNa	Krc/mm ²	кгс/мм ²	MIla	кгс/мм2
100	518	52,8	127	530	54,0
101	518	52,7	128	531	54,1
102	518	52,7	129	532	54,3
103	517	52,7	130	534	54,4
I04	517	52,7	131	535	54,5
105	517	52,7	132	536	54,7
106	517	52,7	133	538	54,8
107	517	52,7	134	539	54,9
109	517	52,7	135	540	55,I
109	518	52,8	136	542	55,2
110	518	52,8	137	543	55,2
III	518	52,8	I38	545	55,4
II2	513	52,8	139	546	55,7
113	519	52,9	I 40	548	55,9
114	519	52,9	I4I	550	56,0
II5	520	53,0	142	5 5 I	56,2
116	520	53,0	143	553	56,4
117	521	53,1	I44	555	56,5
II3	522	53 , I	145	556	56,7
119	522	53,3	I46	558	56,9
120	523	53,3	I47	560	57,I
121	524	53,4	I48	562	57,3
122	525	53,5	149	564	57,5
123	526	53,6	150	566	57,7
I24	527	53,7	151	568	57,3
125	52ප	53,8	152	569	58,I
126	529	53,9	153	57I	58,3
					1

Продолжение таблицы АЗ

HB Krc/mm ²	G HB	
	МПа	krc/mm ²
I5 4	573	58,5
155	575	58,7
I56	577	58,9
157	579	59,I
I5 8	58I	59,3
159	584	59,5
160	586	59,7
161	588	59,9
162	590	60,I
163	592	60,3
164	594	60,6
165	596	60,8
166	598	61,0
167	600	61,2
168	603	61,4
169	605	61,7
I70	607	61,9
171	609	62,I
172	6II	62,3
173	614	62,5

Расчетные значения относительного удлигения δ НД стали 12X18H9TM

Таблица А4

		Таолі	ица А4
НД кгс/мм ²	б нд %	нµ кгс/мм²	б ^{нд} %
IIO	62,8	I44	49,3
III	62,4	I45	48,9
II2	62,0	146	48,5
II3	61,6	147	48,I
114	61,2	I48	47,7
115	60,8	149	47,3
116	60,5	150	46,9
117	60,I	I5I	46,5
118	59,7	I52	46,I
119	59,3	I53	45,7
120	58,8	I54	45,3
121	58,5	I55	44,9
122	58, I	I56	44,5
123	57,7	I57	44,I
124	57,3	I58	43,7
125	56,9	159	43,3
126	56,5	160	42,8
127	56 , I	161	42,4
128	55,7	162	42,0
129	55,3	163	41,6
130	54,9	I64	41,2
131	54,5	I65	40,8
I32	54,I	166	40,4
133	53,7	167	40,0
I34	53,3	I68	39,6
I35	52,9	16 9	39,2
I36	52,5	170	38,8
137	52 , I	171	38,4
133	51,7	172	38,0
I39	51,3	173	37,6
140	50,9	I74	37,1
I4I 142	50,5	I75	36,7 36,3
Ī4Ž I43	50,Î 49,7	175 176 177	35,9
1			'

Таблица А5 Расчетные значения временного сопротивления $\mathcal{G}_{B}^{\text{HB}}$ стали I4XI7ii2

HB 2		HB B	HB 2		б <u>в</u>
кгс/мм ²	MIIa	Krc/cm ²	кгс/мм2	Mīla	кгс/см2
19 0	743	75,6	252	871	88,8
192	746	76,0	254	875	89,2
194	749	76,4	256	880	89,7
196	753	76,8	258	885	90,2
I98	757	77,2	260	890	90,7
200	761	77,6	262	894	91,2
202	765	78,0	264	899	91,6
204	769	78,4	266	904	92 , I
206	773	78,7	268	909	92,6
208	777	79,2	270	917	93 , I
210	780	79,6	272	919	93,6
212	785	80,0	274	923	94,I
214	789	80,4	276	928	94,6
216	793	80,8	278	933	95,1
218	797	81,2	280	938	95,7
220	801	81,6	282	944	96,2
222	805	82,0	284	949	96,7
224	809	82,5	286	954	97,2
226	813	82,9	283	960	97,7
228	816	83,3	290	964	93,3
230	822	83,8	292	969	98,8
232	826	84,2	294	975	99,3
234	830	84,6	296	980	99,9
236	835	85,I	293	985	100,4
238	839	85,5	300	990	100,9
240	844	6 6,0	302	996	101,5
242	848	86,4	304	1001	102,0
244	853	86,9	306	1007	102,6
246	857	87,4	308	1012	103,2
248	862	87,8	310	1017	103,7
250	866	88,3	312	1023	104,3

Продолжение табл. А5

Расчетные значения $\mathcal{G}_{\mathbf{B}}^{\phantom{\mathbf{B}}}$ стали $\mathbf{I4XI7H2}$

нв	6 B		HB	6	HB B
кгс/мм ²	Mla	Krc/MMZ	krc/mm ²	МПа	Hrc/MM ^Z
314	1029	104,8	364	1177	120,0
316	1034	105,4	366	1186	120,9
318	1040	106,0	368	1190	121,3
320	1045	106,5	370	1196	121,9
322	1051	107,1	372	1202	122,6
324	1057	107,7	374	1209	123,2
326	1062	108,3	376	1215	123,9
323	1063	108,9	378	1221	124,5
330	1074	109,5	330	I223	125,2
332	1079	IIO,I	382	1235	125,9
334	1036	110,7	384	1242	126,6
336	1091	111,3	386	I248	127,2
338	Iu97	111,9	383	1255	127,9
340	1103	112,5	390	1261	128,6
342	1109	113,1	392	1273	129,3
344	1115	113,7	394	1275	130,0
346	II2I	114,3	396	1282	130,7
343	1127	114,9	398	1286	131,3
350	1133	115,5	400	1295	132,0
352	1139	116,2	402	1302	132,7
354	1146	6,611	404	I309	133,4
356	1152	117,4	406	1316	134,2
358	1158	0,611	408	I323	134,9
360	1164	118,7	410	1330	135,6
362	1170	8,611	į		1
	}	1		}	}
				}	
	l	ļ	1		
	1				1
	}	1)	
	1				[
	1	1	Į.	1	1

Расчетные значения предела текучести $\stackrel{HJ}{6}_{02}^{HJ}$ стали 14X17H2

CTBUN 14A1/NZ						
ҢД кгс∕мм ²	ઉ	НД 02	НД 2	б W	ļ	
RI'C/MM	МПа	Krc/mm ²	кгс/мм ²	MIa_	RLC\NW _S	
190	610	52,0	244	645	65,6	
192	516	52,5	246	648	66,1	
194	521	53 , I	248	653	66,6	
196	526	53,6	250	657	67,I	
193	531	54,I	252	662	67,5	
200	537	54,7	254	667	63,0	
202	542	55,2	256	672	68,4	
204	546	55,7	258	676	68,9	
206	55 I	56,2	260	63I	69,4	
208	556	56,7	262	685	69,8	
210	562	57,3	264	690	70,3	
212	567	57,8	266	694	70,7	
214	572	58,3	268	698	71,2	
216	577	58,8	270	702	71,6	
218	582	59,3	272	706	72,1	
220	587	59,8	274	711	72,5	
222	592	60,3	276	715	72,9	
224	596	60,8	278	720	73,4	
226	601	61,3	280	724	73,8	
228	606	61,8	232	729	74,2	
230	611	62,3	284	733	74,7	
232	616	62,8	286	737	75 , I	
234	621	63,2	233	741	75,5	
236	625	63,7	290	746	76,0	
238	630	64,2	292	750	76,4	
240	635	64,7	294	753	76,8	
242	640	65,2	296	757	77,2	

Продолжение таблицы Аб Расчетные значения $6\frac{\text{HM}}{\text{O2}}$ стали I4XI7H2

HT 5	6	НД 02	<u>н</u> д 2	6	НД 02
кгс/мм ²	МПа	Krc/mm ²	кгс/мм ²	MIa	KPC/MM ²
298	761	77,6	354	866	88,3
300	765	73,0	356	870	88,7
302	770	78,4	358	873	89,0
304	774	78,9	360	877	89,3
306	778	79,3	362	666	89,7
303	732	79,7	364	833	90,0
310	736	30,1	366	837	90,4
312	790	80,5	363	390	90,7
314	794	30,9	370	ძ93	91,0
316	798	31,2	372	ਰੇ96	91,4
318	302	81,6	374	900	91,7
320	804	82,0	376	903	92,0
322	808	82,4	378	906	92,3
324	813	8,26	330	909	92,7
326	816	83,2	382	912	93,0
328	820	83,6	334	915	93,3
330	824	83,9	386	919	93,6
332	827	84,3	333	925	94,2
334	188	84,7	390	923	94,6
336	835	∂5 , I	392	931	94,9
338	333	৪১,4	394	934	95,2
340	842	85,8	396	937	95,5
342	345	₹6,2	398	940	95,3
344	ਰ49	86,5	400	942	96,1
346	352	ਰ6,9	402	945	96,4
348	856	87,2	404	948	96,6
350	შა9	87,6	406	169	96,9
352	ಕ63	ძძ,0	408	954	97,2
					<u> </u>

Продолжение таблицы Аб Расчетные значения $\delta' \stackrel{\mathrm{III}}{\mathrm{O}2}$ стали I4XI7H2

и	G b	Д)2
Krc/MM ²	Mila	Krc/mm ²
410	956	97,5
412	959	97,8
414	962	93 , I
416	965	93,4
418	968	98,6
420	970	98,9
422	973	99,2
424	976	99,4
426	978	99,7
423	981	100,0
430	983	100,2
432	9ප6	100,5
434	989	100,8
436	991	101,0
438	994	101,3
440	996	101,5
442	998	101,8
444	1001	102,0
446	1003	102,3
448	1006	102,5
450	1003	102,8
452	1010	103,0
454	1013	103,2
456	1015	103,5
458	1017	103,7
460	1020	103,9
462	1022	104,1
464	1026	104,6
466	1028	104,8
468	1030	105,0
470	1033	105,2
472	1035	Í

Таблица А7
Расчетные значения относительного удлинения
и относительного сужения

НД
стали 14X17H2

180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265	28,4 27,8 27,2 26,7 26,2 25,6 25,1 24,6	59,5 59,6 59,6 59,6 59,7 59,7	340 345 350 355 360	I6,4 I6,2 I6,I I5,9	57,7 57,6 57,4
190 195 200 205 210 215 220 225 230 235 240 245 250 255 260	27,2 26,7 26,2 25,6 25,I 24,6	59,6 59,6 59,7 59,7	350 355	I6,2 I6,I	•
195 200 205 210 215 220 225 230 235 240 245 250 255 260	26,7 26,2 25,6 25,I 24,6	59,6 59,7 59,7	355		57,4
200 205 210 215 220 225 230 235 240 245 250 255 260	26,2 25,6 25,I 24,6	59,7 59,7		J5.9	
205 210 215 220 225 230 235 240 245 250 255 260	25,6 25,1 24,6	59,7	360		57,2
210 215 220 225 230 235 240 245 250 255 260	25,I 24,6	·		I5,8	57,0
215 220 225 230 235 240 245 250 255 260	24,6		365	I5 , 7	56,9
220 225 230 235 240 245 250 255 260		59,7	370	15,6	56,7
225 230 235 240 245 250 255 260	~ ~ - 1	59,7	375	I5,5	56,5
230 235 240 245 250 255 260	24,I	59,7	380	I5,4	56,3
235 240 245 250 255 260	23,7	59,7	335	I5,4	56,0
240 245 250 255 260	23,2	59,7	390	Ib,3	55,8
245 250 255 260	22,8	59,7	395	I5,3	55,6
250 255 260	22,3	59,6	400	I5,3	55,4
255 260	21,9	59,6	405	I5,2	55,I
260	21,5	59,5	410	I5,2	54,9
	21,1	59,5	415	I5,2	54,6
265	20,7	59,4	420	Ib,2	54,4
	20,3	દ 9,4	425	15,2	5 4,I
270	20,0	59,3	430	I5,2	53,8
275	19,6	59,3	435	I5 , 2	53,5
280	19,3	59,2	440	I5,I	53,3
235	19,0	59,1	445	15,1	53,0
290	18,7	59,0	450	Ib,I	52,7
295	18,4	5მ,9	455	Ib,I	52,4
300	1.81	5 3, 3	460	I5,I	52,0
305	17,9	ნძ , 7	465	Ib,I	51,7
310	17,6	ნმ,6	470	Ib,I	51,4
315	17,4	⊍მ,ხ	47ა	1,01	51,1
320	17,1	દેઇ,3	430	0,d1	50,7
325	16,9	ამ,2	485	Iى,0	50,4
330	16,7	5કે,0	490	I5,0	50,0
335	I6,5	57,9		-	Í

Таблица A8 Расчетные значения временного сопротивления $G = \frac{HB}{B}$ стали ОбХІЗнІОТ

НВ		HB бв	HB 2	б ^Н	3
кгс/мм ²	Mīla	Krc/mm ²	кгс/мм ²	Mīla	krc/mm ²
100	513	52,3	123	624	63,6
IOI	518	52,8	129	627	63,9
102	523	53,3	130	630	64,2
103	523	53,8	131	633	64,5
104	532	54,2	132	636	64,8
105	537	54,7	133	639	65,I
106	540	55,1	134	641	65,4
107	545	55,6	135	643	65,6
108	549	56,0	136	646	65,9
109	553	56,4	137	649	66,2
IIO	553	56,9	138	65I	66,4
III	562	57,3	139	654	66,7
112	566	57,7	140	656	66,9
113	570	58,1	I4 I	659	67,2
II4	574	58,5	142	661	67,4
II5	578	58,9	I43	663	67,6
116	582	59,3	I44	666	67,9
117	586	59,7	I45	668	68,I
119	589	60,I	I46	670	68,3
119	593	60,5	147	672	68,5
120	596	60,8	I48	674	68,7
121	600	61,2	149	676	63,9
122	603	61,5	I50	678	69,I
123	607	61,9	151	680	69,3
124	610	62,2	152	681	69,4
125	614	62,6	153	683	69,6
126	617	62,9	I54	685	69,8
127	620	63,2	I55	6ප6	69,9

Продолжение таблицы АЗ

Расчетные значения временного сопротивления $\mathcal{G}_{\mathbf{B}}^{\mathbf{HB}}$ стали ОЭХІЗНІОТ

HB 2	б	HB в
Krc/mm ^c	MIIa	Krc/mm ²
156	688	70,1
157	689	70.3
I58	691	70,4
159	692	70,5
160	693	70,6
IoI	694	70,8
162	695	70,9
163	696	71,0
164	697	71,1
165	698	71,2
166	699	71,3
167	700	71,4

Таблица А9 Расчетные значения предела текучести $6\,^{HI}_{02}$ относительного удлинения $6\,^{HI}_{02}$, относительного сужения $4\,^{HI}_{02}$ стали 08XI3HI0T

Cymenus 7 CTEMU CONTONIOI						
Щ	6),2 	ДЩ	,,, 斑		
кгс/мм ²	Mīla	Krc/mm ²	8 %	Ψ " %		
110	199	20,3	75,7	69,2		
III	200	20,4	75,7	69,8		
112	201	20,5	75,6	70,2		
113	202	20,6	75,5	70,7		
114	204	20,7	75,4	7I,I		
115	2 05	20,9	75,2	71,5		
116	206	21,0	75,I	71,8		
117	207	21,1	75,0	72,2		
118	209	21,3	74,8	72,4		
119	210	21,4	74,7	72,7		
120	212	21,6	74,5	72,9		
121	213	21,7	74,3	73,0		
122	215	21,9	74,I	73,1		
123	217	22, I	73,9	73,2		
124	218	22,3	73,7	73,3		
125	220	22,4	73,5	73,3		
126	222	22,6	73,2	73,3		
127	224	22,8	73,0	73,2		
128	226	23,0	72,7	73,I		
129	228	23,2	72,5	73,0		
130	230	23,5	72,2	72,9		
131	232	23,7	71,9	72,7		
132	235	23,9	71,6	72,4		
I33	237	24,I	71,3	72,2		
I34	239	24,4	70,9	71,8		
I35	242	24,6	70,6	71,5		
			1			
]			

Расчеты значения 6.1,5 ,5 ,42 ,42 стали 06XI8нІОТ

	6	05 НД	े संग	ψ ^{ҢД} %			
кгс/мм ²	МПа	кгс/мм ²	8 %	Ψ %			
136	244	24,9	70,3	7I,I			
137	247	25,I	69,9	70,7			
138	249	25,4	69,6	70,3			
139	252	25,7	69,2	69,8			
140	255	25,9	68,8	69,2			
I4I	257	26,2	63,4	68,7			
142	260	26,5	63,0	68,I			
143	263	26,8	67,5	67,5			
144	266	27, I	67,I	66,8			
145	269	27,4	66,7	66,I			
I46	272	27,7	66,2	65,3			
I47	275	28,1	65,8	64,6			
148	278	28,4	65,3	63,8			
149	282	23,7	64,8	62,9			
I50	285	29,0	64,3	62,0			
151	288	29,4	63,8	61,1			
152	292	29,7	63,3	60,I			
153	295	30,I	62,7	59,I			
I54	299	30,5	62,2	58,I			
I b5	302	30,8	61,7	57,0			
I56	306	31,2	6I,I	55,9			
157	018	31,6	60,5	5 4, 8			
I58	314	32,0	59,9	53,6			
I59	317	32,3	59,3	52,4			
160	321	32,7	53 , 7	51,2			
161	325	33,I	58,I	49,9			
162	329	33,6	57,5	43,6			
163	333	4,0	56,9	47,2			
164	337	34,4	56 , 2	45,3			
165	542	34,8	55,6	44,4			

Продолжение таблицы А9 Расчетные значения $G_{\ell,2}^{\prime,D}$, $G_{\ell,2}^{\prime,D}$, $G_{\ell,2}^{\prime,D}$ стали ОЗХІЗНІОТ

нд	G H	ĭ ≳	~ 概	нд
rrc/mm ²	MIIa	кгс/мм ²	8 %	Ψ %
166	346	35,3	54,9	42,9
167	350	35,7	54,2	41,4
168	355	36,I	53,5	39,9
169	359	36,6	52,8	38,3
170	364	37,1	52,1	36,7
171	368	37,5	51,4	35,I
172	373	38,0	50,6	33,4
173	377	38,5	49,9	31,7
174	382	38,9	49,I	29,9
175	337	39,4	48,4	28,1
176	392	39,9	47,6	26,3
177	397	40,4	46,8	24,4
178	402	40,9	46,0	22,5
179	407	41,5	45,2	20,6
190	412	42,0	44,4	18,6
181	417	42,5	43,6	16,6
182	422	43,0	42,7	14,6
193	427	43,5	41,9	12,5
}				
I		l		
i			1	
		1	1	
		1]	
ļ		1		
{			1	
İ		ľ	į (
]			{	
ļ			1	

Таблица АІО Расчетные значения временного сопротивления $G' \stackrel{HB}{_{\mathbf{R}}}$ стали 3N-432

HB krc/mm ²	Q B		НВ 2 кгс/мм ²	G B HB	
	MIIa	krc/mm ²	10.07.11.11	М∏а	Krc/mm ²
85	445	45,I	II5	510	52,0
86	448	45,4	116	512	52,2
87	450	45,7	117	514	52,4
88	453	45,9	118	517	52,7
89	454	46,2	119	519	52,9
90	455	46,3	120	52 I	53,I
91	457	46,6	12 I	523	53,4
92	459	46,8	122	526	53,6
93	46I	47,0	123	528	53,8
94	463	47,2	I24	530	54,0
95	466	47.5	I25	532	54,2
96	468	47.7	126	534	54,5
97	470	47.9	127	537	54,7
98	472	48.I	128	539	54,9
99	475	48.5	129	54I	55,2
100	477	48,6	130	543	55,4
IOI	479	48,8	I3L	545	55,6
102	48I	49.I	132	548	55,8
103	483	49,3	I33	550	56.I
I04	486	49,5	134	552	56,3
105	488	49.7	I 35	554	56,5
106	490	49,9	136	557	56,7
107	492	50,2	137	559	57,0
108	494	50,4	138	56I	57,2
109	497	50.6	139	563	57,4
IIO	499	50,9	140	565	57,6
III	50I	51,1	I4I	568	57,9
II2	503	51,3	I42	570	58,I
113	506	51,5	I 43	572	58,3
II4	508	51.8	I44	574	58,6

Продолжение таблицы АІО

HB	G	HB B
кго/мм ²	МПа	kfc/mm ²
145	577	58,8
146	579	59,0
147	58 I	59,2
148	583	59,5
149	585	59,7
150	588	59,9
I5I	590	60,I
152	592	60,4
153	594	60,6
I54	596	60,8
155	599	61,0
156	60I	61,3
157	603	61,5
158	605	61,7
I59	608	61,9
160	610	62,2
161	612	62,4
162	614	6 2,6
I63	616	62,8
164	619	63,1
165	621	63,3
I66	623	6 3,5
I 67	625	63, 8
I68	628	64,0
169	630	64,2

Таблица AII Расчетние значения относительного удлинения δ НД и относительного сужения ψ НД стали ЭИ-432

НЦ кгс/мм ²	б нд	Ψ нд , %	HA Krc/mm ²	δ нд	Ψ ^H J, %
104	67,8		I35	53,5	51,4
I05	67,4		136	53,0	51,2
106	66,9		I37	52,5	50,9
I07	66,5		138	52,0	50,6
I08	66,0		139	51,5	50,4
109	65,5		140	51,0	50,I
IIO	65 , I		I4I	50,5	49,8
III	64,6		I42	50,0	49,5
II2	64,I		I43	49,6	49,I
II3	63 , 7		I44	49,I	48,8
II4	63,2		I45	48,6	48,5
II5	62,8		I 46	48,0	48,2
II6	62,3		147	47,5	47,8
II7	61,8	1	148	47,0	47,5
II8	6I,4		149	46,5	47,I
119	60,9		150	46,0	46,8
I20	60,3	54,3	I5I	45,5	46,4
IZI	59,3	54,I	I52	45,0	46,0
I22	59,4	54,0	I53	44,5	45,7
123	59,0	53,9	I54	44,0	45,3
I24	58,5	53,7	I55	43,5	44,9
I25	58,I	53,6	156	43,0	44,5
I26	57,6	53,4	I57	42,5	44.I
127	57,2	53,2	I58	42,0	43,7
I28	56 ,7	53,0	I 59	41,4	43,3
129	56,3	52,8	160	40,9	42,9
130	55,8	52,6	I6I	40,4	42,5
13I	55,4	52,4	162	39,9	, 42,I
132	54,9	52,2	163	39,4	41,7
133	54,4	51,9	164	38,9	41,2
134	53,9	5I , 7	I65	38,4	40,8
					l
	1				I

HII Krc/mm ²	б нд	Ψ HJ 92
166	37,9	40,4
167	37,4	39,9
I68	36,9	39,5
I69	36,4	39,1
I70	35,9	38,6
171	35,4	38,2
172	34,9	37,8
173	34,4	37,3
174	33,9	36,9
175	33,4	36,4
176	32,9	36,0
177	32,5	35,5
178	32,0	35,I
I79	31,5	34,6
180	3I,O	34,2
181	30,6	33,7
182	30,I	33,3
183	29,6	32,8
184	29,2	32,4
I85	28,7	31,9
186	28,3	31,4
187	27,8	3I,0
188	27,4	30,5
189	26,9	30,I
190	26,5	29,7
I9I	26,0	29,2

Расчетные значения временного сопротивления $6 \frac{HB}{B}$ стали 3M-943

krc/mm ²	бв ^{HB}		rrc/mm ²	бв ^{HB}	
	MIIa	Krc/mm ²	0,	MIa	Krc/mm ²
100	418	42,6	133	524	53,4
IOI	42I	42,9	I34	527	53,7
102	424	43,2	I35	530	54,0
103	427	43,5	136	534	54.4
IO4	43I	43,9	137	537	54,7
I05	434	44,2	138	539	55,0
I 06	436	44,5	139	542	55,3
107	440	44,9	I40	546	55,7
108	443	45,2	I4I	549	56,0
109	446	45,5	I42	552	56,3
IIO	449	45,8	143	555	56,6
III	453	46,2	I44	559	57,0
II2	456	46,5	I4 5	562	57,3
II3	459	46,8	I46	565	57,6
II4	462	47.I	I47	569	58,0
II5	466	47.5	I48	572	58,3
II6	469	47,8	I 49	575	58,6
II7	472	48,I	150	578	58,9
II8	476	48,5	I5I	582	59,3
119	479	48,8	152	585	59,6
120	482	49,I	I 53	588	59 ,9
121	485	49,4	I54	59 I	60,3
133	488	49,8	I 55	594	60,6
123	491	50,1	156	597	60,9
I24	494	50,4	157	600	61,2
125	498	50,8	I 58	604	61,6
I26	50I	51,0	I 59	607	61.9
127	504	51,4	160	610	62,2
128	507	51,7	161	613	62,5
I29 I30	5II 5I4 5I7	52.1 52.4 52.7	I62 I63 I64	6 17 620 623	62,9 63,2 63,5 63,9
135 131	517 520	53,0	165	627	63,9

Таблица АІЗ Расчетные значения относительного удлинения δ НД и относительного Ψ НД сужения стали ЭИ-943

2 Classificity Cymonia Classification						
НД кгс/мм ²	δ %	4 HII	НД кгс/мм ²	δ %	ψ ^H , %	
IOI	52,2	70,9	136	32,5	33,I	
102	51,6	69,3	137	32,I	32,6	
103	50,9	67,7	138	31,7	32,1	
I04	50,2	66,2	139	31,2	31,7	
105	49,6	64,7	140	30,8	31,3	
106	48,9	63,2	I4 I	30,4	30,9	
107	48,3	61,7	142	30,0	30,5	
108	47,7	60,3	143	29,7	30,2	
109	47,0	58,9	I 44	29,3	29,9	
IIO	46,4	57,5	I 45	28,9	29,7	
III	45,8	56,2	146	28,6	29,4	
II2	45,2	54,9	147	28,2	29,2	
113	44,6	53,6	I48	27,9	29,1	
II4	44,0	52,4	I 49	<i>2</i> 7,5	29,0	
II5	43,4	51,2	150	27,2	28,9	
116	42,8	50,0	151	26,9	28,8	
117	42,2	48,9	152	26,6	28,8	
II 8	41,6	47,7	I 53	26,3	28,7	
119	4I,I	46,7	I54	26,0	28,8	
120	40,5	45,6	I 55	25,8	28,7	
ISI	39,9	44,6	1 56	25,5	28,6	
133	39,4	43,6	I 57	25,2	28.6	
123	38,9	42,7	I5 8	25,0	28,6	
124	38,3	41,7	I59	24,7	28,5	
12 5	37,8	40,8	160	24,5	28,5	
126	37,3	40,0	16I	24,3		
127	36,8	39,2	162	24,I		
128	36,3	38,4	163	23,9	Į	
129	35,8	37,6	I64 I65	23,7 23,5		
130	35,3	36,9	1 166	23,5		
131	34,8	36,2	I 167	23,2		
T32	34,3 33,9	35.5	I68 I69	23,4 23,2 23,1 22,9 22,8		
133 134 135	33,9	34,9 34,2 33,7	170	22,8		
13 5	33,4 33,0	33,7				
		j]			
		Į '				