ТИПОВЫЕ КОНСТРУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ ЗДЯНИЙ И СООРУЖЕНИЙ

СЕРИЯ 5.904-73.93

ВОЗДЧХОРАСПРЕДЕЛИТЕЛИ С ПРОФИЛИРОВАННЫМИ ЛОПАТКАМИ ДЛЯ СОСРЕДОТОЧЕННОЙ ПОДАЧИ ВОЗДЧХА РЕГЧЛИРЧЕМЫЕ типа ВПЭСр выпуск о

ЧКАЗАНИЯ ПО ВЫБОРУ И РАСЧЕТУ

ТИПОВЫЕ КОНСТРЫКЦИИ, ИЗДЕЛИЯ И ЫЗЛЫ зданий и сооружений

CEPNS 5.904-73.93 ВОЗДУХОРАСПРЕДЕЛИТЕЛИ С ПРОФИЛИРОВАННЫМИ ЛОПАТКАМИ ДЛЯ СОСРЕДОТОЧЕННОЙ ПОДАЧИ ВОЗЛУХА

BEITISCK O

ЧКАЗАНИЯ ПО ВЫБОРУ И РАСЧЕТУ

Разработа ны:

PETY/NPYEMBIE TURA BRIGCO

АП "ПРОЕКТПРОМВЕНТИЛЯЦИЯ"

Технический директор Манентиков изысканий ГОССТРОЯ РОССИИ, письмо от 23 09 93 N°9-3-2/202; Директор ТОО "Вентсервис" ВВЕДЕНЫ В ДЕЙСТВИЕ АП ПРОЕКТПРОМВЕНТИЛЯЦИЯ

приказ от 15.10.93 N°293

ЧТВЕРЖДЕНЫ

проектирования и инженерных

Главным управлением

c 01.12.93.

	Обозначение документа	Наименование	Cmp.	I. Общие положения
0		Общие полоэкения Назначение и область	2	1. Настоящая серия састоит из двуж выпускав; выпуск 0- указания по выбори и дасчети
выпуск	5. 904-73. 93. D - N3		3 4	выпуск 1 - 803духораспределители, Рабочие чертежи
	5 904 - 73, 93. 0 - 113	расчете, иж условные обозна-	5	1.2. Выпуск О раз Рабоман по данным лаборатарных и натурных испытаний, выполненных Ленинград-
-73.93	5.904-73.93.0-113	чения. Исжодные данные для выбора. Ц расчета		ским отделением Государственного проектного института "Проектпромвентиляция"
- 406	5.904-73.93.0-113	Порядок выбора и расчета Расчетные таблицы	7	1.3. В "Указания» по выбору и расчету ВПЭСр" приведены расчетные формулы, графики, номограм-
. 6	1	Примеры расчета	16	мы, позволяющие апределить параметры воздужа в месте внедрения струи в рабочую зону
				по заданным условиям на истечении с учетом влияния гравитационных сил и стеснения.
J Samo				в струе следует принимать не более Уставова,
, Noda.				с тавлицей И приложения 4, Указаний,
B3am une No Une. No Byen (Roon a Bama				АЗ-669" 1.5 В разделе 73 аписки приведены расчетные таблицы ориентировочного подбора ВЛЭСР для наиболее
IHB.Nº UL				
		e.	·	стимых согласно $\Gamma 0.07 + 12.1.005 - 88$ подвижно-
u dama				₩ Vaon = 0,5 m/c; Vaon = 0,3 m/c npu k=2) npu hp3 = 2m
JA. Rodn. u	Ush Aud Nagkyn Noan D Paspas Hawkobo Chin	5.904-73.93.0	Auct n.R.	5.904-73.93.0-13 15 100
JHE N NO	MAR BOLLANDER ALL LAND STATE AND POLYKOSA A.A.	Содержание	1	Pagon Haurol duri NOACHUMCAHAA PI 16 2 Anab Kouro Cor NOACHUMCAHAA PI 16 2 Amb. Dagandura Jag 3anucka
	то Тигафонов Иза	KanupoBan: Popt	am: A4	14 JAME MEADONE WILL 3 KONUPOBRAS: POPMAM: A4

2. Назначение и область применения 2.1. В ПЭ Ср предназначен Вля раздачи наклонными струяму Больших количеств воздужа (10800,...114500 м3/4) из вержней зоны прозводственных помещений в направ-0 Bomycr лении рабочей зоны системами вентиляции, воздушного BNƏCI отопления и кондиционирования воздуха. ВПЭСР целесообразно приненять в цежаж большого объема при относительно небольших кратностях Воздужообмена (Кр ≤ 10 1/4). г.г. эмя производственных помещений, в которых циркуляция воздуже обусловлена приточными струями, приентировочное значение коэффициента воздужообмена К + при расчете ВПЭЕр может быть принято в пределаж 0.95...... либо определено расчетным путем по формулам, приведенным в, Указания эс " BNJEP U BNICOMO ezo yemd-2.3. Расположение ฟร์ฟกอปก)กอจิก บ อิฉาฮ | ผิริตามกร์ฟ ไทธ์ม อิงุอิก| กิฉฮิก. บ ฮิฉาฮ новки определяю тся объемно-планировочными, технологическими и другими местными условиями с учетом целесообразности максимального сокращения протяженности магистральных воз-สินมะอธิอฮิอธิ. 2.4 Предельные высоты установки влэгр могут быть заданы в соответствии с данными таблиц 7.1...7.4. г.з. ВПЭСр присоединительным патрубком может Puc. 2.1. истанавливаться непосредственно на магистральном возвиреоводе с одной или двуж его а. Установка впэср на воздуховоде сторон, ши на специальной распределительной коробке с треж или четыреж сторон (рис. 2.1). б. Установка ВЛЭСР на распределитель-2.6. Крепление စီတချေပာလေ распределителей к строиной коробке (быпуск воздуж на три тельным конструкциям производится аналостороны) еично креплению воздужоводов круглого се-MILE YEHUR. 5.904-73.93.0-n3. Total Menkum Mean, Jon 1600112-01 Konupoban: Br

3. Описание конструкции 3.1. Bosdyscopacopedenument Bnacp (puc.3.1) cocmoum из поворотного цилиндрического патрубка 1, внутри которого установлен Закручиватель с двенадцатью Beinyck профилированными лопатками, и присоединительно-20 Nampy6ka 2. 904 400 HE MARTA ADDA U DOTO Bosdyxopacnpedenumens Bn3Cp 4. Мажанизм повоповоротный. 1. Nampy60K присоедини тельный pomd 2 Nampybox 5. Duapparma. 3. Och

nobopoma 4. Уплотнение Mestay nobopoment u noucoedu-HUMENBHOIM NAMPHOKAMA OBECNEVABORMEN BURGE DUZMOU 5. 3. г. Рабочие чертежи воздухораспределителей разработаны четырех размеров. Обозначение воздухо-

Νοβοροπ παπργόκα 1 βοκργε ου 3, προχοдящей че-

40°, осиществляется с помощью межанизма

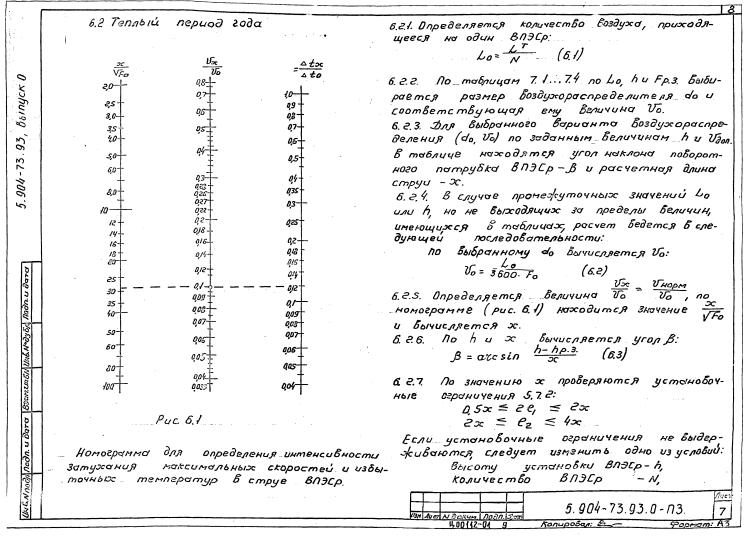
чентр тяжести, в пределах от 0° до

распределителей и основные конструктивные данные прибедены в таблице 3.4 Ταδλυμα 3.1. Размеры в мм Macca Обозначение do ĸε 530 8กก 1000 765 BN3Cp8 1000 1/20 615 96.5 BN3 CD 10 1400 740 128 12.51 BN3Cp12,5

1200 900 214 BN3Cp16 1600 3.3. Изменение угла наклона поворотного патрубка ВЛЭГр обеспечивает регулирование наπραβπεμμη πρυπογμού επριμ u ee napamemβ ραδογύμο 30μ4. В месте внедрения з.4. Межанизм поворота патрубка предусматвозможность регулирования угла его pubaem E HONG UPU BUCOME SCHORKA GO Наклона

10 m 3.5. Козффициент местного гопротивления

5.904-73.93.D-N3. Had Buch N @ Dirum Dodo 1L00112-01


KonupoBan Bewygen

Popmam; A3

Paccmoshue om BNACP do paccyumai-ВПЭГр зависит от угла наклона поворотного патрубка - В, численные значения которого приведены ваемого сечения по оси струи - x, m B mabruye 3.2. 0 Таблица 3. 2 bInyck Попобина расстояния между ВПЭСр, установленными в ряд, 400 30° B, Epad. 100 20° или расстояние от ВЛЭГр до бли-19 I, Bezp. 1.5 1.8 skajimeso cwomnoso osbaskos-1.6 1.7 ния, параллельного оси струй 3 - t, m Величина & для промезсуточных значений угла 3 Половина расстояния между дву-В находить линейным интерполированием. мя ВЛЭСР при выпуске воздужа на 706 3.6. Скоростной и температурный коэффициодном уровне навстречу друг друенты влэгр не зависят от угла В но являютгу или расстояние до ближайшего ся переменными по длине струи величинами: Встречного ограждения lz, m при = 6 ... 30; m=1,8... 2,8; n= 2,4... 3,3. Условная площадь рабочей зоны, При расчете следует пользоваться намограм-- Fp.3=26, 62, M2 ηρωτοδημαητη Ηα αδυμ βηθερ mou (puc. 6.1), nosbons we bonee mound anpedeлить т, п для конкретных условий. Высота помещения - h nom m 4. Величины, используеные при расчете, Высота установки влэср от уровия иж условные обозначения nard h. m Boom cabh liabhlogan Количество приточного воздужа, Высота рабочей зоны от уровня подаваемого в помещение в жолод-- hp.3, M HOIÚ Y MENADIÚ NEDUDBO ZOBO, POEnosid Считанное при проектировании С. Начальная скорость движения воз-- L, x, T 3/4 учетом коэффициента К. дужа отнесенная красчетной поо-Noch. udara BNƏCP - Vo M/E ณลฐน Количество приточного воздужа, подаваемого одним воздужораспре-Максимальная скорость движения -Lo, m3/4 Велителем ВЛЭСР воздужа в рассчитываемом сечении - Vac, ME приточной струи Расчетный диаметр патрубка ВПЭСР - do, mm 5.904-73.93.0-N3. - Fo, m2 Расчетная мащадь ВПЭСР VINDUET Nº BOKUM NOOR COM Konupaban; B9 400112-01 G

		6_
	_Максимальная расчетная скорость движения воздужа в рабочей зоне - врз., м/с	$nosopommuso$ патрубка влэср к горизонту — β , \circ
		Коэффициент нестнога сопротив-
×0	Нормируемая скорость движения	ления, отнесенный к скорости в рас-
Выпуск	воздужа в равочей зоне -Vnopm K. Vdos, Mc	четном сечении ВЛЭСРZ, безр.
80	Температура приточного воздужа	Потери давления на прожод воз-
93	HO BEODE B BNJCp to, C	дужа через влэср — р, Ла
-73	Максимальная (при подаче нагретого)	Расчетное количество впэср – N, шт
. 904	денно <u>го)</u> шемиерашдра доздджа пип мпнпмачрнач (ибп иодал е ожиз:к -	Коэффициент стеснения – К с безр.
8	в расчетном сечении приточной — tx,°C	Коэффициент неизотермичности — Кы, безр
	Температура воздужа в рабочей зоне -tp3,°С	Козффициент перехода от требуе-
	Нормируе тая избыточная темпе-	ных скоростей движения воздухак
	ратура воздужа в равочей зоне - 1 t норт. ° С	иж максимальным значениям - К, безр.
com	Избыточная температура приточ-	Геометрическая жарактеристика
Noga.u	ного воздуха на вжоде в впэср -ь to=to-tps.°С	струи ВПЭСР — Н, м Скоростной коэффициент ВПЭСР — т, безр.
SN-O.S.	Избыточная температура воздуха в расчетном сечении струи впэср-4tx=tx-tp3.°C	Тенпературный коэффициент ВПЭСр- П, безр.
1 2		5. Исжодные данные для вывора и расчета
vygv	Максимальная расчетная избыточ-	.А. Компоновочные, строительные и межнологи-
Com.	ная температура воздужа врабо- _{так} чей зоне — Берз, °С	ческие решения с расположением оберудования и рабочих мест, по катарым впределяется
R		положение рабочей зоны
u ĝara	тельной величины избыточной $_{\Delta}$ $t = \sqrt{F_0}$.2. Тепловые жарактеристики помещения для теп- пого и жолоднога периодов года.
Лоди, с	= Utsp.	5.3 количество приточного воздужи для тепло-
I W	OHMERCUBHOCME SAMUSCAHUH OMACE. Vx 1. VFO	ρ и холодного периодов года (L^T и L^∞), рассчитан-
ردسدة	тельной величины скорости $-\frac{\sqrt{2}}{V_0} = m \frac{\sqrt{2}}{5}$, безр.	Auer
W. 6. A	Угол наклана геометрической оси	5.904-73.93.0-13 5
1311		400112-01 7 Капиробар: В _ — — — — — — — — — — — — — — — — — —

ное с учетом коэффициента воздужообмена Кт. Приближенное значение к. может быть принять равным 0,95.../, либо определено в соответствии с, Реконендациями" Аз- 669. 5.4 Ato, Ato, VHOPM & HOPM. Bunycko 5.5. Унорм. + норм. принимаются в соответствии с тре-Бованиями технологии и ГОСТ/2.1. 005-88 [Ни П 2.04.05-9/ VxIOtx 5.6. При расчете системы вентиляции и воздушного д отопления на поддержание допустиных ГОСТ 12.1.005-88 метеорологических условий при работах средней тяsteerny I'm II o u mastenoù III, erny modu maxodamen 15- D.S VOC δμε πρημοχο βοздεύεμους πρυμονμού επρία πρυμαnaemes K= 2, T.e. Vx = 2 Vaon. In apyeux yenobuu kass BN3CP. фициент К принимается в соответствии с, Рекомендацияни" АЗ-669 (припожение 4, таблица 11) 5.7. Установачные ограничения (рис. 5.1). L2 5.7.1 2e, = 3 hnom., ez = 5,2 hnom. Interness nada u dorro - (Beominist Cubu duba noda u dorro 5.7.2. D.5x ≤ 2C, ≤ 2x 2x = e2 = 4xc 5.7.3. Do = B = 40° V= Q5 V3C 5.7.4 h = 185 hnom. Соблюдение установочных ограничений обеспечи-Busm applesmubuos Bossycopachpedensus Бe3 3ac-Noc тойных зон и исключает взаимодействие приточных cmpyů. 6. Nopadok Bulbopa u pacyema. Б. По местным условиям с учетом установочных ограничений П.5.7.1 выбирается высота установки h и ориен-PUC. 5.1 тировочное каименьшее количество ВПЭСР, которое мо-Сжема развития струи влэср: фет быть размешено в помещении из условия что d-paspes, $\delta-n_{A}dH$ площадь рабочей зоны, приходящейся но один воздужоpacubegeinmene Fram. = 281. 82 11. 5.904-73.93.0-N3. 医直线 医脑室 化双氯苯基 医邻胱 STITUTED N COLYM MOST. LE KonupoBan: B 11,00112-01 Popnat: 12

- do Pasmep Bn3cp Atx OC KH .β, ερσθ U nobmopumb pacyem. F. M Vsc, N/C 100- 3.0 В. С. В. В система» вентиляции (кондиционирования) E OSEA CHUEM 603 DYXC KOK DAS MOBALYHOUSE, TOK и для промежуточных вариантов расчета определяется коэффициент неизотермичности по намограм-1,35 ME (puc. 6,2) UNU NO GOPMYNE 1,30 $K_{H} = \cos \beta \sqrt{\cos^{2}\beta + \left[\sin \beta + \left(\frac{x}{H\cos\beta}\right)^{2}\right]}, \quad (6.4.)$ 120 20e H= 5,45m Vo 7/Fo 40 - 35 904 Для определения Кн. по номограмме предбари-- 30 мельно насодится величина <u>а но</u> по номогратне (puc. 6.1) no v3BecmHOU VED (n. 6.2.5) 103 6.2.9. По номограмме (рис.63) определяется 1.02 - 15 коэффициент стеснения Кс для известных ТЕ, Fp. 3., VFo. - 1,01 - 10 6.2.10. Вычисляются значения максимальных скорости и избыточной температуры в рабочей зоне в теплый период года: VDB = Va. Kc · KH (6.6) 907 Bonun'SM UNSMOYSM Δ t ρ.3. = Δ to - 1 (6.7) 0.03и сравниваются с нормируетыми параметрами. Если расчетные величины Vp.3 или 1 tp.3. пре-003 Вышают нормируемые, следует уменьшить уголв, unpedenumb of no opopmyne $x = \frac{h - hp.3}{sin B}$ (68) Puc. 6.2. Нотограмма для определения коэффициента неизои повторить расчет. при подаче ожлажавннога воздуж DEOS BOUGER LINEH BONOSC 6.3 терничности 6.3.1. По выбранным h, Nu do в п.п. 6.1 и 6.2, 2. Prime pacyema no Homospamme: 1. No x=37N stx=94°F-(+)A; 2. No Vac= 1,4 M/c 4epe3(-)A-(-) B. и L^{∞} определяются L_0^{∞} и V_0 по формулам (6.1) 3. 4epe3 (.) BnoB=190-KH = 106 u (6.2.) 6. 3.2. No massuyam das dannoise do, Lo, Vo, h, Vasa. 5 904-73.93.0-N3. и А таходитер угол в, на который следует

VE. VFO.M. KC FP.3,M2 3000 -1000 1,77-100-1,59-141 1,24 0,75 0.80 0,85 090 A 0.95 097 0,98 0,99 40 - 100 Puc. 6.3 для определения HOMORPAMMO коэффицигнто стеснения. Пример расчета по номограмме: 1. По $\frac{3c}{\sqrt{F_0}} = 25 \text{ u } \sqrt{F_0} = 0.33 \text{ м} - (\cdot) \text{ A}$ 2. No Fp.3. = 1800 M2 4epes (.) A-Kc = 0,985

93

106

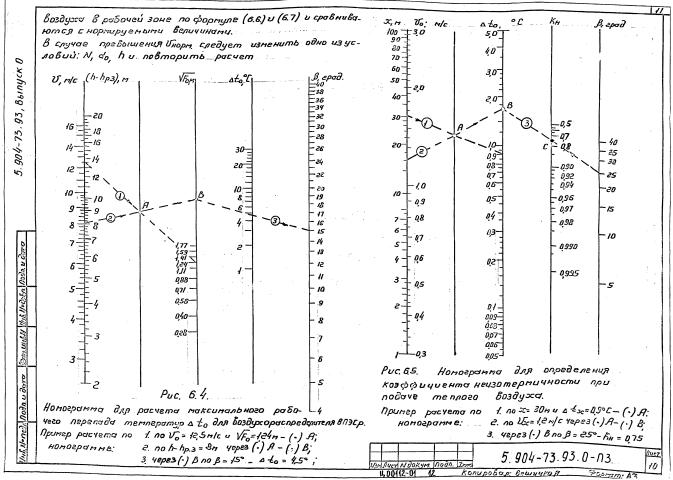
Rodn, u dorg

Bon cutsy Uns Novên

HEN MOST NOOD. U GOTO

сится в помещение другини способани. 6.3.3. Для нетабличного варианта угол В, на который необосодимо наклонить патрубок В ПЭСР, чтобы струя теплого воздужи достигли зону, определяется по номограмме ραδονιμο (puc. 6.4.) Ecnu us pacyema mpebyemes obecnesums your $\beta > 40^\circ$ mo k ycmanobke принимается $\beta = 40^\circ$ а максимальная избыточная разность темпераwho of war upu komopon cubils gocunshem baбочей зоны, определяется из номограммы (рис. 64). Недостающее количество тепла бноситья в помещение другим способом. 6.3.4. По наиденному в определяется величи-HOSE NO COPMYNE (68) U BEHYUCHREMER VEN 6.3.5. No Homoepamme (puc. 6.1) no benuruhe $\frac{x}{VF_0}$ onpedennemen $\frac{Ux}{V_0}$ u $\frac{tx}{\Delta t_0}$ u buruennemen Vx u o tx. 6.3.6. Определяется коэффициент неизотермичности при подаче mennozo bosdyska no HOMOZDAMME (PUC. 6.5) UNU NO GODMYNE $K_{H} = \cos\beta \sqrt{\cos^{2}\beta + \left[\sin\beta - \left(\frac{3z}{H \cdot \cos\beta}\right)^{2}\right]^{2}} \quad (6.9.)$ 6.3.7. No HOMOSPAMME (puc. 6.3) onpedensemes ko- $3\phi\phi$ ициент стеснения κ_{c} при $\frac{\infty}{\sqrt{Fo}}$ для ∞ олодного nepuoda zoda. 6.3.3. BAYUCARHOMER MCKEUMCABHBIE NOPOMETABI

занное в таблице соответствующее значение а to, а недостающее количество тепла вно-


воздушного отопления

Rues NOONIM DOON

5 904-73.93.0-N3.

Konupo Ban Bewyykan

Suci

Pasde	007								70	·5 -	ıya	71											0-	2-		2 = -	C	
	начен				81	ηЭΕρ	R	(0	10 = 800				/~)	٢		2	3	4	5	6		8	9	10			SAUGE	14
Vo.			h,	Э¢,	,	Lya.			0 -00E					ŀ			3	-		0	7		9		75	12	/3	<u> </u>
M/C	A3/4	M/E	M	M	MS.	r3/4H2	२०००.	B=15°	B=20°	B=25°	B=30°	8=350	B=100					9				20	_	45	7,5	10,5	15,0	
1	2	3	4	5	6	7	ડ	y	10	1/	15	13	14					10	19	1030	17	25	-	_	6,0	8,5	12,0	
			6	1			25	-				14,0	19,0				0,5		,,,	1000	"	30	_	_	_	7,5	10,0	1
		0,5	7_	10	300	36	30		\vdash	_	7,0	9,5	12,5	-	10,0	18000		12				30	-	_	_	6,0		10,3
			8				35	-	40	_	-	7,0	9,0	1				13				35	-	70	7-		7,0	9,
			6				10	2,5				-	19,0				02	12	36	2520	7	15	_	3,0	4,5	7,5	10,0	13,
-			7				15					9,5	12,5				0,3				1	/5				6,0	8,5	10,
5,0	10800		ပိ				20				5,0	7.0	9,0	+	-			/3			·	15				5,0	7,0	9,0
		4,3	9	19	1083	10	20	_		2,5	4,0	5,5	7.0					8				20	_	8,5		21,0		F
			10_				25			-	3,0	4,5	5,5				Q7	<i>g</i>	16	768	28	25		-			22,5	-
1			//				25				2,5	3,5	4,5					11				30	-			13,0		24
			15				30	<u> </u>	-	_	2,0	3,0	4.0	- 1	12,0	21600		-				35		-	7	12.0		19,
			13	-			35	_		_	-	2,5	3,5			İ		10				20		5,5				24
		0,7	6	9	243	59	25	_	-	ાટડ	15,0	25,0	-				QS	11	24	1680	13	20		45 -				19
.		-	7				35	-	-	-	/2 =		23,0	1				12				25	_			8,5 7, 5	12,5	,
			6_				15	4,5		12,5	<u> </u>	25,0	77.0	ŀ				9				25 20	_	9,0	15,0		10,0	13,
		a5	7	14	590	24	20 25			8,5	12,5	17,0	23,0	-				10				25	_				240	F
		4,5		17	330	27	30			6,D	9,0 7,0	12,0 9,5	16,0				0.7	11	19	1080	23	25	_	_			20,0	20
			9				35	_	_	_	1.0	7,5	10,0				0,7	12	13	1000	2.5	30		_		11,5		22
8,0	14400	-	8			 	10	2,0	3,5	60	9,0		16,0		14,0	zszoo		13				35	_		_	-		19
			9				15		25	4,5	7.0		12,5	ľ				10	<u> </u>			15	40	7,5		_		<u>,</u>
1 -					:		15	1,5	2,5	4.0	5,5		100	1				//	7.			15	3,5	6.0	100	140	20.0	20
		0,3	10 11	27	1520	9	20	7,5		3,0	4,5	65	8.5	- 1			0,5	12	30	2100	12	20	_				-	22
			12				20			25	3,5	5,0	7.0	1				13				20	_				14,0	-
			13				25				3,0	45	6,0	Ī				10				20	_		165	_	_	-
	1		6				20			19,5			-					1/				25	_	_		20,0	25.0	_
			7				25	_	-			25.0	_	ŀ			Q7	12	22	1450	20	25	_	_		16,0		Γ-
100	18000	0,7	8	/3	507	36	30			,0	1-	20,0		1	16,0	28800		13				30	_	_	_		-	25
10,0	10000		9				35			_	-7,0	15,0				1	-	12	20			15	40	65	11,0	-,-	_	(-
		05	8	. 19	1080	17	20	_	6.0	9.5	140	200	25.0				0,5	/3	36	2700	11	20		5,5		13,5	19,0	25.
<u> </u>								<u>!</u>	1-,-1	-	j,o	144,0		I.		·	<u> </u>		<u> </u>								- 2-	
					÷										H			+			5	904)-	73	03	n - 1	73	U	
															1/2.	Auer M	- 3-4-	10.3	- 12	ŧ	٠. :	,57	14.	.: حر و	,	, J .		_

	Carro																												/3
	0803	Make	SHUS				2 0 -						307.2					,	4					1			ταδημ	-	2 !
	Vo,	Lo		h,	oc,	Fp3.	3030						Co= D,88	<i>آری</i> ہ	1	2	3	4	5	6	フ	8	9	10	11	12		14	
	1	M3/1/	*/c	17	M	, h3'	Lyd Mylen		Bosa	9.28	08 0	TONNEH	1UE 4 to 8= 9	20				10		768	37	30	_			10,0	14,0	19,0	
			0.7	6	<u>5</u>	6	7	8	9	10	11	12	13 14				0,7	11	16	160	3,	35			_	_	11.0	15,0	
0				6	- 0	192	88	30	_		_	11,5	16,0 22					8				15	4.0	7,5	11,0	17,0	23.0		
X			0.5	7				20		5,5	8,0	11,5	160 22	0				9				15	3,0	5,5	8,5	12,5	17,5	23,0	
The l			u,s	8	12	432	39	25	_	-	5,5	8,0	11,0 15,	2			0,5	10	24	1440	19	20		4,5	7.0	10,0	-	19,0	
Выпуск	60	lanes		9				30		丰	_	5,5	80 10	5	10,0	28080	٥,٥	11	L 7			20		3,5	5,5	-			
3, 6	6,0	16850		8				35	_	$= \downarrow$	=	-	60 8.	5	'			12				25			4,5				
6				9	:			_/5			4,0		8.D 10,	5				/3				30		_	_	6,0			
73								15	1,0	2,0	3,5	4.5	6,0 8,5					10				10	2,5	4,5	7,0	10,0			
1 1			0,3	10 11	24	1440	11	20		1,5	25	3,5	5,0 6.	5			03	-11	45	2920	31	10	2,0	3,5	5,5		7		
706								20	_	1,5	2,0	3,0	40 5.	5			Q3	12	/~	CSCO		10	1,5	2,5	45				L
5.				15	,			25			1,5	2,5	3,5 4,	5				/3				IS	1,5	2,5	4,0			10,5	
				/3			ļ	25	_		<i>ļ</i> 5	2,0	3,0 4,0	긔				8		·		20		80	13,0				
			0.7	6				20	-	9,0	14.0	21,0						9				20		7,0	145			_	
			0,7	_7_	41	363	62	25		_	9,5	14,5	20 2	5			07	10	19	1080	31	25			10,0			=	
				8	<u> </u>	.'		35		_	_		145 18	<u>o</u>			٠.,	-//	,,,	,,,,,,		30	·—	=		120			
000				7				15			9,5	14,5	20 25			- "		12				30				10,0	1		
7.0				8	W			20	_	45	7,0	10,0	14,5 18,1	2	12,0	33700		13				35			_		120	15,0	
, σου 1 1000 1	8.0	22/66	0.5	9				25	_			8.0	11,0 14,	기			:	9				15	4,5		12,5			_	
100	0,0	22 <i>4</i> 60	υS	10	/8	972	23	25		-1	4,5	6,5	2,0 11,5					10				15	3,5	6,5		15,0	T	726	İ
8				11	j			30	_		-	5,0	7,5 9,5	5			0,s	-//	30	1950	17	15	3,0	5,0	8,5				
193				12				35		_		-	60 8,	2				12				20		4.5	7,0	10,0	1		
3				13				35	_	_	_	_	5,0 7,0					13				20		3,5	6,0		1 1	10,0	
ยังชาพนเปฟ ให้ปร.ฟ อิงอีก[กิลฮิก.น ชิจาช				9				10					11,0 14,	2				10				20	=-	8,5	13,S !!,0	20,0 16,5			
Sour.			<i>0</i> 3	10	22	(0.00		15					9,0 11,5	5			07	_//_	24	1560	25	20		7,0	9.0	1	185	250	-
0			и, э	41	<i>3</i> 3	1980	11	15					7,5 9,5		,, ,	20310		12				25			3,0	11.5			
дого				12				15					60 8,0	2	14,0	39310		/3				30		5,5	9.0		185		
0.0				73				20				. کر3	5,0 65				ū,s	15	37	2590	15	15	3,0		3,0 8,0		160		
100	10,0	28030	n -,					20		9,5	15,5		_ -				U,S	/3	3/	2550			2,5				25,0		
	,	-0000	4,7	8	16	768	37	20		7,5	11.0	17,0	23,0 -		100	44930	07	12	27	1890	23	20	_=	8,0			22,0	-	
1000	h			9				25		!	9.5	12,5	17,5 23,6	2	16,0	71000	٠. ا	/3		7030		25			10,5	10,0	E2,0		
UK6N 1100P 1108n.U									ì																			Nu	=
3															-	+		+	+		5	. 904	4-7	3.9	13. l	D - C	13.	12	2
									·						132.11			1001	n. Doro	konu,							opmar		
																4,00	112-01	14		7.0170	2000	0.				_			

1																													14
	*****											7.5		ſ			·		ı———				одоро		e rai	1	1	_	, 1
,	10464	ue Van.		~ 1		73CP Lyd.		(d с воздус	= 12S				(1/14)	ŀ	/	2	3	4	5	6	7	8	9	10	3/	12	13	14.	l
1 Vo,	NO,		h,	ж, м	Fp.3	M3/3445		B=15°		B=25°	3=30°	B=35°		-	8,0	<i>35420</i>	0,3	15	42	3150	- 1/	20		1,5	2	3	45		
	2	3	4	5	6	7	3	g	10	//	<u>12</u>	/3	14					9				20 25		3	45	7	9,5	13	i
		0,7	7 g	10	300	89	<i>30</i> <i>35</i>		=	\exists	_ _	12,5 g	165					11				25		_	3	5,5 4,5	8 65	10 8,5	
		-	7				20	\dashv	4	6	9	الج		İ			0,7	12	20	1200	37	30		_	-	4	5,5	7	
		ŀ	8				25		-	4,5	6,5	9	12					/3				35			_	-	45	6	
1		0.5	g	15	675	.39	25		=	3,5	5	7	9			Q		14				35		_			4	5	
-5	2	0,0	10				30		_	-	4	5,5			\$	44280		11				15	1	2	3	45	65	8,5	١
6,0	26570		11				35			_		4,5				7		12				20	_	1,5	25	4	55	7	
	26		9				/5	1,5	2	3,5	5	_		- 1			05	13	30	· 2250	20	20	_	1,5	г	3	4,5	6	
		ļ	10				IS	1		2,5	4	5,5	7,5				,	14				25	_	_	г	2,5	4	5	
			11				15	-	1,5	2	3,5		6					15				25	_	_	3,5	5	7	9	
		Q3	12	30	1950	14	20	_	1	2	ટ,ડ	4	5					11				20	_	6	9,5	14	20	25	
			13				20	-	/	I,S	2,5	3,5	4,5		l			12				25	_		8	11,5	16	22	
			14				25	_	_	1,5	2	3	4				07	13 14	24	1730	31	ટડ	_	_	7	10	14	18	
┪			15				25			1	2	2,5	3		۸. ا	0	٠,٠					30	_	_		8,5	12	15	. 1
			7			; -	20	_	7	//	16	23	-	l	12	53140		15				30	_	_	_	7,5	10	/3_	
		0,7	8	14	590	60	25		_	8	12	15,5				3	+	12				15	2,5	5		11,5		22	
		. 5, /-	9	, ,			30		_	_	9_	13	17				0,5	13	38	2850	19	15	2,5	4	7	10	14	/8	١
1			10				35	-	_	_		10	14				٥,٠	14		•		20	_	<i>3,5</i>	6	ર,ડ	12	15	
	0		7		:		15	4	7	11	16	23		-				/5				20		3,5	5	7,5	10.	13	1
	15		8		ı		15	3	5	8	12	165					ł	12				20		6,5	11	-	-		١
8,0	3542		9	,			20	_	4	6	9	13	17				0,7	13 14	30	2250	28	20 25	_	5,5	9	13,5		25 21	١
1 1 .	,		10				20	_	3	5	7.5	85	14		7/	0661	υ, /	15				25			3 65	9,5	16 13	18	
		0,5	//	22	1450	24	25			3,5	<i>5</i>	7	9,5			5/5	1	13				15	3	5,5	9	13,5		25	-
1		-	12				<i>25</i>			3,3	4,5	6	 			-		14	47	3520	18		2,5	<i>5</i>	3	11		21	
			13 14				30			_	3,5		8				0,5	15	//	3320	/4	15	2	4	6,5	9,5		18	
			15				35			_		4,5	5,5			0		14				20	_	6,5	10,5		215	_	1
			13				15	1	1,5	3	4	6	7,5	İ	9,	05801	0,7	15	34	3060	22	20		5,5	9	/3		24	١
-		0,3	1/4	42	3150	11	15	-		2,5	3,5	S	7			72	0,7	16				25	_	_	8	12		21	
	America necessitions.					:										—	The Marian	-			5.	904	7	3.9.	3. <i>0</i>	- N 3	 3.	Nu	
<u> </u>															/BH	100112 400112	<i>•∂0ky</i>	/ /100		nupol							707:	43	<u> </u>

0603	начен	ue l		COLUMN TO COLUMN	Bn	3Cp	16	(5	0=1	600	mm,V	6-1	41/1	1	2	3	14	5	5	7	8	9	0080.		12		
Vo		Vaon.	hı	x,	Fp.3	Lya.	В,	Boad	ушно	e oroi	оление	∆to	ax °C			-	14				25		-	5,0	200	-	7
M/C		M/C	M	M	MS	M3/4H2	град.	B=15°	B=20	£=25	B=30°	B=35°	B= 40°	1		İ	-		1950	الراد				2,0		T	_
1	2	3	g g	5	6	7	30	9	10	//		_	19			0,7	15 16	26	1950	ص د	30	-	-	-	5,5		
1		0.7	10	14	590	73	<i>30</i> <i>35</i>	-	-		7.0		_	1.			15				35	-	-	-	-	6.5	_
1		,	9					-	_				9,5					1			15	2.0	4,5	6,5		13,0	
							20		3,0	4,5	7,0	10,0		10,0	72000		13 14				15	2,0	3,5	5,0		11,0	_
		0,5	10	19	1080	40	25		-	3,0			9,5			0,5	1	38	2850	25	20	-	2,5	4,5	1	-	\neg
1	۱. ا	1	12				25 30	-		<i>3,0</i>	4,0	5,5					15				20	-	2,5	4,0	5,5		
6,0	43200		13				15	-	15	20	3,5 3,0	5,0 4,0					16				25	-	 	2,5		6,5	
			14										5,5	-	-		17				es	-	┝═╴	2,5	4,5	6,0	٦
			19				20 20		1.0	2,0 1,5	2,5 2,0	_	5,D 4,D				11	1			15	4,5	7,0	-	-	-	4
		0,3	15	38	3230	13	20			1,5	2.0		4.0		'		12			-	20	=	5,S 5,0	3,0	-	18,5	
			17		,		20			1.0	2.0	2.5	3,0				13 14	1			20	=	5,0	7.0		16.L	
			18				25			1.0	1.5	20	30			07	15	32	2720	31	25	 	3,0	5,5		12,0	
			g				20		5,0	7,5	11.0		19.0	İ			16			-	25	H	\vdash	5,5			
			10				25		_	5,5	85	14.0	170	120	85400		17				30	1_	<u> </u>	-	6	9	+
		07	11	19	1080	53	25	_	_	6,0	7,5	100	13.5	10,0	00,00		18				30	-	1_	_	6	8,5	=
		۱ بی	12	,,,			30	-	_	_	65	8,0	10,5				14				15	2	5	7	10	13.5	
			13				35	_	_	_	_	7,0	3.5				15	1			15	2	3,5	5,5			_
			10				15	2,0	3,5	5,5	8,5	11,0				05	16	43	4320	20	15	2	3,5	-	1		_
8,0	57600		11				20			5,0	7,5		13,5			'-	17	76	1320	20	15	2	3	4.5	_		_
ļ			12				20			4,0	6,5	80	105				18				15	2	2,5	4	6	8,5	-
		0,5	13	26	19SD	29	25	-	-	2,5	5,0	70	9,5				/3				15	4	7	T -	-	1	_
			14	·			25	_	_	3,0	4.5	6,0	8,5				14				20	T-	4,5	9	125	19	
			15				25		_	3,0	4,0	5,0	7,5			0.7	15	40	3600	20	20	_	4.5	8	12	16	
			16				30	_	_	_	4.0	4,5	6,5	14.0	10080		16	70	3800	20	20	-	4,5	7	10	14	
		0,3	13	62	6200	9	15		1.0	2,0	2,5	3,5	4.5	1, ,,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ĺ	17				25		_	5	9,5	125	
			10				15	4,0	6,0	9,0	14.0	19,0	25,0				18				25	_	_	5	8	11	
100	72000	07	//	28	1950	20	20		4,5	7,5	11.0	16,5				Ŋ5	18	62	5225	19	IS	2	3,5	5,5	8	11	
10,0	10000	ď,	12		שבעון	36	20	_ "	4,5	65	9,0	13,0	18.0	1			17				20	-	4,5	8,5	125	17	
			13				25			5,0	8,0	11.0	15,0	16,D	114500	Q7	18	46	4370	26	20	_	4,5	7,5		15	_
						í	:																				_
						!									Ruet N		土]	5	. 90	14-	73.4	73.	0-1	73.	

ной струи от истечения до верхнего уровня рабо-8. Примеры расчета $\frac{900}{400} = 3000 = \frac{30}{400} = 22$ NPUMED 1 Дано: сборочный цех размерами 232×72×15m; x= 22 x 1,4 = 31m $L^{50} = L^{T} = 500000 \text{ m}^{3/4}$ 7. По формуле (63) вычисляется угол в: $\Delta \xi_{\alpha}^{oc} = 10^{\circ}C$; $\Delta \xi_{\alpha}^{T} = 5^{\circ}C$ B= avc sin 12-2 = 19° hp.3. = 2m: 8. Длина зоны действия одного ВПЭСр составравота средней тяжести Т-б при незначительляет $\ell_2 = 72 \, \text{м}$, ширина — $2 \, \ell_1 = 33 \, \text{м}$. HOIDE USBOIMKODE ABHORO MENING; $x < 2\ell_1 < 2\infty$ | 4mo ydobsembopsem ycma-Voon = 07 m/c (& coombemembuy cn. 19 roct /2/005-88 2x < l2 < 4x новочным ограничениям. 93 при сосредоточенной подаче воздужа) 9 По номограмме (рис. б. 1) определяется ве-Δ £ 200 = 3° C. личина $\frac{A + \infty}{A + \Omega}$ при $\frac{x}{\sqrt{F_0}} = 22$ и бычисляется $\Delta + \infty$: Решение: І. В соответствии с приложением 4, Рекоменда- $\frac{\Delta t \infty}{\Delta t \alpha} = 0, /S; \quad \Delta t \alpha = 0, /S \times S = 0, 75^{\circ} C.$ μού" A3-669 πρυμυμαετορ K=2. Μακουμαρομαρ 10. По номограмме (рис. 6.2) находится расчетная скорость воздужа в струе в месте её коэффициент неизотермичности при по-Внедрения в рабочую зону составит Уж = 1,4 м/с. dave oxnaskgenhoeo bosdysea KH = 1,092. По местным условиям целесообразно принять 41. По номограмме (рис. 6.3) определяется раздачу боздужа воздужораспределителями впЭСрв коэффициент стеснения. количестве N=7 штук, расположенными на вы- $N_{PU} \sqrt{\frac{3C}{F_0}} = 22$, $F_{P.3.} = 2e$, $\ell_2 = 33 \times 72 = 2376 \text{ m}^2$, come 12m. Воздужорыспределители размещаются вдоль длин-VFo = 1,4 m, Kc = 0.93. ной стороны чежа, приточные струи направлены 12. Максимальные параметры воздужа в nonepek yexd. ραδονεύ ζομε σος παβηριοπ: Tennoiú nepuod Vo.3. = 1,4 x 1,09 x 0,93 = 1,4 m/c = VHOPM. 3. Количество воздужа, подаваемого одним ВПЭСР $\Delta t_{p,3}^{mode.} = 0.75 \times \frac{1}{109 \times 0.93} = 0.74^{\circ} E < \Delta t HOPM.$ $L_0 = \frac{550000}{7} = 80000 \text{ m}^3/\text{y}$ Xonodubiú nepuod 4. По таблицам по Lo назначаем диаметр ВПЭГр-13. По номограмме (рис. 6.4) находитья угол В, -do= 1600 mm, Fo = 2. Qm2, Fo = 1,4 m. на который следует установить поворот-5. Скорость воздужа на истечении из воздуха. ный патрубок, чтобы струя приточного воздураспределителя составит жа достигла рабочую зону с задамными па-Vo= 3500. Fo = \$0000 = 11.1 M/c panempanu nou a to = 10°C, Vo = 11.1 m/c, h-hp3 = 10m, Б. По величине 100 = 111 = 0,126 с помощью номо- граммы (рис. 6.1) определяется длина приточ-5.904-73.93.0-N3 USH NUCT NOOKYM. NOON. DOTO Konupoban: Par L00112-01

ВПЭСР В количестве № 4шт, установленными VFn=14m-B=290 HO BUCOME h= 14M. 13. Определяется расчетная длина струи по φορημηρε (6. 10) $x = \frac{10}{\sin 29} = 24 \text{m}_1 \sqrt{\frac{x}{F_0}} = \frac{24}{1.4} = 15,$ 3. Количество воздужа, подаваемое одним впэср: $L_0 = \frac{248000}{4} = 62000 \, \text{m}^3/\text{y}$ 14. No HOMOSPOMME (puc. 6.1) npu Tho = 15 onpede-93, Bunycko 4. Зона действия одного ВПЭГР составляет ляются значения Voc = 0,165 v Atac = 0,21 Fp. 3 = 45 × 120 = 5400 m2 5. По таблицам 7.1 ÷ 7.4 по заданным Lo, h, 15 Voc = 11/x 0 185=18 m/c; Vann, Fp.3. Hashquaemca duariemp BASEp-do=1250mm At== 10 x 021 = 2100. 6. Vo = 14 m/c. 16. По номограмме (рис. 6.5) нажодить я коэффи-7. No magnuye 7.3 npu Vdon = 0.5 m/c B mennenu циент неизотермичности при x=2/m; $V_{\infty}=1/8m/\epsilon$, nepuod 2000 B = 15°, x= 47m. Atx = 2/° [4 B = 250 - KH = 08. 8. Проверяются установочные ограничения 17 Максимальные параметры воздужа в ра-28, = 45m = xc бочей зоне в эсолодный период года составляют: 2x < e2 = 120m < 4x Vp. 3. = 18 × 0,8 × 0,93 = 1,3 m/c < υ κορΜ. Установочные ограничения выдерфиваются. Δtp.3. = 2,1 x 1 08×053 = 2,8° C < Δ t μορπ. I No make 7.3 Haxodumes year β , Hd Выполненный расчет показал, что для покоторый следует установить поворотный дачи воздужа с помощью впэср дианетром патрубок впэср в режиме воздушного отопления. 1600 мм следует установить поворотный патρyδ0κ μα yεορ β = 19° δ menροιν ηθορο εοδαDAR to = 15° [B = 35° и на угол В = 29° - в региме воздушного Npobepka максимальных параметров ваз-DMONAEHUA. дужа в рабочей зоне не требуется т.к. Npumeo 2 данный вариант воздужораздачи соответ-Дано: пессынический цеж размером 180×120 × 16 м; Noch, u dord Boon untills ствует табличному. 1. T= 1 = 248000 m3/4 hp.3 = 2m VBON = 0,5 M/C A + 200. = 3° C воздушное отопление - A to = 15°C Решение: 1. В соответствии с приложением 4, Рекомендаций" A3-669 принимается K=2. 2. По местным условиям целегообразно принять 5.904-73.93.D-N3. pasgary posgasca gosgascobacube gevnwevena Una fluer Al donym Noda, Tom LJ00142-04 (18) Konuccion: Bewould Popmam: A3