ТИПОВАЯ ДОКУМЕНТАЦИЯ НА СТРОИТЕЛЬНЫЕ СИСТЕМЫ И ИЗДЕЛИЯ ЗДАНИЙ И СООРУЖЕНИЙ

СЕРИЯ 1.138-10

ПЕРЕМЫЧКИ ЖЕЛЕЗОБЕТОННЫЕ

ДЛЯ ЗДАНИЙ С КИРПИЧНЫМИ СТЕНАМИ

ВЫПУСК 5

ПЕРЕМЫЧКИ БРУСКОВЫЕ ДЛЯ СТЕН ИЗ КИРПИЧА ВЫСОТОЙ 88 ММ

PAGOUNE UEPTEMN

РАЗРАВОТАНЫ ЦНИИЭП ЖИЛИЩА FOCYAPCTBEHHOFO KOMUTETA NO FPAK AAHCKOMY CTPONTEA LCTBY N APXINTERTYPE TIPIN FOCKTPOE CCCP TIPH YYACTHU LIHHUCK HA KYHEPEHKO NPU FOCCTPOR CCCP

УТВЕРЖ⊿ЕНЫ И ВВЕДЕНЫ B AERCTBUE C 1 OKTABPA 1981 C COCYAAPCTBEHHEM KOMMTETOM NO ГРАЖДАНСКОМУ СТРОИТЕЛЬСТВУ И APXINTEKTYPE TIPH FOCCTPOE CCCP

MPNKA3 OT 20 ABIYCTA 1981 € Nº 254

Pyk. OTA. PPOEKTHUX PABOT

TA. HHXEHEP OTAEAEHUA

TA. KOHCTPYKTOP OTABABHUS

/ НАЧАЛЬНИК ОТДЕЛА V24

TA. HHEREP PROBERTA

3AB CEKTOPOM TEXHONOLUM

APMATYPHORO THOUSBOACTBA

Рук. ОТАВЛЕНИЯ ПРОЧНОСТИ КРУПНО-

ПАНЕЛЬНЫХ И КАМЕННЫХ ЗААНИЙ ЦНИИСК ТО ТОТИТА

Рук. ЛАВОРАТОРИИ

Ст. научный сотрудник

Л. Балановский

Н. КЛЕПИКОВА

					_
N П/П	0 G O 3 H A	ЧЕНИЕ	HANMEHOBAHNE	CTP.	
1			СОДЕРЖАНИЕ	2 ÷ 4	
2	1,138-10.5 0	07 0000	ТЕХНИЧЕСКОЕ ОПИСАНИЕ	5÷15	
3	1.138-10.5 0	1 T 000 00	Номенклатура изделий	16;17	
4	1.138 -10.5 0	0 000 752	Выборка стали	18÷20	
5	1.138-10.5 0	00 000 BA	Ведомость ссылочных документов	21	
6	1.138- 10.5 1	0000	ПЕРЕМЫЧКА (1ПР1-10.12.9;		
			INP1-12.12.9; INP1-15.12.9;		
			ITP1-16.12.9; ITP3-19.12.9)	22;23	
7	1.138 - 10.5 10	30 000 CE	ПЕРЕМЫЧКА (1ПР1-10.12.9;		
			INP1-12.12.9; INP1-15.12.9;		
			1 ПР2-16.12.9; 1 ПРЗ-19.12.9)		
			СБОРОЧНЫЙ ЧЕРТЕЖ	24	
8	1.138-10,5 2	0000	Перемычка (1 прз-22.12.19;		
			1ПРЗ-24.12.19; 1ПР4-25.12.19;		
			1ПР4- 28.12.19; 1ПР4- 29.12.19)	25;26	
9	1.138-10.5 20	0000 CE	ПЕРЕМЫЧКА (1ПРЗ-22.12.19;		
			1 ПР3- 24.12.19; 1 ПР4-25.12.19;		
			1 TP4-28.12.19; 1 TP4-29.12.19)		
			СБОРОЧНЫЙ ЧЕРТЕЖ	2.7	
10	1.138-10,5 30	0000	Перемычка усиленная		
			(1 TP38-12.12.194) 1 TP38-15.12.194)		
			1 ПР38-18.12.19 ч; 1 ПР8-18.12.19 ч;		
			1 NP8-20.12.19 4; 1 NP8-24.12.194;		
			1 NP8-27.12.19 y)	28	

п/п м	0 6 0 3 HAYEHME	Наименование	CTP.
11	1.138-10.5 30000 CE	ПЕРЕМЫЧКА УСИЛЕННАЯ	
		(1 ПР38 -12.12.19 y; 1 ПР38 -15.12.19 y;	
		1 1P38 - 18.12.19 y; 1 np8 - 18.12.19 y;	
		1 NP 8 - 20.12.194; 1 NP8 - 24.12.194;	
		1 ПР8 - 27.12.19ч) СБОРОЧНЫЙ ЧЕРТЕЖ	30
12	1.138-105 40000	ПЕРЕМЫЧКА УСИЛЕННАЯ	
		(1DP28- 18.25.194; 1 DP 28-20.25.194;	
		1.11 P38 - 24.25.194; 111 P28 - 24.25.194;	
		111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	51 ; 32
13	1.138-10.5 40000 05	Перемычка усиленная	
		(1ПР28-18.25.19у;1ПР28-20.25.19ч;	
		10P38-24.25.19y; 10P28-24.25.19y;	
		1 ПР 38 - 27. 25.19y; 1 ПР 28 - 24.25.19ч)	
		Сборочный чертеж	33
14	1.138-10.5 50000	ПЕРЕМЫЧКА УСИЛЕННАЯ С АНКЕРАМИ	
		(1ΠP28-20.25:19y-α,1ΠP28-24.25:19y-α	
		1 ΠΡ28 - 27. 25.19y-a)	34;35
15	1.138-10.5 50 000 CG	ПЕРЕМЫЧКА УСИЛЕННАЯ С АНКЕ-	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PAMU (1 11 P 28 - 20.25.19y-a;	
		1 ПР28 - 24.25.19y-a; 1 ПР28-27.25.19y-a)	
		СБОРОЧНЫЙ ЧЕРТЕЖ	36
16	1,138-10.5 10100	KAPKAC (KP1 ПР1-10.12.9;	
		KP1 ПР1-12.12.9; KP1 ПР1-15.12.9;	
		KP1 ПР2-16.12.9; KP1 ПР3-19.12.9)	3 7; 38
17	1.138-10.5 10100 CE	KAPKAC (KP1 11 P1 - 10.12.9;	
		КР1ПР1- 12.12.9; КР1ПР1-15.12.9;	
		KP1 ПР2-16.12.9; KP1 ПР3-19.12.9)	
		Сборочный чертеж.	39

א ח/ח	OBOSHAYEHNE	HANMEHOBAHNE	Стр.
18	1.138-10.5 20100	KAPKAC (KP1 ПР3-22-12.19;	
		KP1NP3-24.12.19; KP1NP4-25.12.19;	
		KP10P4-28.12.19; KP10P4-29.12.19)	40,41
19	1.138-10.5 20100 CE	KAPKAC (KP1 11P3-22.12.19;	
		KP1 11 P3-24.12.19; KP1 11 P4-25.12.19;	
		KP1ПP4-28.12.19; KP1ПP4-29.12.19)	
		СБОРОЧНЫЙ ЧЕРТЕЖ	42
20	1.138-10.5 30100	KAPKAC (KP1 11 P 38-12.12.19 4;	
		KP1 TP 38-15.12.194; KP4TP 38-18.12.194;	
		КР1ПР8-18.12.19ч; КР1ПР8-20.12.19ч;	
		KP1ПP8-24.12.194; KP1ПP8-27.12.194)	43;44
21	1.138 -10.5 30100 CB	KAPKAC (KP1 ПР38-12.12.194)	
		КР1ПР38-15.12.19у;КР1ПР38-18.12.19ч	i
		KP1ПP8-18.12.199; KP1ПP8-20.12.199;	
		KP1NP8-24.12.194; KP1NP8-27.12.194)	
		СБОРОЧНЙ ЧЕРТЕЖ	45
22	1.138-10.5 44 0 0 0	Блок арматурный	
		(A61ПP28-18.25.194; A61ПP28-20.25.194;	
		АБ1 ПР38-24. 25 .19ч; АБ1 ПР28-24.25.19ч;	
		A61ПР38-27.25.19ч; A61ПР28-27.25.19ч)	46;47
23	1.138-10.5 41000 C5	Блок арматурный	
		(A61ПР28-18.25.19Ч; АБ1ПР28-20.25.19Ч	;
		A61ПР38-24.25.199; A61ПР28-24.25.199,	
		A 6 1 1 1 P 3 8 - 27.25.19 4; A 6 1 1 P 2 8 - 27.25.19 4)	
		СБОРОЧНЫЙ ЧЕРТЕЖ	48
24	1.138-10.5 44100	KAPKAC (KP1+KP10)	49÷5
25	1.138-10.5 41100 CE	КАРКАС (КР1÷КР10) СБОРОЧНЫЙ	
		ЧЕРТЕЖ	52
26	1. 138-10.5 50100	AHKEP A1	53

В настояший выпуск включены чертежи брусковых железобе-ТОННЫХ ЛЕРЕМЫЧЕК, РАЗРАБОТАННЫЕ ПО ГОСТ 948-76 "ПЕРЕМЫЧКИ ЖЕЛЕЗО-БЕТОННЫЕ ДЛЯ ЗДАНИЙ С КИРПИЧНЫМИ СТЕНАМИ.ТЕХНИЧЕСКИЕ УСЛОВИЯ." ПЕРЕМЫЧКИ ПРЕДНАЗНАЧЕНЫ ДЛЯ ПЕРЕКРЫТИЯ ПРОЕМОВ В СТЕНАХ ИЗ КИРПИЧА ВЫСОТОЙ 88 ММ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ, ПРОЕКТИ-РУЕМЫХ ДЛЯ ОБЫЧНЫХ УСЛОВИЙ СТРОИТЕЛЬСТВА.

В зависимости от назначения перемычки разделяются на БРУСКОВЫЕ И БРУСКОВЫЕ УСИЛЕННЫЕ. ПЕРЕМЫЧКИ БРУСКОВЫЕ PACCYNTAHЫ НА НАГРУЗКУ ОТ СОБСТВЕННОГО ВЕСА И ВЕСА КИРПИЧ-НОЙ КЛАДКИ НАД НИМИ; ПЕРЕМЫЧКИ БРУСКОВЫЕ УСИЛЕННЫЕ-НА НА-TPYSKY OT COECTBEHHOTO BECA, KAAAKN N REPEKPHTHM.

HALPYSKIN, ILDNASTHE ILDN PACHETE HEPEMBILEK, PACHETHHE ILD-ЛЕТЫ, МИНИМАЛЬНАЯ ГЛУБИНА ОПИРАНИЯ, РАСЧЕТНЫЕ ПРОГИБЫ

УКАЗАНЫ НА ЛИСТАХ 3:4. BEC KUPTUHON KAAAKU AAR EPYCKOBWX TEPEMWYEK YYUTWBANCA

KAK BPEMEHHAR HATPY3KA

 Π POTUBU BPYCKOBUX YCUNEHHUX REPEMBIYEK ORPENEHU OT

ДЕЙСТВИЯ ПОСТОЯННЫХ И ДЛИТЕЛЬНЫХ НАГРУЗОК.

ПЕРЕМЫЧКИ ИЗГОТАВЛИВАЮТСЯ ИЗ ТЯЖЕЛОГО БЕТОНА МАРКИ М200. МАРКА ПО МОРОЗОСТОЙКОСТИ ДОЛЖНА НАЗНАЧАТЬСЯ В ЗАВИСИМОСТИ ОТ УСЛОВИЙ ЭКСПЛУАТАЦИИ ПЕРЕМЫЧЕК В ЗДАНИЯХ И ДОЛЖНА БЫТЬ HE MEHEE MAPOK, YKASAHHЫХ В ТАБЛИЦЕ 2 ГОСТ 948-76

 $\mathsf{\Pi}\mathsf{OCTABKA}$ REPÉMBILEK ROTPEBUTEN B RPDU3 $\mathsf{BODUTCP}$ ROCTU-ЖЕНИИ БЕТОНОМ ОТПУСКНОЙ ПРОЧНОСТИ, ВЕЛИЧИНА КОТОРОЙ УСТАНАВ-ANBARTCH TO TOCT 13015-75 IN ADAINA GUT HE MEHEE 70% TIPOEK-

ТНОЙ МАРКИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ.

Перемычки шириной 120мм армируются плоскими каркаса-МИ, А ШИРИНОЙ 250 ММ-АРМАТУРНЫМИ БЛОКАМИ. ДЛЯ АРМА-TYPHЫХ KAPKACOB ПРИМЕНЯЕТСЯ ГОРЯЧЕКАТАНАЯ СТАЛЬ KNAL-CA A-III 110 FOCT 57 81-75 N DEBIKHOBEHHAR APMATYPHAR RPOBONOKA ПЕРИОДИЧЕСКОГО ПРОФИЛЯ КЛАССА ВРІ ПО ТУ14-4-659-75.

CBAPHLIE KAPKACHI ADAXHLI YAOBAETBOPATL TPEGOBAHNAM TOCTIO922-75. - ANЯ ПОДЪЕМА И МОНТАЖА БРУСКОВЫХ ПЕРЕМЫЧЕК ПРЕДУСМОТРЕ

НЫ ГОРИЗОНТАЛЬНЫЕ ОТВЕРСТИЯ ϕ 30 мм. ПОСЛЕ УСТАНОВЖИ ПЕРЕМЫЧЕК НА МЕСТО ЭТИ ОТВЕРСТИЯ ДОЛ-

ЖНЫ БЫТЬ ЗАДЕЛАНЫ КЛАДОЧНЫМ РАСТВОРОМ.

По соглашению межау изготовителем и потребителем разре-<u> МРАТСЯ ИЗГОТОВЛЯТЬ ЭТИ ПЕРЕМЫЧКИ СО СТРОПОВОЧНЫМИ ПЕТЛЯМИ.</u> ПРИ ПРИМЕНЕНИИ ПЕРЕМЫЧЕК С АНКЕРАМИ ДЛЯ КРЕПЛЕНИЯ

LNU	Балановски Клепикова	4 Marie		1.138-10.5 00000	OT 0		į
PUK. TP.	TOPAGBA	2m			СТАДИЯ		VNCTOR
	•			Техническое описание	HUUL	<u> </u>	1 11
	TOPAOBA	500	├		Chiene	ш· Ж	илища

БАЛКОННЫХ ПЛИТ В ПРОЕКТАХ ЗДАНИЙ ДОЛЖНО БЫТЬ ДА-НО УКАЗАНИЕ О ЗАДЕЛКЕ АНКЕРОВ В РАСТВОРЕ.

ПЕРЕМЫЧКИ ДОХЖНЫ ИЗГОТОВЛЯТЬСЯ В СООТВЕТСТВИИ С ТЕХНИЧЕСКИМИ ТРЕБОВАНИЯМИ, ПРИВЕДЕННЫМИ В ГОСТ 948-76.

РАЗМЕРЫ НЕПРЯМОЛИНЕЙНОСТЬ, ТОЛШИНУ ЗАЩИТНОГО СЛОЯ БЕТОНА, А ТАКЖЕ КАЧЕСТВО И ВНЕШНИЙ ВИД ПОВЕРХНОСТЕЙСЛЕ-ДУЕТ ПРОВЕРЯТЬ ПО ГОСТ 13015-75.

НА ВЕРХНЕЙ ГРАНИ ПЕРЕМЫЧЕК НЕСМЫВАЕМОЙ КРАСКОЙ

ДОЛЖНА БЫТЬ НАНЕСЕНА БУКВА "В".

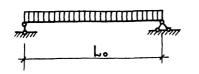
ИСПЫТАВИЯ ЛЕРЕМЫЧЕК, ОЦЕНКУ ПРОЧНОСТИ, ЖЕСТКОСТИ И ТРЕЩИНОСТОЙКОСТИ СЛЕДУЕТ ПРОИЗВОДИТЬ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ ГОСТВЕЗОВ-77, КОНСТРУКЦИИ И ИЗДЕЛИЯ ЖЕЛЕЗОБЕТОННЫЕ СБОРНЫЕ. МЕТОДЫ ИСПЫТАНИЙ И ОЦЕНКИ ПРОЧНОСТИ, ЖЕСТКОСТИ И ТРЕЩИНОСТОЙКОСТИ! ДАННЫЕ ДЛЯ ИСПЫТАНИЙ СМ. НА ЛИСТАХ 5÷11.

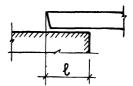
МАРКИРОВКУ, ПРИЕМКУ, ПАСПОРТИЗАЦИЮ, ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ ПЕРЕМЫЧЕК ПРОИЗВОДИТЬ ПО ГОСТ 948-76;

К МАРКЕ УСИЛЕННЫХ ПЕРЕМЫЧЕК, ПРИНЯТОЙ ПО ГОСТ948-76, ДОБАВЛЕН ИНДЕКС "У", НАПРИМЕР: 1 ПР 28-27. 25.19 У;

К МАРКЕ ЧСИЛЕННЫХ ПЕРЕМЫЧЕК, ИМЕЮЩИХ АНКЕРА ДЛЯ КРЕПЛЕНИЯ БАЛКОННЫХ ПЛИТ, ДОБАВЛЕН ИНДЕКС"У-А", НАПРИМЕР: 1 ПР 28-27.25.19 Ч-2.

НАПРИМЕР: 1 ПР 28-27.25.19 у-а. Данные для испытаний перемычек с анкерами следует принимать такими же, как для соответствующих

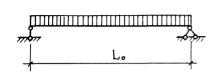

ПЕРЕМЫЧЕК БЕЗ АНКЕРОВ

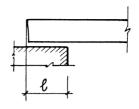

В НОМЕНКЛАТУРЕ ИЗДЕЛИЙ РАСХОД СТАЛИ НА ИЗДЕЛИЕ И РАСХОД НА 1М3 БЕТОНА ДАН ДРОБЬЮ В ЧИСЛИТЕЛЕ-НАТУ-РАЛЬНЫЙ РАСХОД, В ЗНАМЕНАТЕЛЕ — ПРИВЕДЕННЫЙ К СТАЛИ КЛАССА A-I.

ПЕРЕМЫЧКИ ЖЕЛЕЗОБЕТОННЫЕ ОТНОСЯТСЯ К ГРУППЕ НЕСГОРАЕМЫХ КОНСТРУКЦИЙ. ПРЕДЕЛ ОГНЕСТОЙКОСТИ В ЗАВИСИМОСТИ ОТ ТОЛЩИНЫ ЗАЩИТНОГО СЛОЯ БЕТОНА ДО ЦЕН-ТОВ ТЯЖЕСТИ РАБОЧЕЙ АРМАТУРЫ, КЛАССА СТАЛИ И ГАВАРИ-ТОВ СЕЧЕНИЯ ПРИНЯТ ОТ ОБ ДО 1.6 ЧАСА (СНИП 1 — А.5-70°, ПИСЬМО ВНИИПО №3/1054 ОТ 27ФЕВРАЛЯ 1978).

PACHETHAR CXEMA

ОПИРАНИЕ ПЕРЕМЫЧКИ





	PACHETHM	WNHN-		ЧАГРУЗКИ	PACHET- HEIM NPO ING OT		
Manus	TPOAET	ГЛУБИНА		Hopn	ATUBH	RA	постоян ной и
MAPKA	ho,	-A9U110 RNH C.3 MM	7,007,2,110,2	RАНЛОП	~HROTOON N RAH -dA3TNAA RAH	KPAT- KOBPE- MEHHAA	AAUTEAL HON HALPY30 MM
1 ПР38- 12.12.19 У	1120	170	3800	3340	3040	300	1,9
1ПР38- 15.12.19 у	1380	170	3800	3340	3040	300	4,2
1 NP 38- 18.12.19 Y	1610	200	3800	3340	3040	300	6.7
1 ПР28- 18.25.19 У	1640	170	2800	2430	2130	300	4.1
1 ПР8- 18.12.19 у	1640	170	800	670	460	210	1.7
1 NP28- 20.25.19 y	1900	170	2800	2430	2130	300	6.2
1 MP8- 20.12.19 y	1900	170	800	670	460	210	2.6
1 ПР38- 24,25.19 ч	2230	230	3800	3340	3040	300	10.9
1 NP28- 24,25.199	2230	230	2800	2430	2130	300	10.0
1 NP8 - 24, 12, 19 y	2290	170	800	670.	460	210	6.7
4 ∏P38− 27.25.19 y	2490	230	3800	3340	3040	300	11.9
1 1128- 27.25.199	2490	230	2800	2430	2130	300	11.0
1 ПР8 - 27.12.199	2550	170	800	670	460	210	8.8
1 MT28- 20.25.19y-a	1900	170	2800	2430	2130	300	6.2
			†	2430	2130	300	10.0
			•			ጓ በቦ	

ОПИРАНИЕ ПЕРЕМЫЧКИ

PACHETHAR CXEMA

Mapka	РАСЧЕТНЫЙ	РАНОЛАМИ НИМ	нагрузки, кгс/м			
	TPONET	АНИЗУЛТ ВИНАЧИПО		AMOH	тивная	
	Lo,	e, mm	PACHETHAR	СУММАРНАЯ	КРАТКОВРЕ. МЕННАЯ	
1 NP1 - 10.12.9	930	100	100	90	70	
1 ПР1 – 12.12.9	1190	100	150	140	120	
1 MP1 - 15.12.9	1450	100	150	140	120	
1 NP2- 16.12.9	1580	100	250	230	210	
1 ПРЗ - 19.12.9	1840	100	300	275	235	
1 NP3 - 22.12.19	2100	100	350	320	280	
1 ПРЗ - 24.12.19	2360	100	350	320	280	
f ПР4 - 25.12.19	2490	100	400	365	325	
1 ПР4 - 28.12.19	2750	100	400	365	325	
1 ПР4- 29,12.19	2830	150	400	365	325	

СХЕМА ОПИРАНИЯ И ЗАГРУЖЕНИЯ ПРИ ИСПЫТАНИИ

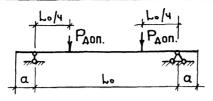


ТАБЛИЦА 1

ПРОВЕРКА ПРОЧНОСТИ

			XAPAKTEP PA3PYWEHNA						
	Danne		ДО НАС СЖАТО 2.РАЗРЬ	ТУПЛЕНИ Й ЗОНЬ ІВ ПРОДО	ІЯ РАЗДРОБЛЕН І ІЛЬНОЙ РАСТЯНЬ С=1.4	НОЧ ЕТАМЧА ЙОТЫ			
MAPKA	РАСЧЕТ- НЫЙ ПРОЛЕТ		BEANUN HALBASI	KN (KLC)	РОЛЬНОЙ РАЗР! ,, ПРИ КОТОРОЙ	намине			
	Lo,	a,	ПЕРЕМЫЧ ВЭТОЈАНЕ		тревчется пов	ТОРНОЕ ИСПЫТАНИЕ			
	мм		COECTBEH	том собст	с учетом собственного веса 4 Рполн, но > 0.85 Рполн.	3A ВЫЧЕТОМ СОБ- СТВЕННОГО ВЕСА < РДОП., НО > 0.85 РДОП			
1NP38-12.12.19 y	1120	85	2980	2945	< 2980, H0≥ 2530	<2945, HO≥ 2505			
1NP38-15.12.19 y	1380	85	3670	3630	< 3670, HO≥ 3120	<3630, H0≥3085			
1 NP38-18.12.19 y	1610	100	4285	4235	< 4285, HD> 3640	<4235,H0> 3600			
1ПР28-18. 2 5,199	1640	85	3215	3115	<3215, H0≥2730	<3115, HO≥ 2650			
10P8-18.12,19y	1640	85	920	870	< 920, H0≯ 780	< 870, но≽ 740			
1ПР28-20.25.19У	1900	85	3725	3610	<3725, H0≥3165	<3610,H0≥3070			
1008 - 40.12.19y	1900	85	1065	1840	<1065, HO> 905	<1010,H0≥ 860			
1NP 38-24,25,199	2230	115	5930	5800	< 5930, H0≥ 5040	<5800,H0≯ 4930			
10P 28-24,25,199	2230	115	4370	4240	< 4370, H0≥3715	<4240.H0%3605			
1 mp 8 - 24.12.19 y	2290	85	1282	5	<1282,H0>1090	<1215, HO> 1035			

1.138-10.5 00000 TO

<u>Лист</u> 5

ПРОДОЛЖЕНИЕ	TABANGH	ı
-------------	---------	---

Проверка прочности										
ХАРАКТЕР РАЗРУШЕНИЯ										
	PACHET-		PH AO	НАСТУПЛ Й ЗОНЫ	ОДОЛЬНОЙ РАСТ ЕНИЯ РАЗДРОБ ЛЬНОЙ РАСТЯНЧ С=1.4	AHOTER RNHEA				
MAPKA	НЫЙ ПРОЛЕТ	a,			РОЛЬНОЙ РАЗРУ , ПРИ КОТОРОЙ					
	h.,			ІКИ ПРИ- ГОДНЫМИ						
	MM	MM	COECTBEH	COECTBEH	с учетом собст- венного веса ∠Рполн. , но > 0.85 Рполн.	3A ВЫЧЕТОМ СОБ- СТВЕННОГО ВЕСА <РДОП., НО >0.85 РДОП				
4 ПР 38- 27.2 5.19 ч	2490	115	6625	6475	< 6625, H0₹ 5630	< 6475, HO≥ 5505				
1 ПР28-27.25.19 у	2490	115	4880	4730	<4880,H0≥4150	<4730,H0≥4020				
1 TP8 - 27.12.19 y	2550	85	1430	1355	<1430,H0≯1215	<1355 H0≥1150				
1ПР1-10.12.9	930	50	65	50	<65, HO≯55	∠ 50, H0≯ 45				
1NP1-12.12.9	1190	50	125	110	< 125, HO≥ 105	< 110, H0≥ 95				
1 NP1 ~ 15, 12, 9	1450	50	152	130	< 152, H0 → 130	< 130, H0≥ 110				
1ПP2-16,12.9	1580	50	275	255	<275, H0≥ 235	< 255, HO > 215				
1ПРЗ-19.12.9	1840	50	385	335	< 385, HO≥ 330	< 335, H0 ≥ 285				
1ПРЗ-22.12.19	2100	50	515	455	< 515, H0 ₹ 435	< 455,H0≯ 386				
1ПР3-24.12.19	2360	50	580	510	< 580, H0≯ 490	< 510, HO≯ 435				
1ПР4 - 25.12.19	2490	50	695	625	< 695, HO≯ 590	< 625, HO≯ 530				
1ПР4 - 28.12.19	2750	50	770	690	<770, HO≯ 655	< 690,40≯ 560				
INP4- 29.12.19	2830	75	790	710	< 790, HO> 675	< 710, H0≥ 605				
						AHCT				

1.138-10.5 00000TO

ПРОАОЛЖЕНИЕ ТАБЛИЦЫ!

ПРОВЕРКА ПРОЧНОСТИ

	XAPAKTEP PA3PYWEHNA								
			HACTYNAE APMATYP	HUR TEKY H UNU PA	ОНА СЖАТОЙ ЗОН ЧЕСТИ ПРОДОЛЬНІ ЗРУШЕНИЕ ПО СЕ ОСИ КОНСТРУКЦИ	N PACTRHYTOM LEHURM, MAKAOK-			
	РАСЧЕТ- НЫЙ	- M							
MAPKA	TPOAET	α,	ПЕРЕМЫЧ ЗНАЮТСЯ	ІКИ ПРИ- ГОДНЫМИ	ТРЕБУЕТСЯ ПОВ НИЕ	торное испыта-			
			СОБСТВЕН- НОГО ВЕСА	COECTBEH- HOFO BECA	С УЧЕТОМ СОБСТ- ВЕННОГО ВЕСА < РПОЛН., НО	ЗА ВЫЧЕТОМ СОБ- СТВЕННОГО ВЕСА «Раоп., НО			
	мм	MM	Р полн.	P _{AOT} .	≥0.85 Р _{полн} .	≥0.85 PAON			
4ПР38-12.12.19ч	1120	85	3405	3375	< 3405,H0≯2895	<3375, H0≥2865			
10P38-15.12,19 y	1380	85	4195	4155	<4195, H0≥3565	<4155,H0≥3535			
1ПР38-18.12.19 ч	1610	100	4895	4850	<4895, H0≥4160	<4850,H034120			
1ПР28-18.25.19 y	1640	85	3675	3575	<3675, H0>3120	<3575,H0>3040			
1NP8-18.12.199	1640	85	1050	1000	<1050, H0≯890	<1000, HO> 850			
1 ПР28-20.25,199	1900	85	4255	4145	< 4255, HO≥ 3620	<4145,H0>3520			
1ПР8 - 20.12.19 y	1900	85	1215	1160	<1215, H0≥1035	<1160, H0≥ 99°			
1NP38-24,25.19 y	2230	115	6780	6650	< 6780,H0≥ 5765	<6650, HO≥56£0			
1ПР28-24.25.19 y	2230	115	4995	4865	<4995, H0>4245	<4865,H0>4135			
1ПР8 - 24,12.199	2290	85	1465	1400	< 1465, HO≥1245	<u> </u>			
1ПР38-27.25,19 у	2490	115	7570	7420	<7570, H0>6435	< 7420, HO≥ 6310			
1ПР28-27.25.19 ч	2490	115	5575	5430	<5575, H0≥4740	<5430, H0≥4615			
1008-27.12.199	2550	85	1630	1560	<1630, H0≥1385	<1560, H0>1325			
						AUCT			

1.138-10.5 00000 TO

ПРОВЕРКА ПРОЧНОСТИ ТАБЛИЦЫ 1

			XAPAKTEP PA3PYWEHNA					
	PACHET-		РАЗДРОБЛЕНИЕ БЕТОНА СЖАТОЙ ЗОНЫ СЕЧЕНИЯ ДО НАСТУПЛЕНИЯ ТЕКУЧЕСТИ ПРОДОЛЬНОЙ РАСТЯНЧТОЙ АРМАТУРЫ ИЛИ РАЗРУШЕНИЕ ПО СЕЧЕНИЯМ,НАКЛОН-НЫМ К ПРОДОЛЬНОЙ ОСИ КОНСТРУКЦИИ С= 4.6					
Mapka	НЫЙ ПРОЛЕТ	a,			ОЛЬНОЙ РАЗРУІ ,ПРИ КОТОРО			
M.K.I.N.K.	Lo,		ПЕРЕМЫ! ЮТСЯ ГО,		ТРЕБУЕТСЯ П АТІНПОК			
			СОБСТВЕН		с учетом собст- венного веса «Рполн., но			
	MM	мм	Pronn.	P ₄₀₁₁ .	> 0.85 PπολΗ			
1 NP1-10. 12. 9	930	50	75	60	< 75, H0≯ 65	<60, HO≥ 50		
1 ПР1-12, 12. 9	1190	50	145	125	<145,H0> 120	<125,H0>110		
1 ПР1-15. 12. 9	1450	50	175	15 5	<175,H0≥ 150	<155,H0≥130		
1ПP2-16. 12. 9	1580	50	315	295	<315, HO≯ 270	< 295,H0 > 250		
1ПP3~ 19, 12, 9	1840	50	440	390	<440, HO> 375	< 390, H0≽ 330		
1ПРЗ- 22,12.19	2100	50	585	525	< 585, ₩0 > 500	< 525,H0≥ 450		
1ПР3- 24. 12.19	2360	50	660	595	< 660, H0≯560	< 595, H0≽ 505		
1ПР4-25.12.19	2490	50	795	725	<795, HO≥ 675	< 725,H0 > 615		
1ПР4-28.12.19	2750	50	880	800	<880, H0≯750	< 800, H0≥680		
1ПР4-29.12.19	2830	75	905	825	<905, H0≯770	< 825, HC≥ 700		

ANCT

ОПИРАНИЯ И ЗАГРУЖЕНИЯ ПРИ ИСПЫТАНИИ CXEMA _L 60/4 Paon Раоп Lo ТАБЛИЦА 2 Проверка жесткости RAHAON Прогибы от Прогивы (мм). КОНТРОЛЬНАЯ ПОЛНОЙ КОНТ НАГРУЗКА, ПРИ КОТОРЫХ РОЛЬНОЙ НА-ПРОГИБ KCC ГРУЗКИ, ПРИ ¢д∧ RPEнимая ее PACYET C YYE-ЗА ВЫ-**ДЕЛЬНО** TEPE-TPEBYETCR ный TOM C TIPEA α **HETOM** ДОПУСмычки **NOBTOPHOE** AAN- KPATKO MAPKA ΠΡΟΛΕΊ COECT-COBCT-TUMBIN ПРИЗНА ИСПЫТАНИЕ TEADHO BPEMEN ются BEHHO-BEHHO ٠٥, ДЕЙСТ- НО ДЕЙ E TIPEA TO BECAITO BECA годны-ВЧЮЩЫ СТВУЮ Ми ЩЕЙ ¢ΔΛ Рполн Page EKP, % % MM MM MM MM MM 1 MP 38-12.12.19 y 85 1.2 5, 6 35 < 1.4 1120 1700 1.95 1670 >1.4, HO<1.6 1 NP 38-15,12,19 y 1380 85 2100 2060 4, 2 6.9 61 < 3.0 2.5 > 3, HO< 3,2 1 TP38-18.12.199 1610 100 2445 2400 6.7 3.8 8.0 84 < 4.6 > 4,6, HO< 4.9 1NP 28-18, 25, 194 1640 85 1745 1650 4.1 2.6 8.2 50 < 3.1 **>31,H0<34** 1NP 8-18,12,199 1640 85 375 330 0.38 8.2 8 < 0.46 0.69>0.46.HO<0.49 ITP 28-20.25, 199 1900 85 3.8 9.5 65 2025 1900 6.2 < 4.6 > 4.6, HO<4.9 11P8-20.12.19y 1900 85 435 385 1.25 0.68 9.5 13 8.0 > >0.8, HO<088 INP 38-24.25.19 y 2230 115 3390 3260 7.0 11.2 97 10.9 < 7.7 >7.7, H0<8.0 1NP28-24.25.19y 2230 115 2375 2245 11.2 89 10.0 6.0 < 6.6 > 6.6, HO < 6.9 2290 85 525 11,4 460 6.7 4.1 59 < 4.9 MP 8-94,12.194 > 4.9.HO< 5.3 115 3785 (TP 38-27.25.19 9 2490 3635 11.9 6.0 12.4 96 < 6.6 > 6.6, 40< 6,9 1 TP 28-27.25.19 9 2490 115 2650 2505 6.6 12.4 89 11.0 < 7.3 >7.3, HO<7.6

255(1

1 NP 8 - 27.12.19 y

85

585

515

1, 138-10.5

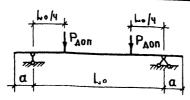
5.2

8.8

69

< 6.2

>6.2, HO< 6.8


VHCL

9

12.8

OT 00000

Схема ОПИРАНИЯ ЗАГРУЖЕНИЯ ПРИ ИСПЫТАНИИ

Проверка трещиностойкости Таблица 3.

	Da		HALBASKI UOVHVU		
Mapka	Расчет- ный пролет Lo, мм	a,	с ччетом собственного веса Рполи.	ЗА ВЫЧЕТОМ СОБСТВЕННОГО ВЕСА РДОП	Контрольная ширина Раскрытия Трещин,
17P38- 12.12.19 9	1120	85	1700	1670	0. 25
1ПР 38- 15.12.199	1380	85	2100	2060	0.25
10P 38- 18.12.199	1610	100	2445	2400	0.25
1NP 28- 18. 25.194	1640	85	1065	970	0.25
1ПР 8- 18.12.19y*	1640	85	375	330	
1ПР28- 20.25.19У	1900	85	2020	1910	0.25
1ПР8 - 20,12.19 y*	1900	85	435	385	
1ПР38- 24.25,194	2230	115	3390	3260	0,25
111P 28- 24. 25.199	2230	115	2375	2245	0,25
1NP8- 24.12.19 y	2290	85	525	460	0 25
1ПР38- 27.25.19 У	2490	115	3785	3635	0.25
1NP28 ~ 27, 25, 19 y	2490	115	2650	2505	0.25
1 TP8 - 27, 12.194	2550	85	585	515	0.25

* В ПЕРЕМЫЧКАХ ТРЕЩИНЫ НЕ ОБРА-ЗУЮТСЯ

1.138-10.5 00000 TO

ПРОВЕРКА ТРЕЩИНОСТОЙКОСТИ. ПРОДОЛЖЕНИЕ ТАБЛИЦЫЗ

	Расчет-		Полная нагрузк	КОНТРОЛЬНАЯ ОТИ, АХ	Контрольная
Марка	ный пролет ⊷,	a,	С УЧЕТОМ СОБСТВЕННОГО ВЕСА	BECA	ширина Раскрытия Трещин,
	MM	MM	Рполн	Рдоп	MM
1ЛР1 — 10.12.9	930	50	40	30	0.25
1ΠP1 — 12,12.9	1190	50	85	65	0.25
1ПР1 — 15.12.9	1450	50	100	08	0.25
1ΠP2 — 16. 12.9	1580	50	180	160	0,25
1NP3 — 19, 12,9	1840	50	255	200	0.25
1ПР3 — 22.12,19	2100	50	335	275	0.25
1NP3 - 24.12.19	2360	50	380	310	0.25
111124 - 25,12,19	2490	50	455	385	0.25
1 ПР4 — 28,12.19	2750	50	500	425	0.25
1ПР4 — 29.12.19	2830	75	515	435	0.25

1.138-10.5 00000 TO

ЛИСТ

		L		7	112	-=
Mapka		мЕРЫ, ІМ	ОБЪЕМ БЕТОНА,	MACCA,	HATYPA	CTAAN, KF AABH. JEH K KA. AX
	L	h	M3	Kr	на изде-	HA 1M ³ BETOHA
1 NP1- 10.12.9	1030	90	0.011	30	0.37 0.54	33.64 49.09
1 ПР1 - 12.12.9	1290	90	0,014	35	0.45 0.66	32.14 47.14
1 NP1- 15.12.9	1550	90	0.017	40	0.56	32.94 48.24
1ПР2- 16.12.9	1680	90	0.018	45	$\frac{0.86}{1.26}$	47.78 70.0
1 ПРЗ- 19.12.9	1940	90	0.021	55	1.16 1.67	55.24 79.52
1 NP3 - 22.12.19	2200	190	0.05	125	1.30	26.0 37.6
1 ПРЗ- 24.12.19	2460	190	0.056	140	1,46	26.07 37.68
1.ПР4- 25.12.19	2590	190	0.06	150	2.23 3.22	37.1 7 53.67
1ПР4- 28.12.19	2850	190	0.065	160	2.45 3.53	37.69 54.31
1NP4- 29.12.19	2980	190	0.068	170	2.57 3.70	37.79 54.41
нач ота Балановския с гип. Клепикова &	aut	1.	138-10	.5 00	000 T	
Topo -	h un h	HOMEH	KARTYPA	. ИЗ Д ЕЛЬ	P	RIANCT AUCTOB 1 2 2 NAMENIA

					7,		고	
		L				Ī	6	
1	How	EHKA	ATYP	А ИЗД	ЕЛИЙ	Colore	,	
M . DV .	Pa3m	A3MEPH, MM			MACCA,	РАСХОД СТАЛИ, КГ НАТУРАЛЬНЫЙ ПРИВЕДЕННЫЙ К КЛ. АТ		
MAPKA	L	в	h	БЕТОНА, M ³	KΓ	HA HA	1M3 BETOHA	
1ПР38-12.12.19У	1290	120	190	0.03	75	2. 05 2. 95	68. 33 98.33	
1ПР38-15.12.199	1550	120	190	0.035	90	3. 65 5. 23	104.29 149,43	
1ПР38-18.12.19у	1810	120	190	0.04	105	5.64 8.06	141. 0 201. 5	
/пр28-18,25,19¥	1810	250	190	0.09	215	5.94 8.57	66. 0 95.22	
1 np8 - 18.12.19y	1810	120	190	0.04	105	1.86 2.69	46.5 67.25	
1ПP28-20.25.19y	2070	250	190	0.10	245	7.89 11.40	78.90 114.0	
1ПР8 - 20.12.19 у	2070	120	190	0,05	120	2.06 2.98	41.20 59.60	
fпР38-24.25.19 у	2460	250	190	0.12	290	20.44 29.23	170.33 243.58	
1ПР28-24.25.19у	2460	250	190	0.12	290	12.33 17.74	102.75 147.83	
1ПР8-24.12.19у	2460	120	190	0.056	140	3,27 4,70	<u>58.39</u> 83.93	
1ПР38-27.25.19ч	2720	250	190	0.13	325	40.05 57.27	308.08 440.55	
4ПР28-27.25.19у	2720	250	190	0.13	325	21.29 30.44	163.77 234.15	
1ПР8-27.12.19у	2720	120	190	0.06	155	4,93 7,07	82.17 117.83	
1ПР28-20.25.19у-а	2070	250	190	0.10	245	11.04 14.55	110.4 145.5	
1ПР28-24.25.19y-a	2460	250	190	0.12	290	15.48 20.89	129.0 174.08	
1ПР28-27.25.19у-а	2720	250	190	0.13	325	24.44 33.59	188.00 258.38	
			1, 1	38-10	15 00	000 TE	1 Лист	

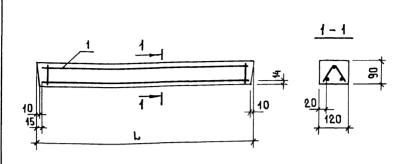
TPOBEP, KAETINKOBA Wide	НАЧ. ОТД. ГИП РУК. ГР.		ВЫ501	PKA CT	АЛИ Н	А ИЗДЕ	ΛИЕ,	ΚΓ		r
5 P	3 5 A	1		AP	MATY	РНЫЕ	издел	RИ		
PAOR	KAETINKOBA	MAPKA	APMATS	PHAR C	TANH TO	T 5781-75	APMATY	PHAR C	TAAb 3-75	
Þ É	A ORMA	11 11/10		ACC A	i	J	KAACC		UTOFO	BCETO
132	Topic		6	ø, мм 8	10	итого	φ. 4	, MM 5	Итого	
(1 NP1-10.12.9					0.37		0.37	0.37
В		1 NP1-12.12.9					0.45		0.45	0.45
Выборка	1	1 NP1-15.12.9					0.56		0.56	0.56
	8-10.	1 NP2-16.12.9					0.11	0.75	0.86	0.86
стали	\sigma_{\sigma}	1 прз-19.12.9	0.84			0.84	0.32		0.32	1,16
Ž	00000	1 ПРЗ - 22.12.19		0.86		0.86	0.44		0.44	1.30
두기		1 ПРЗ-24.12.19		0.96		0.96	0,50		0.50	1.46
VIII WHUNT LEMMHIT	TE 2	1 ПР4- 25.12.19			1,58	1.58	0.26	0,39	0.65	2.23
X X		1 ПР4 ~ 28.12.19			1.74	1.74	0.28	0.43	0.71	2.45
N ELA	Листов	1 NP4 -29.12.19			1.82	1.82	0.30	0,45	0.75	2.57
		A companient continuent activity in particular activity activity activities of the continuent activity and activity acti		L	har-communication or	1		L	L	L

ВЫБОРКА СТАЛИ НА ИЗДЕЛИЕ, КГ

					A PA	1 LTA N	>нь	IE N	ЗДΕΛΙ	ия			
		F	PMA	TYPH	RAI	CTAA	ь	ОСТ	5781	-75		APMATYPHA9.CTAN6 TY-14-4-659-75	P - = = =
	MAPKA	KAACC A III							KAACC		AI	KAACC BPI	************
		ø, mm						итого		MM	итого	Ø, MM	
		6	8	10	12	14	16		10	16		5	
	1 ПР38-12.12.199			1.56				1.56				0.49	2.05
	1 ПР38-15.1 2 .199		0.6		2.70			3.3				0.35	3.65
1.13	1 ПР38-18.12.199	0.64	0.7			4.30		5.64					5.64
1.138-10.5	1 NP8-18-12-199			1.10				1.10				0,76	1.86
- 1	1 ПР8-20,12,199			1.26				1.26				0.8	2.06
00000	1 11 11 12 - 24,12, 199	0.54			2.16			2.70				0.57	3.27
162	1 ПР8-27.12.199		1.06			3.25		4.31				0.62	4,93
"	1 NP28-20.25,19y-a			5.04				5.04	0.42	2.73	3.15	2.85	11.04
	1 NP28-24.25.19y -q	1.08			8.64			9.72	0.42	2.73	3.15	2.61	15.48
o MC	1 NP28-27.25.19y-a	4.19	2.12			6.50	8.48	21.29	0.42	2.73	3.15		24.44

	APMATURNAR CTAAL FOCT F791 75 APMATURNARCHANGA													
	MARKA	A	Å РМАТУРНАЯ СТАЛЬ ГОСТ 5781-75 Класс АШ											
	MAPKA			KNACC BPI	BCETO									
		6	8	10	∲, 12	MM 14	16	20	22	итого	ø, mm 5			
1	1 ПР28-18,25, 19 ч	0.8	0	10	3.16		10			3.96	1.98	5.94		
1.138-1	1 NP28-20.25.19 y			5.04						5.04	2.85	7.89		
10.5 00	1 ПР38-24.25.19 y		8.68			11.76				20.44		20.44		
000	1 NP28-24,25,19 y	1.08			8.64					9.72	2.61	12.33		
162	1 ПР38-27.25,19 у		7.41	3.32				13.26	16.06	40.05		40,05		
	1ПР28-27.25.19y	4.19	2.12			6.50	8.48			21.29		21.29		

г		
и п/п	0 603HA4EHNI	Наименование
		ДОКУМЕНТЫ ПРЕДПРИЯТИЯ
1		РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ
		БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУК
		ций из тяжелого бетона (без предва-
		НАДЕМОЯП ПИННД (ВИНЭЖЕНПАН ТИЯ
		ИНИЖБ 1977r.
2		РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ
		КАМЕННЫХ И АРМОКАМЕННЫХ КОНСТРУК-
		ций ЦНИИСК, 1974г.
Гл.инн.п	БАЛАНОВСКИ На Сами КАЕПИКОВА Вые	1. 138 - 10.5 00 000 BA
Рук.гр	TOPAOBA Zm	PERSONAL CONTROL CTANANAMET AMOTOB
700		BEADMOCTH CCHINONHIX P 1 ANNUAL PENNY PENNY P
PASPA	KAETIKOBA CUR BIOPAOBA 2572	докумен тов ПЕИИНД


ФОРМАТ	30HA	Nos.	0 6 0 3 H A Y E H N E	ДАИМЕНОВАНИЕ	KOA	UDNWE-
				ДОКЧМЕНТАЦИЯ		
11			1.138-10.5 10000 CB	СБОРОЧНЫЙ ЧЕРТЕЖ		
11			1.138-10.5 00000 TO	TEXHNAECKOE OUNCAHNE		
11			1.138-10.5 00 000 T62	Выборка стали		
Γ						
Г	Γ		Переменные	йинэнлопои РЛД Зідннад		
	\vdash			1,138-10.5 10000(1001-1012	.9)	
				СБОРОЧНЫЕ ЕЛИНИЦЫ		
11	\vdash	4	1.138-10.5 1010 0	KAPKAC KP10P1-10.12.9	1	
		Ė		MATEPHAN:		
	T	<u> </u>		БЕТОН МАРКИ М200	0,011	м3
		T				
	T			1.138-105 10000-01(111P1-	12.12	.9)
	T	<u> </u>		СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1,138-10,5 10100-01	KAPKAC KPNP1-12.12.9	1	
Г				MATEPHAN:		
	T	T		БЕТОН МАРКИ М200	0,014	M ³
				1.138-10.5 10000-02(1NP1	-15.	12.9)
11		1	1.138-105 10100-02	KAPKAC KP11191-15.12.9	1	
	1			MATEPHAN:		
$-\Gamma$	1			БЕТОН МАРКИ М200	0,017	M ³
-						
]					
\int						
L						
H	O.PA	TA.	БАЛАНОВСКИЙ ТО 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.138-10.5 10000		
P	УК.Г	Р.	TOPAOBA 2000 TEF	РЕМЫЧКА <u>Стадия /</u> 12.9; 1ПР1-12.12.9; <u>Р</u>	NCT	AUCTOB
L		\exists	1 IIP1-15.		in	
			KNETINKOBA Wea 1 TIP3-19	.12.9) ЦНИИЗ	шж	АШИЛИ
11.7	(JP)	10.1	OPAOBA 27			·

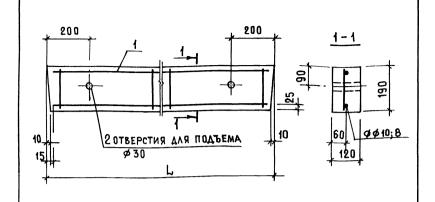
MHB. NETTOLAN TOLINCE H DATA BSAM. WHE IN

POPMAT	ЗОНА	No3.	0 б о З н А Ч Е н и Е	Наименование	KOA	NPUME-
	П		Переменные	ДАННЫЕ ДЛЯ ИСПОЛНЕНИ	Й	
				1.138-10.5 10000-03 (1ПР2	-16.	12.9)
				СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1.138-10.5 1010 0-03	KAPKAC KP1 11P2-16-12.9	1	
				MATEPHAN		
				БЕТОН МАРКИ 200	0.018	M ³
-		-		1.138-10.5 40000-04(1ПРЗ	-19.	10.9)
	Н			СБОРОЧНЫЕ ЕДИНИЦЫ	7	
11		4	1.138-10.5 1010 0-04	KAPKAC KP1ПР3-19.12.9	-	
				МАТЕРИАЛ:		
				BETOH MAPKH M200	0.021	м3
_						
_	Н					
_	Н					
	Н					
	Ш					
_	Н					
	Щ					
	Н					
_	H					
	H					

1.138-10.5 10 000

лист 2

ОБОЗНАЧЕНИЕ	Mapka	L,	MACCA,
1.138-10,5 10 000	1ПР1- 10.12. 9	1030	30
- 01	1ПР1- 12,12.9	1290	35
- 02	1ПР1- 15.12.9	1550	40
- 03	1ПР2- 16.12.9	1680	45
	1ПР3- 19.12.9	1940	55


			1.138-10.5 10	000	СБ	
			 ПЕРЕМЫЧКА	СТАДИЯ	MACCA	МАСШТАБ
ГИП	Балановский Клепикова	Sue ex	 ПЕРЕМЫЧКА (ПР1-10.12.9; 1ПР1-12.12.9; 1ПР1-15.12.9; 1ПР2-16.12.9; 1ПР3-19.12.9) СБОРОНЫЙ	Р	CM. TABA	1:10
рук.пр.	TOPNO BA	2 Jan	 111P3-19.12.9) UEPTEW	ЛИСТ	VNC	TOB 1
fleore P	КЛЕПИКОВА	Quee		ЦНИ	жПЕЬ	и∧ищА
PA3PAG.		20pm		L		

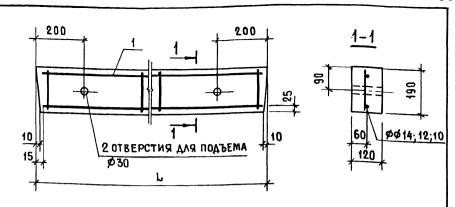
OPMAT	30HA	1103	ОБОЗНАЧЕНИ	E	HANMEHOBA	ниЕ	KOA.	NPHME-
7	13	_			LOKUMEHTALI	19		
11	Н		1.138-10.5 20000	СБ	СБОРОЧНЫЙ ЧЕ	РТЕЖ		
11	П		1.138-10.5 00 000	TO OT	TEXHUMECKOE OUT	NCAHNE		
11			1.138 - 10.5 00 000	T5 2	Выборка стали			
\vdash								
Т			<u>Π</u> Ε	PEMEHH	РАД ЗИННАД ЗИ	ИСПОУН	EHN	Й
					1.138-10.5 2000			12.19)
					CBOPOTHUE EA	иницы		
11		1	1.138-10.5 20100		KAPKAC KP1 11P3	-22.12.19	1	
-	\vdash	Ė			MATEPHAA			
_					BETOH MAPKH M	200	0,05	M3
_					1,138-10,5 20000	-01(111P	3-24	12.19
-	Н				СБОРОЧНЫЕ ЕДИ	ницы		
11			1.138-10,5 20100-	01	KAPKAC KP1NP3-	-24,12.19	1	
					MATEPHAN:			
_					BETOH MAPKH MS	200	0,056	M3
Г								
Г								
11 6	. 01	A 5	ANAHOBCKHAKanan	1 4	38-10.5 2000	10		
r	ıΠ	K	NETINKOBA Ruce			J U		
Рy	K.F	ρ. Γ	OPAOBA 25Zu	ПЕР 1ПР3-294	EM DIYKA 2.19; 111P3-24,12.19;	CTAANS A	UCT 1	AUCTOE 2
				(NP4-25.1	12.19; 10P4-28.12.19;		<u> </u>	
			METINKOBA Que	1ПР4-29.1	2.19)	јцнии:	ШЖ	ИУИЩА
ےب	5.7	211	Who I			L		

ИНВ. И ПОДПИСЬ И ДАТА ВЗАМ ИНВ. И

POPMAT	30 HA	กิดз	ОБОЗНАЧЕНИЕ	Наименование	KOA	ПРИМЕ- ЧАНИЕ
			ПЕРЕМЕННЫ	Е ДАННЫЕ ДЛЯ ИСПОЛНЕ	ний	
				1.138-10.5 20000-02 (1ПР4	-25,1	2.19)
Г				СБОРОЧНЫЕ ЕДИНИЦЫ		,
11		1	1.138-10.5 2010 0- 02	KAPKAC KP1 ПР4-25.12.19	1	
				MATEPHAN		
				БЕТОН МАРКИ М200	0.06	M 3
				1.138-105 20000-03(1RP4	-28.	12.19)
				СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1,138-10.5 20100-03	KAPKAC KP1 11P4-28.12.19	1	
				MATEPHAN		
				БЕТОН МАРКИ М200	0,069	м3
				1.138-10.5 20000-04 (1TP	4-2	9.12.19)
				СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1.138-10.5 2010 0- 04	KAPKAC KP1 ПР4-29.12.19	1	
				MATEPHAN:		
				BETOH MAPKH M200	0,068	M3
L						
L						
L						
1						1

1.138-10.5 20000 2

0603HA4EHME	MAPKA	L, mm	MACCA, KT
1.138-10.5 20000	1 ПРЗ- 22.12.19	2200	125
- 01	1 NP3- 24.12.19	2460	140
- 02	1 ПРЗ- 25.12.19	2590	150
- 03	1 TP4- 28.12.19	2850	160
- 04	1 TP4- 29. 12.19	2980	170


BSAM MHEN								
NHB.Nº NOBA NOGINCE W BATA					1.138-10,5 20000 CE	5		
8					ПЕРЕМЫЧКА	RNAATS	MACCA	МАСШТАБ
MUTOU	THIT	***************************************	Queles		(INP3-22.12.19; 1NP3-24.12.19; 1NP4-25.12.19; 1NP4-28.12.19; 1NP4-28.12.19; 1NP4-29.12.19)	Р	TABA	1:10
≨	PYK.TP.	TOPADBA	25/2		"СБОРОЧНЫЙ ЧЕРТЕЖ	VNCL	VNC	TOB 1
B.Nºn0	ПРОВЕР.	Клепиков	le ser			цни	жПЕЦ	АДИЛЛИ
Ξ	PASPAG	TOPAOBA	20pm	·1				

11 1.13 11 1.13 11 1 1.13 11 1 1.13 11 1 1.13				
11 1.1 11 1.1 11 1.1 11 1.1 11 1 1.1 11 1 1.13 11 1 1.13	Обозначение	Наименование	KOA	ПРИМЕ ЧАНИЕ
11 1.4° 11 1.1° 11 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1.1° 11 1 1 1 1 1.1° 11 1 1 1 1 1.1° 11 1 1 1 1 1.1° 11 1 1 1 1 1 1.1° 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ДОКУМЕНТАЦИЯ		
11 1 1.1° 11 1 1.1° 11 1 1.1° 11 1 1.1° 11 1 1.1° 11	138-10,5 30 000 CE	СБОРОЧНЫЙ ЧЕРТЕЖ		
11 1 1.13 11 1 1.13 11 1 1.13	138-10.5 00000 TO	Техническое описание		
11 1 1.13 11 1 1.13 11 1 1.13	138-10.5 00 000 TE2	Выборка стали		
11 1 1.13 11 1 1.13 11 1 1.13				
11 1 1.13 11 1 1.13 11 1 1.13	<u> TEPEMEH</u>	НЫЕ ДАННЫЕ ДЛЯ ИСПОЛ	HEH	ий
11 1 1.13 11 1 1.13 11 1 1.13		1.138-10.5 30000(11P38-12	.12.1	<u>94</u>)
11 1 1.13 11 1 1.13 11 1 1.13		СБОРОЧНЫЕ ЕДИНИЦЫ		
11 1 1.13 ИАЧ.ОТА: БАЛАНО ГИП КАЕПИ	138-105 30100	KAPKAC KP1 11 P38-12.12.19	4	
11 1 1.13 НАЧ. ОТА. БАЛАНО ГИП КАЕПИ		MATEPHAA		
11 1 1.13 НАЧ. ОТА. БАЛАНО ГИП КАЕПИ		БЕТОН МАРКИ М200	0,03	M3
11 1 1.13 НАЧ. ОТА. БАЛАНО ГИП КАЕПИ				
11 1 1.13 ИАЧ.ОТА: БАЛАНО ГИП КАЕПИ		1.138-10,5 30000-01(11P3	8-15	.12.194)
11 1 1.13 ИАЧ.ОТА: БАЛАНО ГИП КАЕПИ		СБОРОЧНЫЕ ЕДИНИЦЫ		
нач.ота Балано Гип Каепи	138-10.5 30100-01	KAPKAC KP1 ПР 38-15,12.199	1	
ИАЧ.ОТА. БАЛАНО ГИП КАЕПИ		MATEPHAN		
ИАЧ.ОТА. БАЛАНО ГИП КАЕПИ		Бетон марки м 200	0,035	м ³
ИАЧ.ОТА. БАЛАНО ГИП КАЕПИ				
нач.ота Балано Гип Каепи		1.138-10.5 30000-02(ПР38	-18	12.19 y)
ИАЧ.ОТА. БАЛАНО ГИП КАЕПИ		СБОРОЧНЫЕ ЕДИНИЦЫ		
LNU KVEUN	138-105 30100-02	KAPKAC KP1 11 P38-18.12.199	1	
LNU KVEUN	•	MATEPHAN		
LNU KVEUN		BETON MAPKH M200	0,04	M3
LNU KVEUN				
LNU KVEUN				
PYK.FP TOPAGE	NKOBA Quee	.138-10.5 30 000		
	08A 2p-	ЫЧКА УСИЛЕННАЯ СТАДИЯ Л 2.19 4; 1ПР38-1512194; Р	HCT 1	AUCTOB 2
TPOBEP KAETA	MKOBA /LLL 11P8-20.12.	,199; 1ПР8-18.12.199; 199; 1ПР8-24.12.199; ЦНИИ=		илища

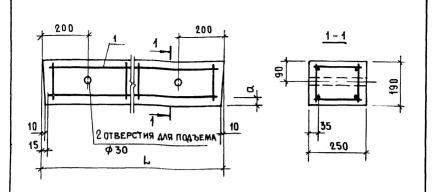
MR.Nº 110AA HOATINCON AATA BSAM HIBNE

							29
ФОРМАТ	30HA	Поз.	05031	ANEHNE	Наименование	KOA	ПРИМЕ- ЧАНИЕ
Г				ПЕРЕМЕННЫ	Е ДАННЫЕ ДЛЯ ИСПОЛНЕН	ий	
Г					1.138-10.5 30000-03(1 NP8-18	.12 1	9 4)
Γ					СБОРОЧНЫЕ ЕДИНИЦЫ		
Г		1	1,138-10.5	30100 - 03	KAPKAC KP1 11 P8-18.12,199	1	
					MATEPHAA:		
					БЕТОН МАРКИ М200	0,04	M ³
Γ							
					1.138-10.5 30000-04(111P8-	20.12	.19५)
Г					СБОРОЧНЫЕ ЕДИНИЦЫ		
		1	1.138-10.5	3010 0- 04	KAPKAC KP1 11P8-20.12.199	1	
					MATEPHAA:		
					БЕТОН МАРКИ М 200	0.05	M ³
					1,138-10.5 30000-05 (1NP.8	-24.1	2.19y)
					СБОРОЧНЫЕ ЕДИНИЦЫ		
		1	1.138-10.5	30100-05	KAPKAC KP1 11 P8-24.12.19 y	1	
Г					MATEPHAA:		
					БЕТОН МАРКИ М 200	0.056	M ³
					1.138-10.5 30000-06(11P8	-27.	12.194)
					Сеорочные етинипы		
Г		1	1,138-10.5	30100-06	KAPKAC KP111P8-27.12.199	1	
Г					MATEPHAA:		
					БЕТОН МАРКИ М 200	0.06	M ³

····		ЛИСТ
1.138-10.5	30000	2

ОБОЗНАЧЕНИЕ	MAPKA	L, MM	MACCA, Kr
1.138-10.5 30 000	1 ПР38-12.12.19 У	1290	75
-01	1 ПР38- 15, 12, 19 у	1550	90
- 02	1 ПР38- 18.12.19 у	1810	105
-03	1 IIP8- 18.12.19 y	1810	105
-04	1 ПР8- 20.12.19 ч	2070	120
-05	₹ ПРВ- 24.12.19¥	2460	140
-06	1 TP8- 27, 12, 19 y	2720	155

			1,138 10.5 3 000			
			ПЕРЕМЫЧКА УСИЛЕННАЯ	RNAAIJ	MACCA	МАСШТАБ
HAY.OTA.	BANAHOBCKIN	rugant	(10P38-12.12.194, 10P38-15.12.194) 10P38-18.12.194, 10P8-18.12.194)		CM	
	KAETINKOBA	Que	1008-18.12.194; 1008-18.12.194; 1008-24.12.194;	P	TABA.	1:10
PYK.FP.	TOPAOBA	25/	1ПР8-20.12.194) ТПР8-23.12.133) 1ПР8-27.12.194) СБОРОЧНЫЙ ЧЕРТЕЖ			
			111198-27.12.199) CBUPUHBIN 4EF TEX	VNCT	1 An	CTOB 1
				1	יים ויים	** *
	KVELINKOBY	lug		Thun	אוובי	АЩИЛИ
PASPAB	TOPAGBA	War.				


OPMAT	30HA	1103	н воа О	AYEH	ИЕ	Наименование	KDA.	RPHME-
0	3					ДОКУМЕНТАЦИЯ	_	17.17.12
11			1,138-105	40 000	CE	СБОРОЧНЫЙ ЧЕРТЕЖ		
11			1.158-10.5	00000	TO	ТЕХНИЧЕСКОЕ ОПИСАНИЕ		
11			1.138-10.5	00 000	ТБ2	Выборка стали		
				Ţ	TEPEMEHH	ЫЕ ДАННЫЕ ДЛЯ ИСПОЛН	EHN	Й
						1.138-10.5 40000(1ПP28-1	8.25	.19 4)
						СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1,138-10.5	41000		Блок АРМАТУРНЫЙ		
					************	AB1ПР28-18.25.19 9	1	
						MATEPHAN:		
						BETOH MAPKH M 200	0,09	M3
L		_				1470 407 10000 01/170	2.22	22.4011
_						1.138-105 40000-01(1ПР2 СБОРОЧНЫЕ ЕДИНИЦЫ		25.199)
11		1	1.138-10.5	41000	-01	Блок Арматарный		
						A61ПP28-20.25.199	1	
						MATEPHAN		
						BETOH MAPKH M200	0.1	M ³
L	_	_						
_	-	-						
H	\vdash	_						
_	┢	\vdash			·			

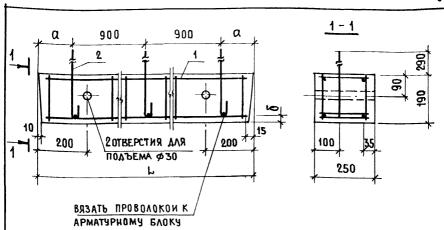
ГИП	Балановский Клепикова	Dece	1.138-10.5 4000	00		
PYK.FP.	TOPAOBA	22	ПЕРЕМЫЧКА УСИЛЕННАЯ (ПР28-18-25.194; ПР28-20:25.194)	Р	1	2
ПРОВЕР. РАЗРАБ	Клепикова Горлова	Diee 25/m	10P38-24.25.194; 10P28-24.25.194; 10P38-27.25.19 ₉ ;10P28-27.25.194)	ЦНЦІ	ВΠжі	иуища

POPMAT	SOHA	Паз.	0 6 0 3 H	АЧЕНИЕ	НАИМЕНОВАНИЕ	K OA	ПРИМЕ- ЧАНИЕ
<u>U</u>				Переменны	НЛОПОИ ВЛД ВИННАД В	ЕНИ	
_				-	1.138-10,5 40000-02(1ПР38		
					СБОРОЧНЫЕ ЕДИНИЫЫ		7-
11		1	1,138-10.5	41000-02	Блок арматченый		
_					A5.1 ПР38-24.25.19 ч	1	
					MATEPHAA		
					БЕТОН МАРКИ М200	0.12	M ³
					1.138-10.5 40000-03(1ПP	00-	04 05 19u\
					СБОРОЧНЫЕ ЕДИНИЦЫ	20	27.23.33)
11		1	1130-105	41000-03	Блок арматурный		
11		-	1.130-10.3	41000-05	АБ1ПР28-24.25.19 у	1	
	-				MATE PHAN:	<u> </u>	
					БЕТОН МАРКИ М200	0.12	M3
					BETON MANAGEMENT	U	
				_	1.138-10.5 40000-04 (1NP	38- 2	7.25.194)
					СБОРОЧНЫЕ ЕДИНИЦЫ		
11		1	1.138-10.5	41000-04	Блок арматурный		
					A61ПР38-27.25.19 ч	1	
					МАТЕРИАЛ		
					БЕТОН МАРКИ М200	0.13	M3
					1,138-10.5 40000-05 (1ПР	28-2	7.25.19 y)
					СБОРОЧНЫЕ ЕДИНИЦЫ		<i></i>
11		1	1,138-10.5	41000 - 05	Блок АРМАТУРНЫЙ		
					A51ПР28-27.25.199	1	
					MATEPHAN	·	
					БЕТОН МАРКИ М200	0.13	M ³

1.138-10.5 40000

Auct 2

0603HA4EHNE	MAPKA	a,	L,	MACCA, Kr
1.138-105 40000	1 NP28-18. 25.19 y	21	1810	215
~ 01	1 ПР28- 20. 25. 19 У	22	2070	245
- 02	1 ПР38- 24, 25, 19 у	25	2460	290
-03	1ПР28-24, 25.19 У	21	2460	290
- 04	1 NP38-27, 25, 19 Y	29	2720	325
-05	1 NP28-27. 25. 194	24	2720	325


			1.138-10.5 40000	CB		
					MACCA	МАСШТАБ
	Балановский Клепикова Горлова	Mean or a	(ПР28-18.25.194; ПР28-20.25.194; ПР38-24.25.194; ПР28-24.25.194; ПР38-27.25.194; ПР28-27.25.194; СБОРОЧНЫЙ ЧЕРТЕЖ	P	CM. TABA	1 : 10
			СБОРОЧНЫЙ ЧЕРТЕЖ	ANCT	Λи	CTOB 1
MPOBEP.	Клепикова Горлова	leve 2pm		ашилиж ПЕНИНД		

						1	,4
ФОРМАТ	30HA	No3	ОБОЗНАЧЕНИЕ	Наименование	KOA	ПРИМЕ ЗННАР	-
۴	-	F		ДОКУМЕНТАЦИЯ			_
11		┢	1.138-10.5 50000 CE	СБОРОЧНЫЙ ЧЕРТЕЖ			_
11			1.138-10.5 00000 TO	Техническое описание			_
11			1.138-10.5 00 000 TE2	Выборка стали			
Г	П						
Γ	Γ		Переменные		_		_
T	Г			1.138-10.5 50000 (1 IP28-	20.25	. 19y-a)	_
Г	Г			СБОРОЧНЫЕ ЕДИНИЦЫ			_
11		1	1.138-10.5 41000-01	Блок АРМАТУРНЫЙ			_
				A611P28-20.25.199	1		
11		2	1.138 - 10.5 50100	AHKEP A1	3		
r	Г			MATEPHAN:			_
	T			БЕТОН МАРКИ М 200	010	M ³	
Γ	T	T					
Г	Ī			1.138-10.5 50000-01(10P2	8-24	.25.19y-0)
Γ				СБОРОЧНЫЕ ЕДИНИЦЫ			
11		1	1,138-10.5 41000-03	Блок арматурный			
				AB1 ПР 28-24.25.19 4	1		
11		2	1.138-10.5 50100	AHKEP A1	3		
Г	Г			MATEPHAN:			
				БЕТОН МАРКИ М 200	0.12	M3	
L	<u> </u>						
L	L	<u> </u>		<u></u>		<u> </u>	_
							_
HA			АЛАНОВСКИЯ В СТЕР 1. ЛЕПИКОВА В СЕС	138-10.5 50000			
	K.FI	Ρ. Γ		KA YCHAEHHAR CTAAHRA	ист	листов 2	
	_	\pm	(40029-20	25 190	<u>-</u>		•
Tot	IRE	PK	AFTINKOBA DAGE I INDOQUESE	0 10000-070E 10 - ALLHUNA	11 -	UAMINA	

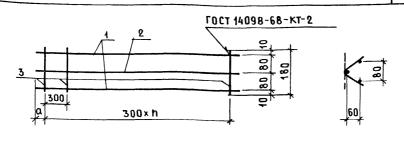
AMMANX I LNUHU (6-461-527.5-93401,6-461528-82911 PASPAG. TOPAOBA 20

MAT	4	Поз.	0503HA4EHNE	Наименование	۷٥	ПРИМЕ-
흏	30	N03			×	чани е
			Переменны	ІЕ ДАННЫЕ ДЛЯ ИСПОЛНЕ		
			-	1.138-10.5 50000-02 (1ПР2	8-27.	25.19y-a
				СБОРОЧНЫЕ ЕДИНИЦЫ		
11		4	1.138-10.5 41000-05	Блок арматурный		
				A61 ПР28-27.25.199	1	
11		2	1.138 -10.5 50100	AHKEP A1	3	
				MATEPHAN		
				БЕТОН МАРКИ М200	0.13	M ³
П						
Г						
1						

1.138-10.5 50000

OBO3HA4EHME	MAPKA	Ն, MM	a, MM	δ, ΜΜ	MACCA,
1.138-105 50000	1 ПР28-20. 25.19у-а	2070	135	22	245
-01	1 ΠΡ28-24.25.19 y-α	2460	330	21	290
-02	1 NP28-27. 25.19y-a	2720	460	24	325

			1.138-10.5 50000 c5				
			ПЕРЕМЫЧКА УСИЛЕННАЯ	RNAATO	MACCA	МАСШТАБ	
ATO.PAH	БАЛАНОВСКИЙ	barand	C AHKEPAMH		CM.		
THE	KAENHKOBA	lue	(1ПР28-20.25.19у-а,1ПР28-24.25.19у-а 1 ПР28-27.25.19у-а)	P	ТАБЛ.	4:10	
Pyk.rp.	TOPA08A	20 Jun	11P28-27.25.19y-a)	'	INON.		
			СБОРОЧНЫЙ ЧЕРТЕЖ	VACL	Хи	стов 1	
ПРОВЕР.	КЛЕПИКОВА	lever	_	шни	и пе	Ашили	
PA3PAB.	ГОРЛОВА	Um	-1				

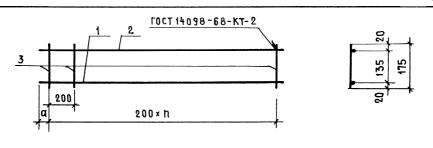

POPMAT	OHA	Nos.	Обозначение	Наименование	KOA	NPHME-
٠	6	=		ДОКУМЕНТАЦИЯ		
11	\vdash		1.138-10.5 1010 0 CE	СБОРОЧНЫЙ ЧЕРТЕЖ		
"	Н					
	Н		ПЕРЕМЕН	НЫЕ ДАННЫЕ ДЛЯ ИСП	ONH	ЕНИЙ
-	Н	-		1.138-10.5 1010 0 (KP1 ПР1	-10.	
	\vdash			AETAAH		MACCA EA
δ.4	Н	1	1.138 - 10.5 00 003	Ф4 ВрІ ТУ-14-4-659-75 (=1000	2	0.099
0,7 δμ		2	1.138 - 10.5 00 003	Ф4ВрІ ТУ-14-4-659-75 С=1000	1	0.099
F.0	H	3	1 138 -10.5 00 002	Ø4BpITY-14-4-659-75&=180	4	0.018
6	-	-		1.138-10.5 40100-01(KP1IP	1-12	.12.9)
-	\vdash	-		<u>AETAAU</u>		
δ.4	┢	1	1.139 - 10.5 00 004	Ø4 BpI 74-14-4-659-75 (=1260	2	0.12
<u>δ</u> 4	╁	2	1.138 - 10.5 00 004	φ4 BpI TY-14-4-659-75 C=1260		0.12
5.4	-	3	1 138 - 10.5 00 002	Ø4 BpITY-14-4-659-75 &-180	5	0.018
-	╁	۴		1.138-10.5 1010 0-02(KP111	P1-	15.12.9)
┝	╁	 		AETANN		
5.4	┢	1	1.138-10.5 00 005	ø4 BpI TY-14-4-659-75 €=1520	2	0.15
64	1	2	1 138-10-5 00005	Ф4 ВрІ ТУ-14-4-659-75 6:1520	1	0. 15
5.4.	├-	3	1.138-10.5 00 002	Ø4 BpI TY-14-4-659-75 &=180	6	0.018
0. 1.	+	-		1.138-10.5 10100-03(KP1	P2 -	16.12.9)
-	┝	-		LETANN		
δ .4	<u> </u>	4	1.138 -10.5 00 013	Ø 5 BpITY-14-4-659-75 €-1650	2	0.25
δ.ч	1	2	1.138-10.5 00013	Ø 5 BpI TY-14-4-659-75 €1650		0.25
8.4		3	1.138 -10.5 00 002	Ø4 BpI TY-14-4-659-75 &=180	6	0.018
	-	•				

гип.		buen		1.138-10.5 10100			
Рук.гр.	COPAOBA	2m			СТАДИЯ	Лист	ЛИСТОВ
TPOBEP. PASPA 5.	KAENHKOBA FDPAGBA	leren 27mm	_	(KP1ПP1-10.12.9; KP1ПP1-12.12.9; KP1ПP1-15.12.9; KP1ПP2-16.12.9; KP1ПP3-19.12.9)	ЏНИИ	<u>-</u> ' ЭП ж	илища

ФОРМАТ	30HA	Поз.	0 6 0 3 H A 4 E H M E	Наименование	KOA	ПРИМЕ- ЧАНИЕ
			HEPEMEHHHE	ДАННЫЕ ДЛЯ ИСПОЛНЕ	-	
			_	1.138-10.5 10100-04(KP1NP	3-19	
				AETANN:		MACCA EA
б.ч		1	1.138-10.5 00023	Φ6 ΑΪ́Ι ΓΟCT5781-75 €= 1910	2	0.42
δч		2	1.138-10.5 00006	Ф4ВрІ ТУ-14-4-659-75 €=1910	1	0.19
δ.ч		3	1.138-10.5 00002	Ф4 ВРІ ТУ-14-4-659-75 l= 180	7	0.018
П						
П						
П						
П						
Γ						
Г						
Γ						
	П					
	H					
-						
-	\vdash					
						L

1.138-10.5 10100

Лист 2


0503HA4EH NE	MAPKA	a, mm	n	MACCA,
1.138-10.5 10100	КР1 ПР1- 10.12.9	50	3	0.37
- 01	КР1 ПР1- 12.12.9	30	4	0,45
- 02	KPI TPI- 15, 12, 9	10	5	0.56
- 03	KP1 NP2- 16.12.9	90	5	0.86
- 04	KP1 ΠΡ3- 19.12.9	50	6	1.16

				1,138-10.5 10100	СБ		
112		4- 1				MACCA	МАСШТАБ
ATO.PAH	БАЛАНОВСКИ	bascus	5	(KP111P1-10.12.9; KP111P1-12.12.9; KP111P1-15.12.9; KP111P2-16.12.9;		CML	4.40
1 0111	KNETIUKOBÁ TOPNOBA	week.		KP1 11 P1-15.12.9; KP1 11 P2-16.12.9;	Р	TABA	1 10
134.15.	INAVORY	2/m		КРІПРЗ-19.12.9) СБОРОЧНЫЙ ЧЕРТЕЖ	A 11. 27	1 1 1 1 1 1	
				CBUPUNHOIN NEPTEM	Auct	VNC	TOB 1
I POBER	Клепикова				АШИЛИЖ ПЕЧИНЦ		
PA3PA5	TOPAOBA	25 hu			L		

PMA	30HA	ું.	0 6 0 3 H A 4 E H M E	Наименование	K07	NPUME-
<u>=</u>	30	Ĕ.		ДОКУМЕНТАЦИЯ		
	\vdash		1.138-10.5 20100 CB	жатчан йынгочод		
11			1.10			
	H		ПЕРЕМЕННЫЕ	ЗНЛОПОИ ВЛД ЗІННАД		
	Н			1.138-105 20100 (кР1ПРЗ	-22.	12.19)
				ΔΕΤΑΛΝ		
54	-	1	1.138-10.5 00 029	Ø8Aij FOCT 5781-75 €=2170	1	0.86
бч		2	1.139 - 10.5 00 007	Ф4ВрІ ТУ-14-4-659-75 l=2170	1	0.22
<u>δ4</u>		3	1.138 - 10.5 00 001	Ф4Вр ї ТУ14-4-659-7 5 l =175	11	0,02
	-					
	T			1.138-10.5 20100-01(KP1	NP3	-24.12.19
	1			<u> AETANU:</u>		
δ.4		1	1.138 - 10.5 00 031	\$430 \$430 \$430 \$430 \$430		0.96
б.ч		2	1.138 -10.5 00 008	Ф4ВрІ ТУ-14-4-659-75 С=2 430		0.24
б,ч		3	1. 138 - 10.5 00 001	Ф4 В _Р I ТУ-14-4-659-75 & 175	13	0.02
						ļ
	ļ.,	 	The state of the s			
		L-				
		-			ļ	<u> </u>
	-					
	1				l	

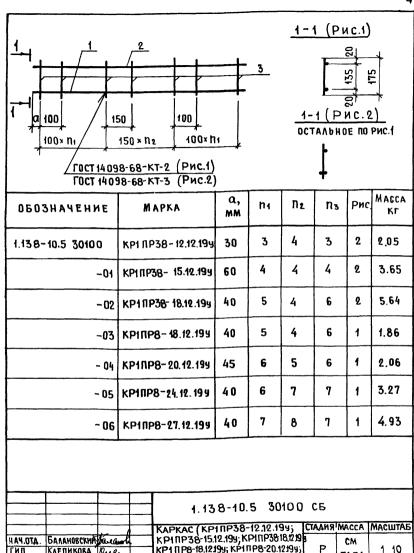
LNU	Балановский Клепи кова	livee	1.138-10.5 2010	0 0		
Рук.гр.	TUPAOBA	2070	KAPKAC (KP1ПP3-22.12.19; KP1ПP3-24.12.19;		ЛИСТ	ЛИСТОВ 2
ПРОВЕР. Разраб.	Клепикова Горлова	leven 25h	(KP1ПРЗ-22.12.19; KP1ПРЗ-24.12.19; KP1ПР4-25.12.19; KP1ПР4-28.12.19; KP1ПР4-29.12.19)	А ШИЛИЖ ПЕ НИНЏ		

фОРМАТ	30HA	Поз	ОБОЗНАЧЕНИЕ	Наименование	_	Приме- чание
			Переменные	ДАННЫЕ ДЛЯ ИСПОЛНЕНИ	й	
				1.138-10.5 20100-02(KP1TP	4-25	.12.19)
				ДЕТАЛИ		MACCA EA
б4-		1	1.138 - 10.5 00 036	Ø10 AIII TOCT 5781-75 €=2560	1	1.58
б.ч		2	1.138-10.5 00 016	\$5 BpI TY-14-4-659-75 (=2560	4	0.39
Œч.		3	1.138 -10.5 00 001	φ4 BpI Ty-14-4-659-75 L= 175	13	0.02
			_	1.138-10,5 20100-03(кр1пр4	- 28.	12.19)
			_	AETANN		
бЧ,		1	1.138 -10.5 00 038	Φ10AM ΓΟCT 5781-75 € 2820	1	1.74
δ.4		2	1.138 - 10.5 00 017	φ5BpI7414-4-659-75 €=2820	1	0.43
бч		3	1.138 -10.5 00 001	φ4 BpI T9-14-4-659-75 &= 175	14	0.02
+	1			1.138-10.5 2010 0-04(КР1ПР4	-29.	12.19)
			1	AETANH		
б.ч		1	1.138-10.5 00 039	∮10 A∭ ΓΟ CT5781-75 € =2950	1	1.82
ďч		2	1.138 -10.5 00 018	Ø 5 ΒpI TY-14-4-659-75 ε=2950	1	0.45
δч		3	1.138-10.5 00001	φ 4 BpI Ty-14-4-659-75 (= 175	15	0.02
_		_				
_						
-	-	-				
	1					
\Box						

0603HA4EHNE	Mapka	a, mm	n	MACCA
1.138-10,5 20100	КР1ПР3-22.12.19	80	10	1.30
-01	КР1ПРЗ - 24,12,19	20	12	1.46
- 02	КР1ПР4 - 25, 12,19	80	12	2.23
- 03	KP(ΠP4 - 28,12,19	110	13	2.45
- 04	КР1ПР4-29, 12,19	80	14	2.57

			1.138 - 10.5 20100	сБ		· · · · · · · · · · · · · · · · · · ·
		+- (.		СТАДИЯ	MACCA	MACUTAG
ATO. PAH	Балановский	Tenaur	(KP1ПР3-22.12.19; KP1ПР3-24.12.19; KP1ПР4-25.12.19; KP1ПР4-28.12.19;		CM	
THIT	КЛЕЛНКОВА	. ween	KP1NP4-25.12.19; KP1NP4-28.12.19;	P	ТАБЛ	1:10
Pyk.rp.	TOPADBA	[15]	KP1 ΠP4-29.12.19)		1701	
			Сворочный чертеж	VNCL	Λuc	TOB 1
MPO BEP	KAETIHKOBA	leee		AMMAN TENHUL		
PA3PAB.	TOPAOBA	25/m				

POPMAT	30HA	Лоз.	Обозначени	че Наименование	¥04	ПРИМЕ [—] ЧАНИЕ
				ДОКИ МЕНТАЦИЯ		
11			1.138-10.5 30100 C	Б СБОРОЧНЫЙ ЧЕРТЕЖ		
			ПЕ	РЕМЕННЫЕ ДАННЫЕ ДЛЯ ИСПОЛН В	HH	Й
				1.138-10.5 30100(KP1 ПР38	-12.	12.194)
				AETAAN		MACCA EA
5.4		1	1.138 - 10.5 00 033	Ф10AII FOCT 5781-75 €=1260	2	0.78
5,4		2	1.138 -10.5 00 012	Ø 5 BpI TY-14-4-659-75 €= 1260	1	0.19
5.4		3	1.138 -10.5 00009	Ø5 BpI Ty-14-4-659-75 ℓ=175	11	0.027
				1.138-10.5 30100-01(KP1TP)	58-	15.12.194)
				ДЕТАЛИ		
5.4.		1	1.138 -10.5 00 041	Ø 12 A 111 FOCT 5781-75 €= 1520	2	1.35
5.4		2	1. 138 - 10.5 00 027	Ø 8 A III FOCT 5781-75 €= 1520	1	0.60
5,4		3	1.138-10.5 00009		13	0.027
				•		
				1.138-10.5 3010 0-02 (KP1TP)	38-	18.12.199
				DETANN		
54		1	1.138-10.5 00 044	\$14 A III FOCT 5781-75 &= 1780	2	2.15
5.4		2	1.138-10.5 00 028	Ø 8A111 FOCT 5781-75 €= 1780	1	0.78
6.4		3	1.138 -10.5 00 019	Ø 6A III FOCT 5781-75 €= 175	16	0.04
	_	-				
\dashv						
!						
HA		TA E	АЛАНОВСКИ В Сести В АЛАНОВСКИЯ В СЕСТИКОВА В СЕСТИ В СЕСТИВНОВА В СЕСТИВНОВ В СЕСТИВНОВА В СЕСТИВНОВА В СЕСТИВНОВА В СЕСТИВНОВА В СЕСТИВНОВ В СЕСТИВНОВ В СЕСТИВНОВА В СЕСТИВНОВА В СЕСТИВНОВА В СЕСТИВНОВ В СЕСТИВН	1.138-10.5 3010 0		
		_	PADBA 202-	КАРКАС СТАДИЯ ЛИ	СT	листов
		Ì		KP1	1	2


КРІПРВ-20.12.194); КРІПРВ-24.12.194; ЦНИИЗП жилища КРІПРВ-27.12.194) ПРОВЕР. КЛЕПИКОВА ВИСИ РАЗРАБ ГОРЛОВА

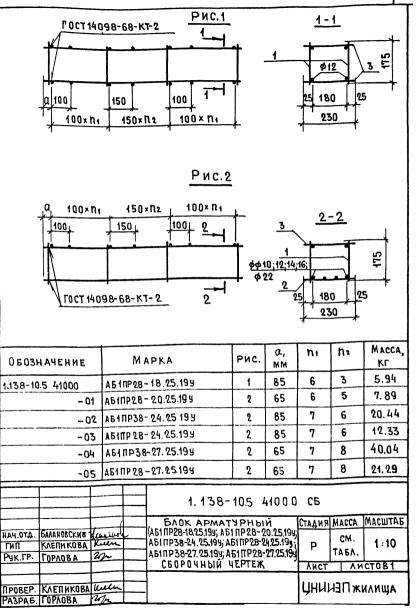
ФОРМАТ	30HA	กิดร	ОБОЗНАЧЕНИЕ	НАИМЕНОВАНИЕ	KOA.	ПРИМЕ- ЧАНИЕ
			ПЕРЕМЕНН	ЫЕ ДАННЫЕ ДЛЯ ИСПОЛНЕ	ний	
Г				1.138-10.5 30100-03(KPIT	P8-1	8.12.194)
				<u> AETANN</u>		MACCA EL
δ.4		1	1.138-10.5 00 034	Ø10 AÑ TOCT 5781-75 €=1780	1	1.10
6,4		2	1.138-10.5 00 014	Ø 5 BpI TY-14-4-659-75 (=1780	1	0.27
δ.4		3	1.138-10.5 00009	φ5BpI TY-14-4-659-75 (=175	16	0.027
				1.138-10.5 30100-04(KP1ПР8	-20	12.194)
				LETANN		
δ.ч		1	1.138-10.5 00 035	φ10 AIŪ TOCT 5781-75 l= 2040	1	1.26
δ,4		٤	1.138 -10.5 00015	Ø5 BpI TY-14-4-659-75 €= 2040	1	0.31
δ.4		3	1.138-10.5 00009	Φ5 BpI TY-14-4-659-75 C= 175	18	0.027
				1.138-10.5 30100-05 (кр1п	P8-	24.12.19 9)
Г				DETANN		
5.4		1	1.138-10.5 00043	Φ12 A I TOCT 5781-75 &=2430	1	2.16
δίζ		٤	1.138-10.5 00024	Ф6 A III ГОСТ 5781-75 С= 2430	1	0.54
δ.ч.		3	1.138-10.5 00009	Ø5BpI TY-14-4-659-75 €= 175	21	0.027
				1.138-10.5 30100-06 (KP1 II	P8-	27.12.194
				<u> LETAN</u>		
δ.4.		1	1.138-10.5 00046	Ø14 AIĪI FOCT5781-75 €=2690	1	3.25
δ.ч.		2	1.138-10.5 00032	Ø 8 A III FOCT 5781- 75 €= 2690	1	1.06
δ.ч.		3	1.138-10.5 00009	Φ 5 BpI TY-14-4-659-75 C= 175	23	0.027
1						

HHB.Nº NOAA | NOATHCD N AATA | BJAM.NHB Nº

1, 138-10.5 30100

лист 2

<u> </u>	 		 1.130 10.5 0010	0 00		
 	 		 KAPKAC (KP111P38-12.12.194;		MACCA	МАСШТА
ATO.PAH	Балановский	burne	TKP1NP38-15.12.199;KP1NP3818.121	98	CM	
LNU	KAETIKOBA	Duly	KP1 ПР8-18.12194; KP1 ПР8-20.12194	j P	TABA	1 10
PYK.TP.	ГОРЛОВА	25/1-	KP1 IIP8-24.12.194; KP1 IIP8-27.12.194	/	1	<u> </u>
			Сеорочный чертеж	AUCT	_ An	CTOB 1
800000	V. FRIUS	,		HUUD	יי אי חבו	лиЩА
	KAETHKOBA	lever	 1	THE INTE	111 WN	лища
PASPAB.	TOPADBA	25/2		1		


POPMAT	30HA	Поз	0 603H A4EHNE	Наименование	KOA	ПРИМ!	_
				ДОКУМЕНТАЦИЯ			
11			1.138-10.5 41000 CE	СБОРОЧНЫЙ ЧЕРТЕЖ			
			Переменны	Е ДАННЫЕ ДЛЯ ИСПОЛНЕ	ний		
				1.138-10.5 41000(A61RP28-	18.25		_
				СБОРОЧНЫЕ ЕДИНИЦЫ		MACCA KP	EA
11		1	1.138-10,5 41100	KAPKAC KP1	2		
				METANN			
5.4		3	1.138-10.5 00011	Ø5BpI TY-14-4-659-75 €=230	32	0.035	;
							_
				1.138-10.5 41000-01(A51NP	28-2	0.25.19)y)
_				СБОРОЧНЫЕ ЕДИНИЦЫ			
11	Т	1	1,138-10.5 3010 0 - 04	KAPKAC KP1ПР8-20.12.194	2		
11		2	1. 138-10.5 41100 - 05	KAPKAC KP6	1		
				AETANN			
δ.4		3	1.138 -10.5 00011	Ø5BpI TY-14-4-659-75 €-230	18	0.035	5
				1.138-10,5 41000-02(A61NP	38-2	4.25.19	y)
				СБОРОЧНЫЕ ЕДИНИЦЫ			
11		1	1.138-10.5 41100- 01	KAPKAC KP2	2		
11	Г	2	- 06	KAPKAC KP7	1		
				ДЕТАЛИ			
5.4		3	1.138-10.5 00026	φ8 ΑΙΙΙ ΓΟCT 5781-75 ℓ= 230	21	0.091	
_	Г	T					

	Балановский< Клепикова	te and	 1.138-10.5 41000	ı			
	ГОРЛОВА	21	Блок арматурный	Стадия	ANCT	ЛИСТОВ	
		-	(A61 TP 28-48.25.194; A61 TP 28-20.25.194;	Р	1	2	
MPOBEP.	КЛЕПИКОВА	leve	A6111P38-24.25.194; A6111P28-24.25.194; A6111P38-27.25.194; A6111P28-27.25.194)	ЦНИИ	ніж	инща	
Разраб.	ГОРЛОВА	25/-	 ,				

							4
POPMAT	30HA	Поз.	0 6 0 3 H A 4 E H N E	HAUMEHOBAHUE	KOY	ПРИ М ЗИНАР	
			Переменные	ДАННЫЕ ДЛЯ ИСПОЛНЕНИЙ			
				1.138-10.5 41000-03(A61NP	28-2		
				СБОРОЧНЫЕ ЕДИНИЦЫ		MACCA I	Α΄.,
11		1.	1.138-10.5 41100 - 02	KAPKAC KP3	2		
11		2	- 07	KAPKAC KP8	1		
				ДЕТАЛИ			
бч.		3	1.138 - 10.5 00 0 11	Ø5BpI TY-14-4-659-75 €= 230	21	0.035	5
				1.138-105 41000-04(AB1N	P38	27.25.19	3y)
			-	СВОРОЧНЫЕ ЕДИНИЦЫ			
11		1	1.138-10.5 41100 - 03	KAPKAC KP4	2		
11		2	- 08	KAPKAC KP9	1		
				ΔΕΤΑΛΝ			
8.4.		3	1.138 - 10.5 00026	Ф8 АЩ ГОСТ 5781-75 🗜 230	23	0.091	
				1.138-10.5 41000-05(A61TP2	8-27	.25.199)_
				СБОРОЧНЫЕ ЕДИНИЦЫ			
11		1	1.138-10.5 41100-04	KAPKAC KP5	2		
11		2	- 08	KAPKAC KP10	1		
Ī				<u>AETANH</u>			
8.4		3	1.138 - 10.5 000 21	Φ6 A III FOCT 5781-75 €= 230	23	0.051	
L							

Лист 2.

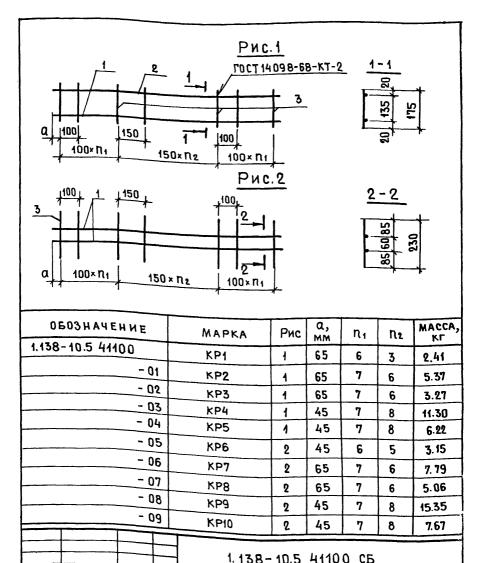
1.138-10.5 41000

HHB, Nº MOAN MOAN MC6 MAATA BJAM. HHB. Nº

1 5 3	0503HA4EHNE 1.138-10.5 44400 C6 Tepemen	НАИМЕНОВАНИЕ <u>ДОКУМЕНТАЦИЯ</u> СБОРОЧНЫЙ ЧЕРТЕЖ НЫЕ ДАННЫЕ ДЛЯ ИСПОЛ 1.138-10.5 4100 (КР1) ДЕТАЛИ Ф12АЙ ГОСТ 5781-75 €-1780	HEH	МАССА ЕД КГ
2	ПЕРЕМЕН 1.138 -10.5 00 042 1.138 -10.5 00 022	СБОРОЧНЫЙ ЧЕРТЕЖ НЫЕ ДАННЫЕ ДЛЯ ИСПОЛ 1.138-10.5 41100 (КР1) ДЕТАЛИ Ф12A III ГОСТ 5781-75 &=1780		МАССА ЕД КГ
2	ПЕРЕМЕН 1.138 -10.5 00 042 1.138 -10.5 00 022	НЫЕ ДАННЫЕ ДЛЯ ИСПОЛ 1.138-10.5 41100(КР1) ДЕТАЛИ Ф12АЙ ГОСТ5781-75 €=1780		МАССА ЕД КГ
2	1.138 -10.5 00 042 1.138 - 10.5 00 022	1.138- 10.5 41100 (КР1) ДЕТАЛИ Ф12АЙ ГОСТ 5781-75 ℓ=1780		МАССА ЕД КГ
2	1.138 -10.5 00 042 1.138 - 10.5 00 022	1.138- 10.5 41100 (КР1) ДЕТАЛИ Ф12АЙ ГОСТ 5781-75 ℓ=1780		МАССА ЕД КГ
2	1.138 - 10.5 00 02.2	ΔΕΤΑΛΗ φ12ΑΙ] ΓΟCT 5781-75 ℓ=1780		KΓ
2	1.138 - 10.5 00 02.2	Ø12AIJ FOCT 5781-75 €=1780	_	KΓ
2	1.138 - 10.5 00 02.2		1	
4-		LA A TO FOOTERD LEE A	1	1.58
3	1.138 - 10.5 00 009	Ø6A I FOCT 5781-75 €=1780	1	0.40
	1	φ5Bp]T4-14-4-659-75 ℓ= 175	16	0.027
1 1				ļ
\perp		1.138-10.5 41100-01(KP2)	<u> </u>	
\perp		<u> AETAAN</u>	ļ	<u> </u>
1	1.138 -10.5 00 0 4 5	φ14 Aiji ΓΟCT5781-75	1	2.94
2	1.138 - 10.5 00 031	Ø8AII TOCT 5781-75 €= 2430	1	0.96
3	1.438-40.5 00 025	Ø8A∰ FOCT 5781-75 € 175	21	0.07
+		1.138-10.5 41100-02(KP3)	_	
+	, , , , , , , , , , , , , , , , , , ,	AETANH		
1	1.138_10.5 00043	Ø 12 A∰ FOCT 5781-75 € 2430	1	2.16
٤	4.138-10.5 00024	Ø 6 AII FOCT 5781-75 €- 2430	1	0.54
3	1.138-10.5 00009	Ø5BpI TY-14-4-659-75 & 175	21	0.027
			_	
+			_	<u> </u>
لسل				
DTA. E		138-10,5 41100		
	DDAOBA 202 C		MCT	ЛИСТОВ
	1 1 1	+ KB 401	1_	3
	METINKOBA LUCY	(3) ТИНИИ	κПΕ	AJJINAN)
-	7A. E	1. Балановски (га.) Клепикова (с. са.) Р. Гораова (г. са.) К. К. С.	ДЕТАЛИ 1 1.138_10.5 00 043	ДЕТАЛИ 1 1.138_10.5 00 043

Лист 2

ſ.		T.	ОБОЗНАЧЕНИЕ	Наименование	KOA	ПРИМЕ~ ЧАНИЕ
24	3048		ПЕРЕМЕННЫЕ	ДАННЫЕ ДЛЯ ИСПОЛНЕНИ	й	
	\perp	1		1.138-105 41100-03 (KP4)		
	\perp	+		ДЕТАЛИ		MACCA EA Kr
	\bot	+	1.138-10.5 00 049	Ф22 A III ГОСТ 5781-75 €= 2690	1	8.03
F	:4	1	139-10.5 00037	Ø10 AM FOCT 5781-75 €= 2690	1	1.66
- 1.	4	+ 3	139-105 00025	Ø8A M FOCT 5781-75 €= 175	23	0.07
2	<u>.</u> 4.	ᅷ				
-	+	+		1.138-10.5 41100-04(KP5)		
-	+	+		NAATJA		
-	+	+1	1.138-10.5 00 047	Ø16Aiji [OCT 5781-75 €= 2690	1	4.24
-	5.4	+		Ø8AI TOCT5781-75 €=2690	1	1, 06
-	5.4	13	1.138-10.5 00019	Φ6 A I I ΓΟCT 5781-75 &= 175	23	0.04
F	"+	+				
ŀ	+	十		1.138-10.5 41100-05 (KP6)		
ŀ	+	+		<u>AETA A N</u>		
t	54	1		Ф10AII ГОСТ 5781-75 €=2040	2	1,26
- 12	5.4	2	1. 138 - 10.5 00011	\$5 BpI TY-14-4-65975 C=230	18	0.035
t	1	T				
ľ	7			1.138-10.5 41100-06(KP7)		
I	\top	\perp		AETAAN		
	5.4	1		Ø14 A III FOCT 5781-75 €2430	2	2.94
-[54	3	1.138-10.5 00026	Ø8AM FOCT5781-75 €= 230	21	0.091
	\perp	1				
-	4	\downarrow		1.138-10.5 41100-07 (KP8)		
7	+	4.	1.138-10.5 00043	ΔΕΤΑΛΗ		
L	54. 54	3		Φ12 A III FOCT 5781-75 €=2430		2.16
ľ	1.4	13	11.120 - 10:2 000 11	Φ5 BpI Ty-14-4-659-75 @ 230	21	0.035
\dashv						
- 1						


1.138-10.5 41100

NHB.Nº00AA 100A7UCO H A ATA B3AM.HH8.HE

ФОРМАТ	30HA	П03	Обозначение	Наименование		ПРИМЕ- ЧАНИЕ
			Переменны	ІЕ ДАННЫЕ ДЛЯ ИСПОЛНЕ	ний	_
				1.138-10.5 41100-08 (KP9)		
				ДЕТАЛИ		MACCA EA
бч.		<u> </u>	1.138-10.5 00048	\$\$\\phi 20 A\text{\tilit}}}}\text{\te}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\teti}}\text{\text{\text{\text{\text{\text{\ti}}}}}}}}}}}}}}}}}}}}}}	2	6,63
Q́ч		3	1.138-10.5 00026	Φ8 A∭ ΓΟCT 5781-75 € 230	23	0.091
				1.138-10.5 41100-09 (KP10)		
_				ДЕТАЛИ		
ďч		1	1.138-10.5 00 046	φ14 Α iji ΓΟCT 5781-75 € 2690	2	3.25
бч		3	1.138-10.5 00021	Ø6 AI TOCT 5781-75 €= 230	23	0.051
Ц						
\dashv	-					
\dashv						
\dashv	-					
\dashv	\dashv	-			<u> </u>	
\dashv	\dashv					
\dashv						
				1	<u> </u>	1

1,138-10.5 41100

<u> Аист</u>

Y	СТАДИЯ
KAPKAC	D
(KP1 ÷ KP10)	

HAY OTA . BANAHOBCKHA TRAGER

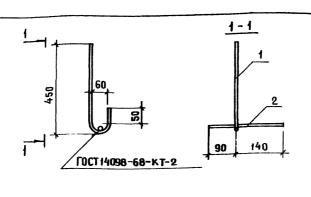
POBER KNETIKOBA LLELL

KAETINKOBA FLEUN

TMI

PYK. CP. I TOPAOBA

PASPAG, TOPADBA


CEOPOHHUM VEPTEX ANCT ANCTOB 1

CEOPOHHUM VEPTEX ANCT ANCTOB 1

MACCA MACWTAB

1:10

CM.

форми	OHA	Поз.	O E O 3 H A 4 E H N E	HANMEHOBAHNE	KUA.	ПРИМЕ- ЧАНИЕ
•	62	1		ΔΕΤΑΛΗ		MACCA E Kr
δ.4	Н	1	1.438 - 40.5 00 051	♦16 AI FOCT 5781-75 ℓ= 575	1	0.91
δ.4			1.138-10.5 00 052	Ø10 AI FOCT 5781-75 €= 230	1	0.14

h 200						
			1.138-10.5 50100			
		-	AHKEP	СТАДИЯ	MACCA	МАСШТАБ
	Балановский			_		
		Cuer	A1	P	1.05	1:10
AK LL	TOPAOBA	25/2		<u> </u>	KF	
l				VHCL	VN	CTOB 1
L				1		
		Que		UHAI	はII ×	илища
PA3PAB.	TOPAOBA	25pm		<u> L</u>		