типовые строительные конструкции. Изделия и уэлы

СЕРИЯ 1.452.1-10/93

БАЛКИ СТРОПИЛЬНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ДЛЯ ПОКРЫТИИ ЗДАНИИ С ПРОЛЕТАМИ 6 И 9 М

выпуск о

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

ТИПОВЫЕ СТРОИТЕЛЬНЫЕ КОНСТІУКЦИИ, ИЗДЕЛИЯ И УЗЛЫ

СЕРИЯ 1.462.1-10/93

БАЛКИ СТРОПИЛЬНЫЕ ЖЕЛЕЗОБЕТОННЫЕ ДЛЯ ПОКРЫТИИ ЗДАНИИ С ПРОЛЕТАМИ 6 и 9 м

BHIIACK O

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

иинадемочинини инатодачем

зам. директора в. в. гранев начальник отдела жел а. я. розеналюм

УТВЕРЖДЕНЫ ГЛАВНЫМ УПРАВЛЕНИЕМ ИЗЫСКАНИИ ГОССТРОЯ РОССИИ ПИСЬМО ОТ 05.11.93 N 9-3-2/236 ВВЕДЕНЫ В ДЕИСТВИЕ ЦНИИПРОМЗДАНИИ С 01.03.94 ПРИКАЗ ОТ 17.11.93 N 63

© ГП ЦПП, 1995

	Crp.
Пояснительная записка	Q
Номенклатура балок для пролета 6 м	6
Номенклатура балок для пролета 9 м	7
Несущая способность балок для пролета 6м	8_
Несущая способность балок для пролета Эм	12
Ключи подбора марок балок для пролета 6м	16
Ключи подбора марок балок иля пролета 9м	24
Схемы ресположения дополнительных зак-	
ладных изделий	26
Нагрузки на балки от подвесного подъем-	
но-транепортного оборудования, покрытия,	
снега	27
	Номенклатура балок для пролета 6 м Номенклатура балок для пролета 9 м Несущая способность балок для пролета 6м Несущая способность балок для пролета 9м Ключи подбора марок балок для пролета 6м Ключи подбора марок балок для пролета 9м Схемы реоположения дополнительных зак- ладных изделий Нагрузки на балки от подвесного подъем- но-транспортного оборудования, покрытия,

	1.462.1-10	/93.0	
POSEHBAION 760, POSEHBAION 760, LEOUT P. AOTHHERHU	OFE B M F H H E	CTALHA	AUCTOB AA HILL

I. Общие сведения

I.I. Серия I.462.I-IO/93 содержит проектную документацию на типовне отропильные железобетонные балки для покрытий одноэтажных производственных зданий с пролетами 6 и 9 м.

Серия I.462.I-I0/93 разработана взамен серии I.462.I-I0/89 с целью повышения надежности балок, уточнения отдельных положений расчета балок и унификации арматурных и закладных изделий. Опалубочные размеры оставлены без изменений.

І.2. Серия состоит из двух выпусков.

Выпуск О. Указания по применению.

Выпуск І. Балки. Рабочие чертежи.

- І.З. В настоящем выпуске С приведенти указания по применению балок, включающие пояснительную записку, номенклатуру балок, значения несущей способности и ключи подбора марок балок, схемы расположения закладных изделий в салках.
 - 2. Типы, конструкция, обозначение

7

2.І. Балки разработани с параллельными поясами таврового сечения висотой 590 мм для пролета 6 м (БСП6.І) и двугаврового сечения висотой 890 мм для пролета 9 м (ГСП9.2), из тяжелого и легкого бетонов, с рабочей продольной арматурой напрягаемой класоов А-Шв, А-ІУ, А-У и ненапрягаемой - класса А-Ш.

TOL THE WATER AN UN							
TO LAUCE				1.462.1-10	/93.0-	ПЗ	
TO A.A.	HAY.OTA.	POZEHSAHN	Ra	Пояснительная записка	CTALHO	TOHA 1	ЛИСТОВ 4
Lua Ne	PEDEDUA H. KOHTR	уогранский уобранский	Froh.	HANCHALL KARRAN TARKETA	MANA		MINI

2.2. Балки обозначаются марками, осотоящими из буквенноцифровых групп, которые в общем виде записываются следующим образом.

Индексы, отражающие условия изготовления и применения балок в агрессивной среде (Н - бетон пормальной проницаемости для балок, применяемих в условиях слабоогрессивной степени воздействия газообразной среди: II - бетон понижецной проницаемости для балок, применяемых в условиях среднеагрессивной степени воздействия газообразной среды); Порядковый номер, характеризующий наличие и расположение дополнительных и измененных (см.п.3.9) закладных изделий (І. 2 и т.д.); Индэко, указивающий, что балка изготавливается из легкого бетона (Л); Класс рабочей продольной арматуры (X-1, A-11, A-17, A-7); Порядковый номер балки по несущей способности (І, 2, 3 и т.д.); Цидра, условно обозначающая форму поперечного сечения балки (I - тавровое. 2 - двутавровое); Координационная длина балки, м (6, 9); Наименование конструкции (БСП - балка

стропильная с параллельными поясами).

Например, балка для пролета 6 м,для эквивалентной нагрузки 6,5 кПа с рабочей продольной арматурой класса A-Ш, изготовляемая из тяжалого бетона и с закладными изделиями для крепления плит шаркной 3,С м, обозначается маркой ВСП6.1-7АШ-1.

- 2.3. Предел огнестойкости балок равен С,5 часа.
- 2.4. Гадки разработани для ряда эквивиленитных равномерно гиспределенных расчетных нагрузок (при коэффициенте надежности по нагрузке $\int_{f} \Sigma$ I, принимаемом при расчете прочиности) для расположения балок в покрытии с шагом 6 м (см. табл. I).

Таблица І

Оквивалентиая равно- мерно распределенная расчетиая иагрузка, кНа	3,5	4,0	4,5	5,0	5,5	6,0	6,5	7,5	8,5	II,G
Соответствующий по- рядковый номер бал- ки по несущей спо- собности	I	2	3	4	5	6	7	8	9	10

Сначения эквивалентних нагрузок приведены без нагрузок от собственного веса балок.

- 2.5. Номенилатура балок приведена в докум-НІ и -НИ2.
- 3. Условия применения
- 3.1. Балки предназначени для применения в покрытиях одноэтажных зданий с плоской кровлей
 - отапливаемых и неотапливаемых:
- возводимых в І.У снеговых районах, с расчетной зимней температурой наружного воздуха минус 40° С и више;
 - с перепадами и без перепадов профиля покрытия;

1.462.1- 10/93.0-113

2

^{*)} Расчетная зимняя температура наружного воздуха принимоется как средняя температура воздуха наисолее холодной пятидневки согласно СНиЦ 2.01.01-82*

- с неагрессивной, олабо- и ореднеагрессивной степенър воздействия газообразных сред;
- с подвесным подъемно-транопортным оборудованием грузоподъемностью до 5 т и без него:
 - расчетной сейсмичностью до 9 баллов;
- в условиях систематического воздействия температур не выше $50^{\circ}\mathrm{C}$.
- 3.2. Конструктивные решения зданий с применением балок настоящей серии и сопряжения балок с примыкающими конструкциями следует принимать в соответствии с серией 2.400-7 "Монтажные узлы сопряжений сборных железобетонных конструкций одноэтажных производственных зданий и серией I.400.I-20c "Хелезобетонные и смещанные каркасы одноэтажных произволственных зданий с расчетной сейомичностью 7,8 и 9 баллов.
- 3.3. Марка балки должна назначаться в проекте здания в зависимости от условий эксплуатации и с учетом условий завода-изготовителя балок.
- 3.4. Для балок, применяемых при слабо или среднеагрессивной стегени воздействия газообразной среды, должен предусматриваться тяжелый бетон и рабочая продольная арматура А-Ш, А-Шв или А-IV.

В проекте здания должны быть разработаны в соответствии со СНиП 2.02.II-85 мероприятия для обеспечения антикоррозионной защити балок, в том числе закладных изделий, и указаны требования к материалам для изготовления бетона. В марке таких балок предусматривается индекс "Н" или "П" (см.п.2.2).

Степень воздействия агрессивной газообразной ореды определяется по СНиП 2.03.II-85.

3.5. Марка бетона по морозостойкости должна назначаться в проекте здания согласно СНиП 2.03.01-84 в зависимости от режима эксплуатации конструкций и климатических условий района строительотва и указываться при заказе балок.

- 3.6. Подоор номера балки по несущей способности (см.п.2.2) следет производить путем сопоставления усилий от нагрузок по проекту
 щания с несущими способностями балок, приведенными в докъм-СМІ и
 -СМ2. Усилия в балке (М и Q) от нагрузок по проекту здания не
 должны превышать наибольших усилий для выбранного номера балки по несущей способности. Допускается производить подбор номера балки по несущей способности по ключам, приведенным в докъм -СМЗ и -СМ4.
- 3.7. В балках предусмотрена установка закладних изделий для фепления к колоннам, для крепления плит покрития, стен и путей подвесных кранов. Схемы расположения закладных изделий для крепления к
 юлоннам приведены в чертелах балок, схемы расположения дополнительнх закладных изделий для крепления плит покрытия, стен и путей подвесных кранов в докум.—СМ5.

В проекте здания должны быть приведены чертими балок с расположением всех закладных изделий.

- 3.8. Крепление путей подвесных кранов разрабатывается в проекте щания в соответствии с випуском I серии I.426.2-6 "Балки путей подвесного транспорта. Балки пролетом 3, 4 и 6 м."
- 3.9. При применении балок в здании с расчетной сейсмичностью более 6 баллов арматурные и закладные изделия в проекте здания должны сить заменены в соответствии с табл.2.

Таблица 2

Пролет,	Вид	Закладни	е изделия	Apmatypi	пае изделия
М	продольной арматуры	-өкнөмкс өим	применяемне при сейсмич- ности 7,8 и 9 баллов	-екнемск өим	применяемые при сейсмич- пости 8 и 9 поллов
G	напрягаемая	23-FU	MHI-3	КРЗ-І	KP3-5
	ทอบอบบุหาลe- หลภ	MJ*I-63	MHI-1	KP3-4	KP3-5
9	напрягаемая	MVI-64 MJT-66	MHI-4	KP3-3, KP3-4	KP3-6, KP3-4
	мая менапрягае–	M*I-64	l#U-2	KP3-3, KP3-4	КР3-6, КР3-7

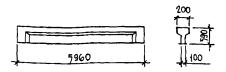
При расчетной сейсмичности здания 9 баллов не допускается применение балок с продольной рабочей арматурой класса А-Ш дламетром 32 мм.

При применении балок в сейсмических районах следует проверять расчетом прочность сопряжения балок с колоннами, в том числе надежность анкеровки опорних закладних изделий балок. Допускается не производить этот расчет для условий применения балок, предусмотренних серией I.400.I-20c, а также при величине горизонтальной сейсмической сили в узле сопряжения балки с колонной, не превышающей 23 кН.

- 3.10. Применение балок в районах с расчетной зимней температурой наружного воздуха инже минус 40° С или в уоловиях систематического воздействия температур выше 50° С допускается при соблюдении требований СНиП 2.03.01-84 и СНиП 2.03.04-84.
- 3.II. В чертежах закладних изделий предусмотрена сталь для условий эксплуатации балок в огапливаемых зданиях и в неотапливаемых зданиях при расчетной зимней температуре наружного воздуха не ниже минус 30° С.

Для балок, предназначенных к эксплуатации в нестапливаемых

зданиях при расчетной зимней температуре наружиюто воздуха ниже минус 30° С, марки стали закладних изделий устанавливаются при проектировании здания.

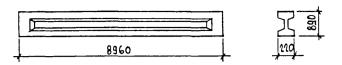

4. Условия расчета

4.1. Расчет балок выполнен в соответствии. со Сімії 2.СІ.С7-85 "Пагрузки и воздействия", Сімії 2.63.СІ-84 "Бетюнные и железобетонные конструкции", Сімії 2.03.ІІ-85 "Защита строительних конструкций от коррозии", Сімії Π -7-81 "Строительство в сейсмических районах".

Па основании проведенных испытаный для арматуры класса А-С при расчете прочности и трещиностойкости балок ввежден коэфішциент условий работы равный I,I, на который разделены значеныя наибольших допускаемых усилий в балке, определенные по СНиП 2.03.01-84.

- 4.2. Балки рассчитаны как однопролетные шарнирно опертые изгибаемые стержни.
- 4.3. При расчете балок на эквивалентные нагрузки (см.п.2.4) коэффициент условий работы бетона принят $\delta t_{\rm t} = 0.9$, коэффициент надежности по назначению – $\delta_{\rm h} = 0.95$.
- 4.4. При составлении ключей подбора балки рассчитани на нагрузки от веса покрития, в том числе подвесных коммуникаций, снега и подвесных кранов и грузов, которые в виде сосредоточенных сил приложени к балке в местах опирания плит и крепления подвесок.

Схемы приложения и значения нагрузок от подвесных кранов, грузов, покрытия и снега приведены в докум-СМ6.


MAPKA BANKH	KNACC	PACXOA M	BOAAHGETAI	MACCA
	BETOHA	BETOH,	CTANE,	٣
BCNG.1 - 1AII.			57,8	
BC16.1-1AW *	i		43,1	
BCM6.1 - 1 A Y *		}	40,3	
BCN6.1 - 2AE"			60,3	
BC116.1 - 2 A TLb*	В 20		51,4	
BC16.1 - 2A 1 "	0 20		47,3	
BCN 6.1 - 2AY *		0,45	42,7	1,2
BC16.1 - 3 A M *			52,3	
BCT 6.1 - 4 ATT *			65,2	
BCT 6.1 - 4 A TE *			57,9	
BC 16.4 - 4AT *			52,3	
BCT 6.1 - 5 ATE *	B 25		69,5	
BCT 6.1 - 5 AY 7			47,3	

MAPKA BANKH	KAACC BETOHA	PACKOL M BETOH,	ATELPHANOS CTANS, KT	Nacca, Kit
БСП 6.1 - 6 А Ш *			79,0	
БСП 6.1 - 6 A ШВ "			64,1	
BCN 6.1 - 6 A I *	B 25	ĺ	52,3	
БСП 6.1 - ТАШ *			83,8	
БСП 6.1 - 7A W *		1	62,5	
БСП 6.1 - 8 А Т 7	B30	į	936	
БСП 6.1 - 8 А ТВ"	B 25]	79,1	
БСП 6.1 - 8 А Т *	B30		68,7	
BC∏6.1 - 8 N¥ *	825	0,45	62,5	1,2
5CN6.1 - 9AII	B 30		99,8	
БСП 6.1 - 9 А ТЬ	50	1	86,6	
BCT 6.1 - 9A II	B 35]	77,3	
BCN 6.1 - 9AI	B30]	68,7	
BCT 6.1 - 10 A II	B40	}	144,7	
БСП 6.1 - 10 А ШВ			119,9	
BCN 6.1 - 10 A II	B 4 5	1	100,9	
BC116.1 - 10AY	B40		866	

- 1. В марках балок опущены инфексы, характеризующие требования к проницаемости бетона и виду бетона. Знаком *2 , обозначены марки балок, изготовляемых из тяжелого и легкого бетонов, без знака *2 только из тяжелого бетона.
- 2. B TABANUE YKASAHA WACCA BAKOK H3 TAXCEAOFO BETOHA.

 MACCA BAKOK H3 KEPAMBHTOBETOHA 0,9T, H3 AFROHOPHTO
 BETOHA H WARKOREMBOBETOHA 1,1 T.

				1.462	.4 - 40/	3 3 	141	
PASPA B.	POS EHEAION	Ro.	Ном	EHKNATYPA	BANOK	CTANO	AHCT	VACLOF
Moopeons	CEMEHOBA LOPPHORMOR VOLPHORMOR	214.1	K \	ATIAOAII	6 N	MUHU	אמעד	344444

MAPKA BAAKH	KNACC	PACKON M	ATEPHANOB	MACCA,
	БЕТОНА	BETOH,	CTAAL,	T
5C∏9.2 - 1A II +			119,8	
BC19.2 - 1ATE *			90,7	
BC∏ 9.2 - 1A ¥ *			82,3	
5CN 9.2 - 1AY *	B 20		74,7	
БСП9.2 - 2АШ *	0.20		131,5	
БСП 9.2 - ЗАШ *			133,8	
БСП 9.2 - ЗАШВ *		1,1	100,1	2,8
EC119.2 - 3 A \overline{Y}			90,7	
5C∏9.2-3A¥ *			7 g,0	
БСП 9.2 - 4 A Ш *			146,2	
5CN 9.2 - 4A¥ *	B 25		93,7	
BC 11 9.2 - 5AII "	ט ני		157,9	
БСП 9.2 - 5 АШ 8 *			124,3	
5C∏ 9.2 - 5A¥ *			111,5	

- 1. В марках балок опущены индексы, характеризующие тревования к проницаемости бетона и виду бетона. Знаком *)
 ОБОЗНАЧЕНЫ МАРКИ БАЛОК, ИЗГОТОВАГЕМЫХ ИЗ ТЯЖЕЛОГО И ЛЕГКОГО БЕТОНА, БЕЗ ЗНАКА *>-
- 2. В ТАВЛИЦЕ УКАЗАНА МАССА ВАЛОК ИЗ ТЯЖЕЛОГО БЕТОНА. МАССА БАЛОК ИЗ КЕРАМАТО БЕТОНА 2,2 τ , ИЗ АГЛОПОРИТО БЕТОНА И ШЛАКО ПЕМЗОВЕТОНА 2,6 τ .

MAPKA BANKH	KNACC	PACKOL MI	BOALHGISTA	MACCA,
	BETOHA	BETOH,	CITAAL, KT	'P
5CN9.2 - 6 A 1 ₹	B 35		111,5	
5cn 9.2 - 6 A¥ *			102,1	
BCT 9.2 - 7AII *	B30		175,4	
BC∏ 9.2 - 7A II 8*	J		138,4	
БСП 9.1 - 8 А ТЖ			200,{	
БСП 9.2 - 8 АШЬ			146,5	
ECU 3.5 - 8 VI			124,3	
5C∏ 9.2 - 8AY]	1,1	111,5	2,8
EC11 8.5 - 8 ¥ Ⅲ	B 35		215,3	
5CT 9.? - 9AIL]		186,1	
БСП 9.2 - 9 А Т			155,8	
БСП 9.1 - 9АЧ			141,7	
5C∏ 9.2 - 10 A III B			244,1	
БСП 9.2 - 10 A II	B40		217,2	
BC 11 9.2 - 10 A I	B 10		193,7	

			1.4621 - 10/	1.4621 - 10/93 HW2											
PASPAG	POSEHBAION	ASO.	 HOMEHKAATYPA BALAOK	CTALHS	VACT	AUCTOB 1									
Прорериа Прорериа	CEMEHOBA NOPOHHCKHÚ NOPOHHCKHÚ	John	ME ATSAOGII KAA	INNEU	JDON	MHAA									

Yc.	DAG KHBOL	4271			3HA4E	HUE H	ANBOA	PMh X	YCHAHI	d d ù	YYKE	N3 TA	ON 30K	TO BE	AHOT	NPW K	AACCI	прод	07740	H PABO	HEK	TAMPA	PH A	- <u>N</u>										
Группа	КоэФФициент Условий	HATPY3OK BHL		. H N N N .							CPE				TYY YLBECCHB HON CBETT																			
ХІДНІЛЭДЗЯП ЙИНКОТООО	PASOTU SETOHA		,.	-nnna							Hoi	MEP	BANKU	110	HECYL	ĻĒÚ (noco	PHOC.	r.															
	882		ļ,		1	2	5	4	5	6	ካ	8	9	10	1	2	3	4	5	6	7	8	9	10										
ПЕРВАЯ	0,9	ПОСТОЯННЫЕ,			36	36	_	47	47	5*	57	74	74	92	36	36	-	47	47	59	57	74	74	92										
HEI-DKA	1,1	AANTENLHLIE U KPATKOBPEMEHHUE	Ξ	ı	x	x	Mı	36	36		47	47	5	57	74	74	92	36	36	_	47	47	57	57	74	74	92							
RAGOTA	1,0	M KI KI KODI EINEHIIBEE	포	141	32	32	-	42	42	5'	52	66	66	82	20	21	_	30	30	41	46	64	64	80										
BIOLKA	1,,*	TOCTORHULE U LAUTEAUHUE	SUHMATINA II SIJHH KOTOO	_^		32	37	_	42	42	5'	52	66	66	82	20	21	_	30	30	41	46	64	64	80									
ПЕРВАЯ	0,9	I KIKIKODI EMEMINIE	Момент		110	118		134	151	16	178	207	225	288	110	118	_	134	151	164	178	207	225	288										
HELDKY	1,1		1 27	1 27	Mon	Ma	444	120	-	137	154	16	183	212	234	309	444	120	_	137	154	168	183	212	234	309								
KAGOTA	1,0				14.6	97	106	-	123	134	15	169	187	थ्य	231	62	70	_	86	98	119	145	181	203	227									
BIOL KY	1,0	LICE OF HAME IN TYNLEYPHPE			77	87		105	119	15	169	167	203	105	33	37		45	53	66	84	118	154	188										
	6,9		K.	Q ₁	161	161	_	166	199	203	203	230	230	258	161	161		166	199	203	203	230	230	258										
	1,1	постоянные.	постоянные.	постолнные.	постолнные.	постоянные,	постоянные,	постоянные,	постолнные,	постолнные,	постолнные.	l l		Ч 1	192	192	1	197	235	240	240	270	270	298	192	192	_	197	235	240	240	270	270	298
Mra.) 4	0,9	NCTONHUME,	CHYA	^	134	134	_	142	157	174	174	189	189	192	134	134		142	157	174	174	189	189	192										
REPERS	1,1		HAS	Qı	155	155		164	182	197	197	216	216	219	155	155		164	182	197	197	216	216	219										
	0, 9		hed:		67	67	1	74	78	93	93	102	102	102	67	67	_	74	78	93	93	102	102	102										
	1,1		Поле	Q3	73	73	_	81	8ь	107	105	111	111	111	73	73	=	81	86	105	105	111	111	111										

1. CXEMBI YCHANN H 3HAUEHHA YCHANN OT COBCTBEHHOTO BECA BAROK CM. ANCT 2.

2. B BENHUMBH YCHNAM M W G BKNOWEHBH YCHNAM OT COBCTBEHHOTO BECK BANCK.

3. SHAYEHUR YCHANN OT COBCTBEHHOTO BECA BANOK AAHLI APOBAD, TAE B HHCHITERE YKAZAHLI SHAYEHUR AAR BANOK HS TRIKENOTO BETOHA, AFNOTIOPHTO BETOHA H WNAKO-TEMBOBETOHA, A B SHAMEHATERE - HS KEPLMSHTOBETOHA.

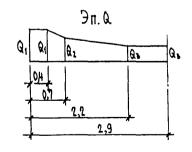
4. Табанчные значения уснавий мий приведены для зданни I класса ответственности при коэронциенте надежности по назначению 11=1,0. для зданий II или II классов ответственности, т.е. при 31-0,95 или 11=0,9, эти значения следчет делить на соответствующие коэронциенты 17 п. При этом, значения действующих нагрузок должны приниматься при 31-1,0.

5. THE YETE HATPYOCK, CYMMAPHAR ANTENDHOCT A SECTEBLY KOTOPLIX BA TIEPHOL,
SKCHAYATALUU MANA (HATPUMEP, KPAHOBLIE HATPYOKK), TOLLOOF BANOK CAELYET
OCYLECTERATL THE 18-11, B OCTABLHILY CAVUAXX-THE 18-0, -0,9

6. По первой группе предельных состояний проведен расчет по прочности по второй группе - по раскрытию трещин и то дерормациям.

			1.462.1 - 10/93	.0 - CM	1	
PASPAS.	вонзафЗ	Harris	HECYMAN CHOCOBHOCTA	CTAAUS	YHCT	AHCTOB 4
LEGORDAY V	CEMPHORA EODE NOB AOTRUHCENE	Plant-	BANOK ANA MPONETTA GM	ЦИИИЛ	DD M3	HUH BA

YCN	DAG RHAC	4274	ļ		3 HA41	EHHE	HAHBO	УРПИХ	ACHY	HÝ B	PYYKE	גד גע	ЖEΛ0	CO PET	IN AHC	PH K	ACCE	ПРОД	OYP HIC	H PAR	504EK	APMA	וו ארץ די	A- ₩
1 PYNN A	Коэчфициент	Вид		Bua			£14	HEA	7 9 EC	CHBH	OÚ CE	E#PI					-	444	/LbF(C	SHBHC	ря́ с	PEAH		
XIdHd1 3 4 391	ACYOBAN	HATPYSOK	Y	RHAHD							Н	OMEP	BYYK	סח א:	HECY	MEN	спос	овнос	47					
НИНКОТЭО	PABOTH BETOHA				1	٦	ზ	4	5	(7	8	9	10	1	2	3	4	7	6	7	8	g	10
ПЕРВАЯ	0,9	постоянные,			24	28	35	36		-	43	51	55	70	21	24	30	31	_	_	37	44	51	63
	1,1	#VALEVPHPIE,		M ₄	25	28	36	37		-	44	53	58	72	21	25	31	31	_		38	45	52	64
17001 5		N KPATKOBPEMEHHЫE	Σ	IM 4	22	25	30	32	_	_	39	48	51	61	14	17	21	13	<u>—</u> :	1	27	33	42	54
R A 90TB	1,0	uoctoahhrie n tvntevphie	포		18	22	27	29	_	_	31	43	51	61	11	13	15	16	_	_	20	24	30	40
Mr. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0,9	денни котооп	^ _		95	111	127	144			172	202	222	282	8{	95	116	122	-	_	148	177	202	250
RABABI	1,1	ANHTENDHUE	MOMEHT	Ma	96	113	136	146	_	_	177	211	235	291	81	96	119	123	1	-	150	180	207	254
RAGOTA	0,9	N KPATKOB PEHEHHLIE	S Z	112	87	101	123	128	_	_	158	189	206	247	56	70	83	91	1	_	109	131	168	216
BIUF KX	0,3	UOCLOSHHME IN TYNLEYPHME			69	88	107	114		-	129	173	206	247	42	72	61	67			80	35	122	158
	0,9		KH	Q ₁	159	159	159	192	_	-	206	233	242	288	159	159	159	192	-	-	206	233	242	288
	1,1	ПОСТОЯННЫЕ,	_ ^	۷1	189	189	189	227			243	273	282	330	189	189	189	227			243	293	282	330
TF 0 0 1 4	0,9	AVALEVPHPIE	CKAA	Qı	142	142	147	149	_	_	195	210	210	226	142	142	142	149		1	195	210	210	226
ПЕРВАЯ	1,1	A VI VI WOOI EMERIUDIE	3	પ્ર	149	149	149	149	_	_	218	242	242	242	149	149	149	149	_		218	242	242	242
	0,9		Поперечная	Qz	72	72	73	78	_		108	112	112	118	72	72	72	78	_		108	112	112	118
	1,1		None	~5	78	78	80	85		-	116	124	124	131	78	78	78	85		_	116	124	124	131


CXEMPI ACHUR

Эп. М M₁

M₂

M₃

M₄

YCHAHA OT CODCTBEHHOTOD BECA BANOK

ГРУППА	MOMEH.		Non	PEHHA	CHAR	, KH
TPE LEADHLIX	Mi	Mı	Q1	Gz	વિક	Q4
ПЕРВАЯ	6/5	9/8	6/5	24	3/2	0/0
BTOPAL	1/4	8/11		_		_

1.462.4 - 10/93.0-CM1 2

	YCHOBHA PA	CHETA			3 444	EHNE	0 ANAH	крших	ACHY	ийь Е	YVKE	(RT EN	K E NOT	DETO	на пр	N KVY	CCE TI	040X	ьной	PABO	IEÚ A	የሥልፕነ	ИЧ	
Группа	Коэччициент	Виљ		Вид		A - 11	KAA E	HEAPP	ECCNP	нс н	APPE	CCHBH	OH CP	EH	A-Y	+ 644	TATA	CCHPI	+O¥	CPEA	, H			
МАНАЛАДЭЧП ЙИНКОТОО	УСЛОВИЙ РАБОТЫ БЕТОНА	איניסטיטה	y	CHVHN PHVHD						Н	OMER	BAN	KW N	O HEC,	ЩEĤ	спо	COPHC	CT H						
COLONIAN	882				1	2	3	4	5	(7	8	g	10	1	1	3	4	5	6	7	8	9	10
TET BAS	0,9	постоянные,				30		35		Ľ2	_	51	55	75	25	28	_	_	36	44	_	49	58	71
HEI DAX	1,1	AVALEYPHPIE TYNLEYPHPIE		M ₄	_	30	_	36		lz	_	54	58	83	15	29	_	_	37	46	_	52	62	78
RAGOTA		N KENT HODE EMERICA	Σ	171.3	_	27	_	31	1	38	_	48	52	75	21	24	_	-	32	37	-	43	72	סד
BIUPKX	1,0	аинилатила и зійннкотооп	T		_	23	_	31		7		42	44	45	15	19	_	-	24	27	-	30	39	65
TEPBAR	0,9	постоянные,	¥			116		139		112	_	205	220	300	100	112	_		145	176	ĺ	198	233	287
HELDVA	1,1	N KPATKOBPENEHHЫE	МОМЕНТ	Ma		118	_	142	_	1,8	_	214	231	331	101	114			148	182	_	211	248	317
RAGOTE	0,9		X		<u></u>	108		129	_	1,2	_	194	210	300	85	99			128	151		176	211	283
DIO(K	0,3	TOCTONHHUE W N'HTENHUE				92		124	_	119		169	176	180	62	75		_	35	107		122	156	261
	0,9		¥	Q ₁		159		159		26		106	243	164	179	159			192	192		206	233	264
	1,1	постоянные,	_	~1		189	_	189	-	243		243	257	305	189	189	_	_	227	227	_	243	273	305
RABGIN	0,9	H KANTEVPHPIE TYNLEYPHPIE	g vy	Q ₂		149		149	_	16		196	199	221	138	138			149	149		195	216	221
	1,1	M IN WILLIAM ELEMINAL	HA9	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		149	_	149	_	24	_	226	228	242	149	149	_		149	149		218	142	242
	0,9		Поперечная	Q_3		74		74		18		108	108	116	70	70		_	76	78	_	108	115	116
	1,1		Non	75	—	81		81	—	18		119	119	128	77	77	-	_	84	85	_	116	124	128

У	CADBHA PA	CHETA]									דבם סוסאו.		
ГРУПП А РЕДЕЛЬНЫХ	Тнэнрифреох й иволоү	BU4 HATPY3OK		дия Ханар	пьототь	HON PAB						HEMTPECCH	ьной сре	<u> </u>
Нинкотоо	PABOTH BETCHA 882				1	2		MEP BAN	5 5	ECAMTEN C	тособност Т	8	g	10
ПЕРВАЯ	0,9	постоянные,			24	28	35	36	36	42	43	49	_	_
HEI BAA	1,1	ANTENDHUE N KPATKOBPEMEHHALE		M ₄	25	28	36	37	37	43	44	44	_	_
RAGOTA	1,0	N YEALKOZEWEHHELE	Z	171	21	24	30	31	31	38	39	43	_	-
	1,0	DOCLOXHHME N TVNLEYPHME	¥		15	18	24	24	24	16	30	30	_	_
TEPBA S	9,0	постоянные,	<u>+</u>	_	95	444	129	136	145	162	170	196	-	_
IEL DAY	4,4	TYNLEIPHPE	MOMEHT	M 2	96	113	129	138	147	166	174	205		_
R490P4	0,9	N KPATKOBPEMEHH LIE	×		85	99	116	123	128	151	158	176	_	_
DIOPRA	0,3	амналатила и аганикогооп			61	75	88	90	95	101	115	119	_	
	0,9		κĦ	0	179	159	159	159	192	192	203	206		_
	4,1	ПОСТОЯННЫЕ,	ا ما	Q ₄	189	189	189	189	227	127	140	243		_
TEPBAS	0,9	TVALEYPHPE	CHYA	Qı	134	134	142	142	149	149	4 74	189	-	_
ILI DIM	1,1	N KANTKOBSEMEHH PI E	Поперечная	પ્ર	149	149	149	149	149	149	497	216		_
	0,9		EPEC	Qз	67	67	73	74	76	8 .	93	102		_
	1,1		6	4.5	73	73	80	81	84	85	105	111		i —

Yc	DAG KHBON	HETA			34441	HHE	HANBO	УРШИХ	YCH	AHI B	BAN	KE N3	ТХЖЕ	1010 E	ETOHA	ו אפח	CVVCE	409П	0 V P H 1 O I	PAG	טור ע	L LUA		A 10
ПРЕДЕЛЬНЫХ ПРЕДЕЛЬНЫХ	КОЭРРИЦИЕНТ УСЛОВНИ	HATPY30K BH&		ANA KNANDY			KA.A	HEAT	PECCH	BIOH	CPE						44		rpec.c			PEAH		<u> </u>
	РАБОТЫ БЕТОНА	11.611 130 8		ICHNNX						Н	OMER	BAN	KH !	TO HE	СУЩЕ	И́ С	посов	ност	u					
_	862			Υ	1	1	3	4	5	•	7	8	g	10	1	2	3	4	5	6	7	8	9	10
TEPBAS	0,9	ПОСТОЯНИЫЕ,	_		151	151	157	132	132		243	243	244		151	151	157	232	232		143	243	244	<u> </u>
	1,1	A N N TEN S H D I E N K P A T K O B P E M E H H D E	X. T.	M,	151	151	157	232	232		243	243	244		151	151	157	132	132		243		244	_
BTOPAS	1,0		_	1 111	130	130	147	198	198	-	206	113	226	_	88	88	106	154	154		166	216	226	
		MHANATHNI H BIAHHKOTOON	ш		130	130	147	198	198		206	223	226		88	88	106	154	154		166	216	226	_
NEPBAS	0,9	TOCTONHHUE,	MoM		246	288	300		375		445	477	531	_	246	288	300	335	375		445		531	-
	1,1	H KPATKOBPEMEHHLE		M ₂	249	292	306		382		455	492	548		249	292	306	339	381		455	491	548	_
KASOTA	1,0				228	247	284		321	_	378	439	492	<u> </u>	152	168	203	229	250		305	424	492	_
		ПОСТОЯННЫЕ И ДЛИТЕЛЬНЫЕ	-		192	212	251		321	_	378	439	492		78	85	104	124	133		166	282	361	
	0,9			Q,	235		235		285		317	337		-	135	235	235	285	285	_	317	337	372	
	1,1		盂	ļ	280	280	280	337	337		372				280	280	280	337	331	_	372	396	433	
	0,9	TOCTONHHLE,	١.	Q,	185	185	185		210		227	259	270	_	185	185	185	210	210	_	227	259	270	
KABPIN	1,1	NKPATKOBPENEHHWE	CHAN		213	213	213	242	242		261	297	309		213	213	213	242	242		261	297	309	
	0,9		l	az	158	158	158	178	178		191	224			158	158	158	178	178		191	224	232	
		-	OMEPEHHAS		180	180	180	102	202	_	217	253			180	180	180	202	202		217	253		
	0,9		116	Q ₄	119	107	107	119	119		124	150	157		107	107	107	119	119		124	150	157	<u> </u>
7 6 7 5 1 1 0		BANOR CPABOTEN A	=	VAOL Z.	1	119	119	129	129		136	172	178		119	119	119	129	12 9	_	136	171	178	

4. VALUE HUR YCHANN OT COBCTBEHOTO BECK BANOK CM. AUCT 2.

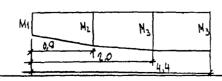
2. B BENNUHLI YCHNIN M H Q BANDYEHU YCHNIN TO TOGETBEHHOTO BECA BANOK.
3. BHAUHHUN YCHNIN TO TOGETBEHHOTO BECA BANOK AAHU APOBED, TAE B HICANTE NE
YKABHHUN YCHNIN AAN BANGK EN XOKABHUN ATNOTOPHTOBETOHA H WAAKOTEMBOBETOHA A B BHAMEHATEAE - 43 KEPAMBHTOBETOHA.

4. Повычиные значения усилий Ми Q приведены для заланий I классл ответственности при коэффициенте надежности по назначению χ τ = 1,0. Для заланий I или II классов ответственности, τ . е. при χ = 0,95 или χ = 0,

7. ПРИ УЧЕТЕ НАГРУЗОК, СУММАРНАЯ ДАИТЕЛЬНОСТЬ ДЕЙСТВИЯ КОТОРЫХ ЗА ПЕРИОД ЭКСПЛУЛТАЦИИ МАЛА (НАПРИМЕР, КРАНОВЫЕ НАГРУЗКИ), ПОДБОР БАЛОК СЛЕДУЕТ ОСУЩЕСТВЛЯТЬ ПРИ $\delta B_z = 1.4$, востальных случаях-при $\delta B_z = 0.9$.

6. ПО ПЕРВОЙ ГРУППЕ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ ПРОВЕДЕН РАСЧЕТ ПО ПРОЧНОСТИ, ПО ВТОРОЙ ГРУППЕ - ПО РАСКРЫТИЮ ТРЕЩИН И ПО ДЕФОРМАЦИЯМ.

СХЕМЫ УСНЛИЙ ДЛЯ БАЛОК С РАБОЧЕ Й АРМАТУРОЙ КЛАССЛА АШ
ЭП. М
9П. Q
Q1 Q1 Q2 Q3 Q4 Q4


1.462..1-10/33.0-СМ2

РАЗРАБ. ЕФРЕМОВ Мися НЕСУЩАЯ СПОСОБ. НОСТЬ
НСПОЛНИЯ СЕМЕНОВА Q24/Проферил ЕФРЕМОВ Мися ВАЛОК ДЛЯ ПРОЛЕПТА Я М
Н. КОНТР. ЛОГЬИНСКИЙ ВДА

	ACVOPHS BY	CHETA			SHAHE	HUE 1	HYNPO	PMXX	ACHYN	HIE	NAKE	N3 T	A 3CEN	a oro	ETOHA	NAU	KYYGG	E TPO	7017	ON PA	504E¥	MAY	TYPL	A-N
א חחציי	Кожрициент	BHA		BHA			K14	PATA	ECCHI	7H0	CPE.	P PI					4	A KA	72347	NBHO	ú ci	≥ E V PI		
IPEAE ALHLIX	AC VOPHN	HATPY30K)	ICHVN3							HOM	EP F	SANKH	по	HECYL	ЦЕЙ	CHOC	OP HOC	TH					
HUHROT 202	PABOTH BETOHA				1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	g	10
ПЕРВАЯ	0,0	постоянные,			74		28	_	108	11		134	158	227	62	_	76		91	93		114	135	203
HELDYN	1,1	ANNTENHHHE		M ₄	74		90		109	11	_	136	162	243	63	_	76		92	94		115	137	212
RAPORA	1,0	N KHATKOBPENEHHPIF	Σ	""	68		82		99	10		123	148	223	51		62		74	75		98	116	192
RJ.OPKX	1,0	а ш налатилд и <u>а</u> шннкотооп	포		62		74		89	9		121	141	220	39		47		56	58	_	74	87	407
MEPBAS	0,9	TOCTOS HHLIE,			157		172		219	25		318	364	592	157		172		219	245	<u> </u>	318	364	529
11 12 12 14	1,1	TVH TEVPHPIE	FI	M2	157		172		219	25		321	367	620	157		172		219	245	_	321	367	620
RAGOTA	1,0	N KPATKOBPENEHHLIE	OMEHT	1	145		159		201	24		293	343	581	130		141		178	199		274	314	502
<u> </u>	1,0	ПОСТОЯННЫЕ И ДЛИТЕЛЬНЫЕ	Σ		133		142		180	24		287	320	563	98		106	-	135	152		206	233	408
ПЕРВАЯ	0,9	TOCTOR HHOLE,			239		236		359	37		447	520	691	203		251		304	309		378	450	676
HELPKY	1,1	*VALEYPHPIE		Ma	243		301		165	31		453		747	206		254		308	312	-	381	457	707
RAGOTA	1,0	W KPATKOBPE DIEHHLE		1113	221	_	274		331	37		412	490	673	169		206	_	248	252	_	326	389	642
BIVINA	1,0	постоянные и длительные			206		250		301	39		406	471	679	129		158		190	194		246	291	544
	0,9			Q,	215		215		282	31		351	379	404	215		215		282	351		351	379	404
	1,1			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	256		256		333	_		409	442	467	256		256		333	409		409	442	467
	0,9		포	Qı	197		197		282	35		344	379	404	197		197		282	335		344	379	404
	1,1	постоянные,	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	197		197		333	3:0		350	442	463			197		333	350		350	442	463
ПЕРВАЯ	0,9	ANNTENHHIE	CHAR	Qz	167		169		241	213		280	321	325	167		169		241	273		280	321	325
HELDUN	1,1	H KPATKOBPEMEHHЫE	1		176		177	L	270	214		297	367	373	176		177	-	270	294		297	367	373
	0,9		H AS	Q4	140		142		204	28		234	475	278	140		142		204	228	_	234	275	278
	1,1	1	NonePeuh		149		151		227	217		250	311	316	149		151		227	249		250	 	316
	0,9	ļ	JIE6	Q5	87		89		129	110		142	183	183	87		89		129	140	_	142		183
	1,1		LĔ		96	<u>L = </u>	98		139	112		155	198	200	96	YCHA	98		139	152		155	198	200

CXEMЫ YCHANK AAA BAAOK C PABOYEY APMATYPON KAACCOB A-ILL, A-IL, A-

0, 0,	Qz	Q3	Q4	50,	J.Q.
0.6	10 11,8				1
		3,5 4	'A	+	

YCHI	TO RH						ok	
ТРУППА ПРЕДЕЛЬНЫХ	НЭГИБА	ющий.	MONEENT	HORE	PEUHA;	KK) Ř	Α,κ	Н
уннкотоо	Mi	Mz	M 3	Q,	Qz	Qs	Q4	Qş
ПЕРВАЯ	13/10	12/18	29/13	14/10	13/9	3/7	5/4	3/2
BTOPAS	11/9	30/15	26 21	-	-	_	_	_
				,				AHCT
1	1.4	162.1	- 110/	93.0	- CN	2		2

	YCHOPHY P	ACHETA			3444	HHE	HANE	оурщи	א אכו	HAHÍ	BAA d	KE H	KKT E	EVOLO	BETO	AT AF	H KAA	4CF	HOAT	NOHON	PABO	HEN .	APMAT	1444
Группа	Коэррициент	ANB		ANB	g <u></u> <u>W</u> −A	£14 2	APPEC	CHBHO	й и н	ביין.	сс нвн	ой с	PEN			<u>Y - 4</u>	KA#	HEAT	793 4	UBHO	42 H	HH		
PEAENLHUX		HAPPYSOK		CHUNA						HON	1 43	SANKU	по	HECY	MEN	спос	OPHOC	47.						
HINKO COO	PAGOT 6 GET OHA 8 62				1	2	3	4	5	6	7	8	g	10	1	1	3	4	5	6	7	8	g	10
первая	0,9	постоянные,			73		87		107	_	129	139	165	220	74		86	94		115		138	165	233
IIEI DRA	4,4	ANNTENHHIE		Ma	74	_	88		109	_	131	142	171	234	75		86	95		116		140	170	252
R49078	1,0	H KPATKOBPEMEHHLLE		1713	67		80		99	_	119	128	155	217	68		78	86		106	_	127	157	229
		вынавтика и зыникотроп	ξ		67		80		99	-	118	129	149	212	56		66	70	_	84	_	101	125	229
ПЕРВЬЯ	0,9	постоянные,	κ₩.		169		183	_	278	_	323	408	505	647	159		223	210	_	249		283	387	626
	1,1	ANTENHUE	4	Ma	169		184		281	_	326	413	523	689	159		224	210	_	250		284	391	661
RAPOPAS	1,0	H KPATKOBPEMEHHWE	ОМЕНТ	_	155		169	<u> </u>	257	_	298	377	476	640	146	_	204	193		230	_	261	369	617
	ļ	постоянные и Длительные	Mo		153	<u> </u>	167		255		296	375	456	626	120		172	155		182		206	288	600
RABES	0,9	, ЗЫНКОТООП			242	<u> </u>	288	<u> </u>	356	_	428	464	549	716	247	_	285	311		376		459	540	719
	1,1	ANNT ENGHALE WE KATKOBPEMEHHALE		Ma	245		29?		362	_	436	472	569	780	250		288	315		383		466	566	780
RA40T4	1,0				223		266		329	_	396	429		709	227		261	287		348		424	515	709
		TIGHTVZLKY N ZITHHKOLDOU			113		266		329		396	429	497	709	189		222	233	_	279	_	339	417	709
	0,9			Q ₄	215		215		282	_	318	345	368	401	215		259	282	_	318		351	379	404
	1,1			<u>~1</u>	156		256		333	_	373	401	429	464	256		295	333		373		409	442	467
	0,9			Q ₂	197		197		282	_	318	337	368	401	197		197	282		314		335	379	404
	1,1	постоянные,	₹	ν ₁	197		197	_	333	-	350	341	429	459	197		197	321		350		350	442	463
RABABIT	0,9	A NATE V PHP E	^	Qz	169		169		242	_	266	274	309	321	165		173	230		254		273	320	325
11-1 -112	1,1	N KENI KUBPEHEMBIE	CHAA	45	177		179		278	_	293	293	355	370	174		182	260	_	286		294	359	373
	0,9		-5	Q4	142		143		204		223	230	265	275	139	=_	146	195		214	1=	228	274	278
	1,1		Поперечная	~4	151		153		233		246	247	301	313	148		156	219		239		247	304	316
	0,9		TEP	Q,	89		90		129	_	137	140	178	182	86		93	125	<u> </u>	134	_	140	183	183
	1,1		౾	۳٦	98	<u></u>	100		142	_	152	156	193	198	94	_	103	135		145		152	196	200

1.462.1 - 10/93.0 - CM2

	R RUBOAD	AC4ETA			3HAYEHHI	E HANBONG	1208 (T3W	070H3K0h	S RHAHDY	BANKE	N3 VELKO	то БЕТОН Елтрессив	IA HPH K	XACCAX
АППУЧП ХИНЬЛЭДЭЧ ЙИНКОТОО	КОЭФФИЦИЕНТ УСЛОВИЙ РАБОТЫ БЕТОНА	HATP130K		ANA CHAHA	III O NORBI	1 4 5 0 4				HECAMEN			442 NOF	<u></u>
NNUKUTOOL	8B2				4	Q	3	4	5	6	7	8	9	10
кадел	0,9	ПОСТОЯННЫЕ,			73	73	16	94	107	110	129		_	
ILEL DAY	1,1	ANHTENHHUE		M ₄	74	74	16	95	109	111	131			
RAGOTA	1,0	N KPATKOBPEMEHHLE	Σ	1714	65	65	9	86	98	101	110	_		
	150	постоянные и длительные	Ŧ.		54	54	6	70	77	83	94			
RABART	0,9	ЗІ АН НКОТООП			157	159	172	210	219	245	283			
HEL BUG	1,1	AVALEVP HPI E	MONEHT	Ma	177	157	172	210	219	245	284			
R	1,0	N KPATKOBPEMEHHLIE	W N	1112	140	140	18	193	202	224	242			
0101 42	1,0	Постоянные и фантельные	ž		116	116	13	155	155	184	205	_		
RABPAN	0,9	, зіаннкотроп			239	268	23	311	347	367	405		<u> </u>	
	1,1	ANNTENTHUE		Mз	243	272	26	314	353	390	414			
BTOPAS	1,0	H KPAT KOBPEMEHHHE		113	221	239_	21	287	321	337	347			
	1,0	ЕМНАКЕТИЛД 1 ЗЫННКОТООП			186	201	22	233	251	273	300		_	
	0,9			Q,	215	215	215	282	282	317	317	_	_	
	1,1			4	256	256	276	333	333	392	372	_		
	0, 9		圭	0	197	197	17	282	282	314	317	_	_	
	1,1	постоянные,	× ,	Qı	197	197	17	321	333	350	350	-		
ПЕРЪЛЯ	0,9	#VNJEYPH PI E	CHAA	0	165	169	19	210	210	227	227			
II LI BRA	1,1	N KPATKOBPENEHHLIE	5	Q3	174	177	17	242	242	261	261		-	
	0,9		5	Q4	139	142	12	178	178	191	191	_		
	1,1		품	X4	148	151	151	202	202	217	217	_	_	_
	0,9		Почеречная	Q5	86	89	83	119	119	124	124			_
	1,1	ļ	[e]	45	94	9.8	93	129	129	136	136		_	T -

Ключ под бора марок балок с продольной рабочей арматурой классов $A-\overline{\mathbf{u}}$, $A-\overline{\mathbf{u}}$, $A-\overline{\mathbf{v}}$, $A-\overline{\mathbf{v}}$ дал предета 6 м при неагрессивной среде и отсутствии перепада прочиля покрытия

Расчетная н	atipyrka , kNa	MAKGOI	11440	OMEP	PYVKH	TO HE	СУЩЕЙ	CTOCO E	SHOCTH	1 AAA 3	Н ИНАД
RAHGAMMYD KNFIGGNON TO AGBHD N	OT CHETA	1	ными Груза-	1,0 1,0	1	MH KP		1,0	PAHOB	2	
3,0	0,1 047,0 70	1	4*	2	3*	4*	6	1	2	3*	5
3,5	4,1 04 7,0 70	1	6	3	4*	5*	7*	2	3*	3	6
4,0	1.5 04 1.0 70	2	7*	4*	5*	6	7	3	3	4*	7
4,5	1,5 04 7,0 70	3	8	5*	6*	7*	8	4*	5*	5	7
5,0	OT 4,0 A0 2,8	4*	9*	6*	7 *	8*	8	5*	6*	6	7
5,5	or 1,4 40 2,8	5	q	6	8*	8	g*	6*	6	7*	8*
6,0	OT 1,4 AO 2,8	6	9	ן	8	g*	10*	7*	7	8*	8
6,5	8,5 041,5 70	η*	10*	8	g	g	10	8*	8*	g*	g
7,0	2,8	8	10	9	g	9	10	9*	9*	g	g

^{1.} КЛЮЧИ ПОДБОРА СОСТАВЛЕНЫ ДЛЯ ШАГА БЛЛОК 6 М.

КЛЮЧ ПОДБОРА МАРОК БАЛОК С ПРОДО ЛЬНОЙ РАБОЧЕЙ ДРМАТУРОЙ КЛАССА 4-1 для продета 6 м при слабо-и среднеапрессивной степени воздействия газообразных сред и отсутствии пе:репада профила покрытия

Рачетная на	rpyska, kla	Порадк	DBMN HO	MEP B	aaku n	O HECT'L	TEK CU	особно	4 479	14E R1	HHÝ
RAHGAMMO	OT CHETA	HPM UOTBEC- RE3	н гіми 11 <i>0</i> 78 <i>ЕС</i> - С	C LIOY	PECHNI	AR KPM	I KMAH	IPH CX	ENE 3		RUHĪ
RUTIJANOTITO U CHETA		KPAHOB	TPY31-	ΠPW	TPYS	470no	EMHOC	TW 1	PAHOR	·	
N CHE! K		K Lbasoy	mn Q=3T	1,0	5,0	3,2	5,0	1,0	٥,٥	3,1	5,0
3,0	0,1 04 F.O TO	3	9	7	7	8	9*	5	7	7	7
3,7	4,1 04 7.0 70	5	9	٦	В	8	д	7	7	7	8
4,0	1,5 04 F,0 70	7	9	8	8	9	9	8	8	8	9*
4,5	1.5 of 1.0 to	8	10	g	g	9	9	8	g*	g	g
5,0	OT 1,0 40 2,8	8	10	9	g	g	10*	9	9	9	g
5,5	or 1,4 40 2,8	g	10	g	g	10*	10	9	g	9	g
6,0	OT 1,4 AO 2,8	g	10	10*	10	10	10	9	9	10*	10
6,5	8.S OA 1,S 40	9	_	10	10	10	10	10*	10	10	10
7,0	2,8	10*	_	10	10	10	-	10	10	10	18

4. 3 HAVEHY ? PACHETHEX HAPPY30K TPHBEAEHEI TIPH $\gamma_1 > 1$.

	1.460.4-1	0/93.0-CM3
PASPAE. NORDHHCKHÁ ICROAZUA CEMEHODA IPODEPUH NORDHYCKUÁ IL KOHTP NORDHYCKUÁ KOHTP NORDHYCKUÁ	Кличи подбори мирок Вилок для промета 6 н	P 1 5

^{2.} Ключи подборл составлены для зданий $\mathbb I$ класса ответственности. Для зданий $\mathbb I$ класса ответственности допускается пользоваться этими же ключами, а для случаев, отмеченных знасом, при балках из тяжелого бетона и рабочей арматуре классов $A-\mathbb IB$, $A-\mathbb V$ и $A-\mathbb V$ такличные значения порядковых номеров могут быть снижены на единицу.

^{3.} Схемы загружений и ориентирование направаения перепада протиля покрыти приведены на докум. 1.462.1 - 10/93.0 - см5

Ключ подбора марок балок с продольной рабочи арматурой классов $A-\overline{\mathbb{II}}$ и $A-\overline{\mathbb{II}}$ в для пролета бм при слабо-и среднеагрессивной степени воздействия гльообразных сред и отсутствии перепада профиля покрытих

РАСЧЕТНАЯ НА	TPYSKA , KNO	MARGON	.овый н	OMEP	PYVKA	NO HEC	АМЕ Й (TUOCOPI	4 KTOOH	YYE 614	HUÚ
RAHAAMMYD	OT CHETA	DE3		C1104.b	ЕСНЫМ	H KPAH	AMH NE	H CXE	NE 3AT	PYXCE	N S
ot nokemens		KPAHOB	ными груза-		1	·				2	
N CHELY		и грузов	ми				PPEMA	OCTH	KPAH	or Q	<u>,</u> ፕ
			Q·31	1,0	2,0	3,2	5,0	1,0	2,0	3,2	5,0
3,0	0,t 04 P,O TO	7	8	7	7	7	8	6	7*	7	7
3,5	P, P O. 4 P, O TO	6	g	7	7	8	9*	7	7	7	8*
4,0	or 0,7 to 2,1	4	9	8	8	8	9	7	8	8	8
4,5	of 0,7 ao 2,1	8*	9	8	g	9	g	8	8	9*	9
5,0	OT 4.0 40 2,8	8	10*	9	g	9	9	g*	9*	g	g
5,5	8,5 04 4,4 40	g*	10	9	9	9	10*	9	g	g	g
6,0	or 1,4 to 2,8	g	10	g	g	10*	10	9	g	g	9
6,5	or 2,1 40 2,8	9	10	و	10*	10	10	9	g	9	10*
۲,0	2,8	9	10	10	10	10	10	g	10*	10*	10

Ключ подбора марок балок с продольной рабочей арматурой классов $A-\overline{\mathbb{II}}$, $A-\overline{\mathbb$

Рачетная на	'PY3KA, K]a	ARGOIL	КОВЫЙ		BANKH	NO HE		CNOCO	БНОСТИ	Y17 3Y	хний
CYHMAPHAN CHTILICHAOITO ATHEN	OT CHETA	KPAHOB	груз х		1	PY3ONO			(3ATPY) 2 HOB Q	. Т
		H PPY30B	ми Q=3 т		2,0	3,2	5,0	1,0	2,0	3,2	5,0
3,0	0,7	4*	η	5*	6*	η*	8	4*	5*	5	7
J,	1,0	5*	8	6 *	7.*	8 *	8	5	6*	6	7
ı	0,7	4	8	61	6	8 *	8	5*	6*	6	7
3,5	1,0	6*	9*	7 *	8*	8	9*	6	6	7 *	8 *
	1,4	8*	10 *	8	8	g*	10	8 *	8 *	8	g *
	0,7	6*	8	6	8 *	В	g *	6 *	6	4 *	8*
4,0	1,0	77	g	8+	8	g *	g	۴ ۳	ጸ *	8 *	8
,,,-	1,4	8	10	8	9 *	9	10	8	8	8	9
	2,1	10*	10	10	10	10	10	10*	10*	10	10
	0,7	6	g*	6*	8	8	9	7*	7	8*	8
4,5	1,0	8*	10*	8	8	9	10	8 *	8	8	g*
')/	1,4	9*	10	9*	9	10	10	9 *	g *	g *	10*
	2,1	10		10	10	10	_	10	10	10	10
	1,0	8	10	8	9*	10*	10	8	8	g*	10*
5,0	1,4	9	10	9	10	10	10	g	9	10*	10
	2,1	10		10	10	10	_	10	10	10	10
5,5	1,4	104	10	10	10	10_	10	10*	10	10	10
/,/	2,1	10	_	10	10	_	=	40	10	10	10
6,0	1,4	10	_	10	10	10	_	10	10	10	10
	2,1	10	_	10		_	_	10	10	10	_

1.462.1 - 10/93.0 - CM3

KAMUH NOABOPA MAPOK BAAOK C NPOADAHOM PABOHEM APMATYPOK KAACA A-W ASA NPOACTA BM NPH CAABO H CPEATEATPECCHBHOM CTENEHH BO3AETA SAKHAAE AFBAOHN ROKPAINAN ROKPAINAN ROHAAE AFBAOHN AGAETA SAKHAAE

PACHETHAN HAT	PYSKA, KTO	AKGON	KOBЫH	HOMEP	PAYKI	A TO HE	c y WL F H	CHOCOE	HOCTH	4M 3A	AHHÝ
СУММАРНАЯ	OT CHETA	HMX HOTBEC- PE3	TO ABEC-	C 110H	SECHE	NH KPI	HAMH	MPH C		жү q тд S	EHHA
KHTIGHNON TO		40H493	PPY3ANA	ī	PH TE	430TIO4	BEMHO	CTHI	PAHOL	, Q ,Y	
N CHETA		H PPY303	Q • उप	4,0	2,0	3,2	5,0	4,0	2,0	3,2	5,0
3,0	0,7	7	9	8	8	g	g	8*	8	8	9 *
,	1,0	7	g	8	9	9	10*	8	8	9*	9
7.6	0,7	7	g	8	g	9	10*	8	8	9*	g
3,5	1,0	8	g	g	g	9	10	8	9*	9	g
	1,4	9*	10	g	9	10	10	g	g	g	10*
	7,0	8	9	9	g	9	10	8	9*	g	9
4,0	1,0	8	10	9	g	10*	10	g	9	9	g
,	1,4	9	10	9	10	10	10	9	g	10 *	10
	2,1	10	-	10	10	_	1	10	10	10	10
	0,7	8	10	9	9	10*	10	9	9	9	9
4,5	1,0	9	10	g	10*	10	10	9	9	9	40
,	1,4	9	10	10*	10	10	-	10*	10*	10	10
	2,1	10		10	-		_	10	10	10	
5,0	1,0	9	10	10*	10	10	10	9	10*	10*	10
	1,4	10*	_	10	10	10		10	10	10	10
5,5	4,4	10	-	10	10	_	_	10	10	10	_
6,0	4,4	10		_			_	_	_		_

 $d \square - A$ и $\square - A$ доорал жарок балок с продольной рабочай холугам кологол рой a дорага би продета би при слабо a среднеатрубеной степена возарать киногол проделу проделу проделу профененти сред a дорага дораг

MIX CPC	TILM LINITED .										
PACIETHAN HA	TPYSKA, KTO					_	HEN (
CYIMAPHA9	OT CHETA	DE3	LOY PEC-	C HOAR	EC HPIV	IN KPI	WMAH'	ПРИ	CXEME	3 ATPYX	KHH33
OF OKPLITHA	01x	HPIX	HPIMH		1					2	
H CHET'A		кранов и грузов	1715ANN 0=34	1,0	N411	3,2	5,0	1,0	20		
	۳,0	6	9*	7	7	8 *	9	6	7.	32	5,0 8*
3,0	1,0	6	9	7	7	9	9	7	7	7	9*
	0,7	7 *	9	7	8*	g	9	7	7	7	g*
3,5	4,0	7	9	7	g *	9	9	7	7	8*	9
	1,4	7	10*	g	9	9	10*	g*	9*	g	g
	0,7	7	9	8	g*	9	9	ð#	8	9*	9
4,0	1,0	7	g	9*	9	9	10*	8*	9*	9	9
1,,0	1,4	8*	10	g	g	10*	10	g	g	g	g
	2,1	10*	10	10*	10	10	10	10*	10 *	10*	10
	Γ,0	8*	9	9*	9	9	10 *	8	9	g	g
/ 5	1,0	8*	10*	9	g	g	10	9*	9	9	g
4,5	1,4	9	10	9	9	10	10	g	g	g	10*
	2,1	10	10	10	10	10	10	10	10	40	10
	1,0	9*	10	g	g	10*	10	g	9	9	g
5,0	1,4	9	10	9	10*	10	10	g	9	10*	10
"	2,1	10		10	10	10	10	10	10	10	10
	2,8	10		10	10	40		10	10	10	10
E 5	1,4	10*	10	10*	10	10	10	10	10	10	10
5,5	2,1	10	_	10	10	10	10	10	10	10	10
6.0	1,4	10	10	10	10	10	10	10	10	10	10
6,0	2,1	10	_	10	10	10		10	10	10	10
6,5	2,4	10	_	10	10	<u> </u>	<u></u>	<u>L-</u>	_	_	_

Ключ польора марок балок с продольной рабочей арматурой классов $A-\overline{M}$, $A-\overline{M}_8$, $A-\overline{M}$ для пролета 6м при неагрессивной среде при наличии перепада прочиля покрытия в доль пролета эдания

PACHETHAR HAT	PY3KA, KNO	MARGOTT	овый н	OMEP E	SAKH T	10 HECY	щей с	пособн	4 4T20	AAE KA	ний
САММЯРНЯ	OT CHETA	DE3	C TOLREC-	C LOT			T HMAI	PH CXE			RHH
OT MOKPLITHA		IHPIX	HLIMU	ļ	1					2	
H CHETA		ВОНАЯХ ВОЕРРП Н	TPY3ANN O-37				LEMHO		PAHOR		
	0,7			1,0	2,0	3,1	5,0	1,0	2.0	3,2	5,0
3,0		2	6	4*	5*	6	8*	3	3	4*	7*
	1,0	3	7	5*	6*	7*	8	4*	4	5*	7
7.5	0,7	3	7	5*	6*	7*	8	4*	5*	5	7
3,5	1,0	4	8_	6*	6	8#	8	5*	6*	6	7
	1,4	6*	g,	6	8*	8	g*	6*	6	7*	8*
	0,7	4	8	6*	7*	8*	8	5 *	6*	6	7
4,0	1,0	6*	8	6	8*	8	g*	6*	6	7*	8*
יי,ד	1,4	7*	9	8*	8	8	10*	7*	7	8*	8
	2,1	8	10	8	g*	10°	10	8	8	g*	9
	0,7	6*	9+	7*	8*	8	9*	6	6	7*	8*
4,5	1,0	6	g,	7	8	8	10*	7*	7*	8*	8
7,7	1,4	8*	10*	8	8	g	10	8*	8	8	9*
	2,1	g*	10	g*	9	10	10	9*	g*	g	10*
	1,0	8*	10*	8	8	9	10	8*	8	8	9*
5,0	1,4	8	10	8	9	10*	10	8	8	9*	10*
<i>,</i>	2,1	9	10	9	10	10	10	g	10*	10*	10
	2,8	10	_	10	10	10	_	10	10	10	10
	1,4	g*	10	g*	10*	10	10	g*	9*	g	10
5,5	2,1	10*	10	10	10	10	10	10*		10	10
	2,8	10	_	10	10	10	_	10	10	10	10
	1,4	9	10	9	10	10	10	g	10*	10*	10
6,0	2,1	10	-	10	10	10	_	10	10	10	10
	2,8	10	_	10	10	_	_	10	10	10	<u> </u>
6,5	2,1	10	-	10	10	10	_	10	10	10	10
	2,8	10	-	10	-	<u> </u>		10	10		

KNOU ПОДБОРА МАРОК БАЛОК С ПРОДОЛЬНОЙ РАБОЧЕЙ АРМАТТРОЙ КЛАССА А-Т ДАЛ РОЛЕТА GM ПРИ СЛАВО-И СРЕДНЕАГРЕССИВНОЙ СТЕПЕНИ ВОЗДЕЙСТВИЯ ГАЗООБРАЗНЫХ ФЕДИНАЛИМИИ ПЕРЕПАТА ВРОЧИЛ ПОКРЫТИЯ ВДОЛЬ ПРОЛІЕТА ЗДАНИЯ

Рачетная на	trpaska, kNa	* ARGOT									
RAHGAMMD RHTIGGAOTIPO	OT CHETA	XPAH08 HPIX PE3	HPIMH	C LIOY BI	MIJHO	-	потре		7		
H CHETA		NIPI308	Q=3T	1,0	1,0	3,2	7,0	1,0	2,0	3.2	5.0
7.0	0, 7	5	g	8*	8	9*	9	7	7	8*	8
3,0	1,0	7	9	8	8	9	9	7	8	8	9*
	Τ,0	7	9	8	g*	9	g	8*	8	8	9*
3,5	1,0	7	9	8	g	9	10*	8	8	9*	9
	1,4	8	g	g*	9	9	10	8	9 *	9	9
	0,7	8*	g	8	9	g	10*	8	8	9 *	9
4,0	1,0	8_	9	9*	9	9	10	8	9*	g	9
,,,	1,4	8	10*	9	9	10*	10	9	9	9	9
	2,1	g	10	g	10	10	10	9	9	10*	10
	0,7	8	10	9	9	9	10	g *	9	9	g
4,5	1,0	8	10	g	9	104	10	9	9	9	g
15/	1,4	g*	10	9	10*	10	10	9	9	9	10*
	2,1	10*		10*	10	10	_	10*	10*	40	10
	1,0	9*	10	g	10	10	10	9	9	9	10*
5,0	1,4	g	10	10*	10	10	10	g	g	10*	10
//*	2,{	10*	-	10	10	10	_	10	10	10	10
	2,8	10		10	_			10	10	-	_
5,5	1,4	g	_	10	10	10	_	10*	10	10	10
///	2,1	10		10	10		_	10	10	10	
6,0	1,4	10*	_	10	10	_	_	10	10	10	10
9,0	2,1	10		10			<u> </u>	10	10	_	_

1.462.1 - 10/93.0 - CM3

Лист 4

PACHETHAN HAPPYS	ska, kla	14K40[]	OBMN HO	MEPBAN	H ON H	ЕСУШ,ЕЙ	СПОСОБНО	NA HT	STAHL	ł¥	
RAHPAMMYD	OT CHETA	DE3	C	C I	OABECH	PIMH K	PAHAMU	TIPH CX			<i>₹</i> \$
OT NOKPLITH'S H CHET'S		KPAHOB	ными		119	U PPY30	104 PENHOO	WU KPAN		2	
M CHEIK		N Lba30b	THYSAMIN Q=3T	4,>	2,0	3,2	5,0	1,0	2,0	3,1	7,0
3,0	7,0	6	9 *	7	7	7	9	6	7 *	7	7
	1,0	6	9*	7	7	7	9	6	7*	7	7
	0,1	7 *	9	7	8*	9*	9	7	7	7	8*
3,5	1,0	7*	g	7	8*	g*	9	7	7	7	8
	1,4	7	9	8*	9*	g	9	7	7	8 *	9
	0,4	7	g	8	8	9	9	8*	8	8	9*
4,0	1,0	7	g	8	9*	9	9	8*	8	8	9
-,	1,4	7	9	C*	9	9	10*	8	g *	g	<u> </u>
	2,1	8	49.	·	7	10*	10	g	9	g	9
	0,4	8 *	g	<u>c</u> *	g	g	9	8	g *	g *	9
4,5	1,0	8 *	9	c#	9	g	10*	8	g*	ç	9
,	1,4	8	10 *	C	9	9	10	g *	g	9	g
	ર,1	g	10	9	9	10	10	g	9	9	10
	1,0	8	10*	<u> </u>	9	9	10	g*	9	9	9
5,0	1,4	9 *	10	9	g	10*	10	9	g	9	<u></u>
/,-	2,1	g	10	9	10*	10	10	g	9	13	10
	2,8	10	10	1(10	10	10	10	10	10	10
	1,4	9	10	9	10 *	10	10	9	9	9	10
5,5	2,1	10 *	10	{(*	10	10	10	10*	10*	10	10
	2,8	10	_	1(10	10	10	10	10	10	10
, ,	1,4	9	10	1 *	10	10	10	9	10*	10*	10
6,0	2,1	10	_	1	10	10	10	10	10	10	10
	2,8	10		1	10	10		10	10	10	10
6,5	2,1	10		1	10	10		10	10	10	10
	2,8	10		1	_	_		10	10	10	
0,7	2,8	10	_			_					

Ключ подбора марок балок с продольной рабочей арматурой классов а- $\overline{\mathbb{M}}$, а- $\overline{\mathbb{M}}$ в, а- $\overline{\mathbb{M}}$, а- $\overline{\mathbb{M}}$ дологата 9м при неагрессивной среде и отсутствии перепада прочиля покрытия

Ан КАНТЭРОА	TPY3KA, KTIQ	14R40	орый н	OMEP	Banku	NO HE	∶үш,€й	спосо	BHOCT	5 KAA 1	уннад
CYMMAPHAX	OT CHETA	EE3	UOT B FC	C 1101			PAHAN	NAU NY			жения
от покрытия		KPAHOB HPIX	HPIMN .		<u>ПРИ Г</u>		OFPEI	MHOCT	U KPI	HOB C	7
H CHETA		ALLANSOB	Q=3T	4,0	2,0	3,2	5,0	1,0	2,0	3,1	5,0
3,0	0,1 04 F,0 TD	1	4*	1	3*	3	5*	1	1	3*	3
3,5	0T 0,7 ሑo 1,4	1	5	٦	3	4	5	2*	3	3	4*
4,0	OT 0,740 2,4	1	6*	3	4	5	6*	3*	3	4*	5*
4,5	1,2 0,17,0 70	3*	7	5*	5	6*	7	4*	4	5*	5
5,0	OT 1,0 40 2,8	4	8*	5	6*	η*	8	5*	5	6*	8*
5,5	07 1,4 40 2,8	5	8	6*	7*	8*	8	5	6*	8*	8
6,0	ot 1,4 ao 1,8	6*	g*	7	8*	8	g*	7*	7	8	g*
6,5	of 2,140 2,8	7	g	8*	8	9*	g	7	8*	8	q
٦,٥	2,8	8*	g	8	9*	9	g	8*	8	9*	g

 \overline{X} и марок балок с продолен рабочей агриатурой класса $A-\overline{X}$ китой телен возаходи возаходи класоди возаходи класоди возаходи класоди к

РАЧЕТНАЯ НА	TPY3KA, KTQ	X4R9011	н ѝ <i>і</i> дво.	OMEP E	SANKH	TO HEC	УЩЕЙ (ZNOCOE	HOCTIF	112 31	AHUÚ
KAHPAMAYD	OT CHETA	UOPPEC- PE3	C NOABEC-			MH KF			XEME :		
RHTHANOI TO			ными т РУЗАМИ		NPW.		ТАДОПО	MUDCT		<u></u>	77
N CHETTA		N TPY30B		1,0	2,0	3,2	5,0	1,0	2,0	3,2	5,0
3,0	07 0,7 40 1,0	3	8	3	5	5	8	3	3	5	5
3,5	OT 0,7 40 1,4	3	8	5	6*	8	8	5	5	5	8*
4,0	1,2 OAT,0 70	5	9	8	8	8	8	5	8	8	8
4,5	1,5 04 10 70	8	10*	8	8	8	9	8	8	8	8
5,0	OT 4,0 40 2,8	8	10*	8	g*	9*	9	8	8	8	g*
5,5	07 1,4 40 2,8	8	10	g	g	9	10*	9*	g *	g	9
6,0	071,440 2,8	9	10	9	9	10*	10	9	9	9	10*
6,5	07 2,140 2,8	9	10	10*	10	10	10	9	10*	10	10
4,0	2,8	10	10	10	10	10	10	10	10	10	10

- 1. KNOWN HOLBOPA COCTABREHLI AM WATA BAROK 9M.
- 2. Ключи подбора составлены для зданий \mathbb{I} кллсса ответственности для зданий \mathbb{I} кллсса ответственности допускается пользоваться этими же ключами, а для случаев, отмеченных знаком * , при балках из тяжелого бетона и рабочей арматуре кллссов λ - \mathbb{I} в, λ - \mathbb{I} и λ - \mathbb{I} табличные значения порядковых номеров мотут быть снижены на единицу.
- 3. Схемы вагружений и ориентирование направления перепада протиля покрытия приведены на вокум. 1.461.1 10/93.0 см5.
- 4.3 HAVEHUR PACHETHUR HAPPY30K TIPHBELEHM TIPH $\gamma_f > 1$.

				1.462.4-	10/93.0	- CM4	+
PA3PA5.	Norbhhckuú	300	Ключи	MAIPO K		TOUR	AHCTOR
HCTONHUN TIPODEPHA	VOLРИНСКИЙ УСЕРИНСКИЙ СЕМЕНОВУ	Ours-	BANOK	AP AT SAOGR KAA		ועווקו	MAHAT

КАЮЧ ПОДБОРД МАРОК БАЛОК С ПРОДОЛЬНОЙ РАБОЧЕЙ АРМАТУРОЙ КЛАССОВ А-Ши А-Шв Для пролета 9м при слабо-и среднеагресоивной степени воздействия газоберазных сред и отсутствии перепада помрытия

PACHETHAN HAT	PY3KA . KIIa					10 HEC		посові	OCTH 1	AE PA	AHHÁ	
CAMMAPHAS	OT CHETA	BE3 NOABEC-	LOY PEC-									
OT NOKPLITUA		KPAHOB	HPIWK	 	ΠP	עיז ע	1701107	LLEMHO	CTH K	PAHOS	Q T	
H CHETA		A LEASOR		1,0	2,0	3,2	5,0	1,0	2,0	3,2	7,0	
3,0	0T 0,7 40 4,0	7	8	7	8*	8	8	٦	7	7	8*	
3,5	or 0,7 k o 4,4	7	8	8	8	8	8	8*	8	8	8	
4,0	ο τ	8	8	8	8	8	8	8	8	8	8	
4,5	OT 0,7 Ao 2,1	8	9*	8	8	8	8	8	8	8	8	
5,0	or 40 40 2,8	8	9	ъ	8	8	8	8	8	8	8	
5,5	or 34 10 28	8	g	8	8	8	g*	8	8	8	8	
6,0	ot 1,4 to 2,8	8	9	9*	g*	9	9	8	8	g*	9*	
6,5	OT 2,140 2,8	8	10*	g	9	9	9	9*	g	g	g	
7,0	2,8	g*	10	9	g	9	g	g	g	9	g	

покрытия поперек пролета эдания среде и наличин перепада профил покрытия поперек пролета эдания поперек пролета удания поперек продекта удания поперек пролета удания поперек поперек продекта удания поперек попер

HOKPEITHA	HOHEPEK IN	ONE IN .	2 WHNY											
PACETHAN HAT	PYSKA, KNO		ювый н	ONEP E	ALKH I	"94H ON	YW,EK (1000E	10CTH .	tw st	Аний			
KAHAAMIYO	OT CHETA	BE3	Pez C		C C TO A BECH WHY KPAHAMU THE CIENE BAPPY WEHRS									
KHTHENONTO	OI CHEIR	ньи	HPIMI	3 4 NPW PPY3 ONO4-DEMHOCTH KPAHOB Q,T										
HEPA		KPAHOB HTPY30B	HMAEYET			3.2	5,0	1,0	2,0	3,1	5,0			
	A #	3*	A=3T	4.0	2,0	5	7*	3	4*	5*	5			
3,0	0,7	+		<u> </u>	<u> </u>	7*	8*	4	5*	5	6+			
	1,0	4	7	5*	5	7*	8*	4	<i>5</i> *	5	6*			
	0,7	4	7	5*	5		<u> </u>		6*	6*	8*			
3,5	1,0	7	8	6*	7*	7	8	5						
	1,4	7 *	9	7	8*	8	9	7*	8*	8	9			
	0,7	5	8*	6*	7*	7	8	5	6*	6*	8*			
4,0	1,0	6*	9*	7+	7	8*	g*	6*	7*	В	g.			
150	1,4	8*	g	8*	8	g *	9	8*	8	8	g			
	2,1	g	10	9	g	g	10	9	9_	g	10			
	0,7	6	9*	7*	7	8	g*	6	7*	8	9 *			
hε	1,0	7	g	7	8	9*	g	7	8	8	9			
4,5	1,4	8	10*	8	9*	9	9	8	8	9 *	10*			
	2,4	g	10	9	9	10*	10	9	g	10*	10			
	1,0	8 *	9	8	9*	9	9	8*	88	9*	g			
5,0	1,4	9*	10	9*	9	9	10*	9*	9*	9	10*			
/, v	2,1	10 *	10	40*	10*	10	10	10*	10 *	10*	10			
	2,8	10	_	40	10	10	10	10	10	10	10			
	1,4	g	10	9	9	10*	10	y	g	g	10			
5. 5	2,1	10	10	10	10	10	10	10	10	10	10			
	2,8	10	_	10	10	10		10	10	10	10			
	1,4	9	10	9	40*	10	10	9	g	10*	10			
6,0	2,1	10		10	10	10	10	10_	10	10	10			
	2,8	10		40	10	10		10	10	10	=			
6,5	2,1	10	_	10	10	_		10	10	10	10			

1.462.4- 40/93.0 - CM4 2

Ключ подбора марок балок с продольной рабочей арматурой класса $A-\overline{X}$ добатранта за пролета 3 м при слабо и середне агрессивной степени возделях газоберазных сред и наанчии перепада рамом при слабо и середне аграбом с продолживает и середне аграбом с продолживает и середне аграбом с проделживает и середне аграбом с пределживает и середне аграбом с пределжи

PACYETHAZ HAPPYSKA , KNO ПОРЯДКОВЫЙ НОМЕР БАЛКИ ПО НЕСУЩЕЙ СПОСОБНОСТИ АЛЯ ЗДАНИЙ UDTBEC- MOTBEC-C NOLBECHLIMH KPAHAMH NPH CXEME BATPY XCEHHA CYMMAPHAS OT CHETA HLX ными OT TOKPLITUS KPAHOB TPYSIMH ПРИ ГРУЗОПОДЪЕМНОСТИ КРАНОВ В,Т H CHETA H TPY30B Q=3T 4.0 2,0 | 3,2 5.0 1,0 2,0 3,2 5,0 0.7 8 8 9* 6* 8 8 3,0 1,0 6* 8 6* 0,7 9* 8 8 3,5 1,0 9* 8 9* 4,4 10* g* g 10 * 0.1 9* 9* 1,0 9* 9 10* 9* 9 9 4.0 1,4 10* 10 10 g g g 2,1 40 10 10 10 10 ŧΰ 10 0.7 10* q# 10* 9* q 4,0 40 10 9 4,5 1,4 40 10* 10 10 10* 40 2,1 10 40 10 10 10 10 10 10 10 10 4,0 10* 10 10 10 10 10 * 1,4 10* 10 5,0 10 10 10* 10* 10 40 10 2,1 10 10 10 10 10 10 10 10 10 2.8 10 10 10 40 10 10 10 10 10 10 10 10 10 10 10 10 10 5,5 2.1 10 10 10 10 10 10 10 2.8 10 10 10 10 10 4,4 10 10 10 10 10 10 10 10 10 6,0 2.1 10 10 10 10 10 10 10 10

10

10

10

10

10

10

10

10

10

10

2.8

2.1

6.5

10

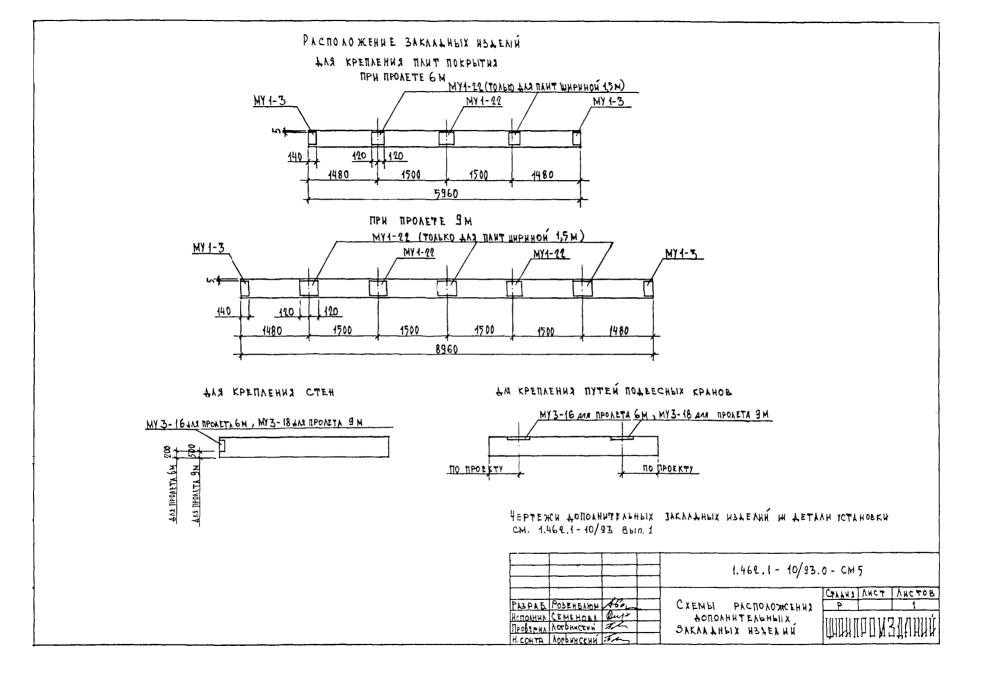
10

 $a \overline{x}$ - k $w \overline{x}$ - k 40022643 йодугамда йэровад йодиом од 300640 или металоди королого кина в 200640 королого кина в 200640 королого кина в 200640 или металоди королого кина в 200640 или королого королого королого кина в 200640 или королого корол

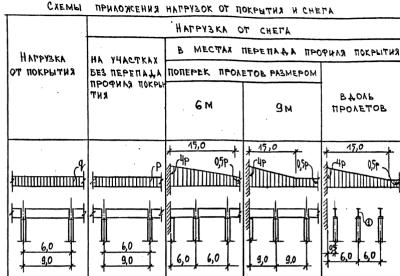
PRYETHAN HAT	PY3KA KNO	MOPALE	оғый н			10 UE CY				13 311	
· · · · · · · · · · · · · · · · · · ·	Tenn, Knu	PE3	C								
CMMAPHAR	OT CHETA	HOLBEC-	NOT BEC-	C 110#1	SECH WIT	YN KPA	HVWN	IPH CLE			KKH
O' NOKPHITH'S	,,	KPAHOB	HPIMN TPYSEMU		ΠPI	H PEPY	100017	ENHO	TH KP		\
H CHELY		H P P Y 3 O B	Q-37	1,0	2,0	3,2	5,0	1,0	2,0	3,2	5,0
3,0	0,7	7	8	7	8*	8	8	7	7	7	8 *
-,-	1,0	7	8	7	8*	8	8	7	7	7	8*
7.	۲,0	7	8	8	8	8	8	8 *	8	8	8
3,5	1,0	7	8	8	8	8	8	8*	8	8	
	1,4	8	9 *	8	8	8	9*	8	8		
	0,7	8	8	8	8	8	8			8	8
1.0	1,0	8	8	8	8		9*	8	8	8	8
4,0	4,4	8	9	8	8	8		8_	8	8	8
a	2,1	9*	10	91		8	g	8	8	8	8
	0,7	8	9*		9	3	10*	g*	g	g	g
	1,0	8	9	8		8	9*	8	8	8	8
4,5	1,4	1 8	10*	8	8	8	g	8	8	8	8
	2,1	+	 	8	g*	9**	9	8	8	8	9_
		9	10	g	g	10**	10	9	9	g	10
	1,0	8	9	8	8	9*	9	8	8	8	9
5,0	1,4	8	10	9*	9	9	10*	8	g*	9*	9
	2,1	10*	10	10*	10*	10	10	10*	10*	10	10
	2,8	10		10	10	10	10	10	10	10	10
	1,4	9	10	9	g	10*	10	g	9	9	9
5,5	2,1	10	10	10	10	10	10	10	10	10	10
	2,8	10	_	10	10	10	-	10	10	10	10
	1,4	9	10	9	10*	10	10	9	g	10	10*
6,0	2,1	10	_	10	10	10	10	10	10	10	10
	2,8	10	-	10	10		†=-	10	10	10	10
6,5	۲,۱	10	_	10	10	10		 			
	-1.	1 .,	1	110	1 10	10		10	10	10	10

1.462.1 - 110/93.0 - CM4

Auct


PACYETHAS HAPPYSKA, KNO MOPALKOBLIN HOMEP BANKH TO HECYWLEN CHOCOBHOCTH LAS BAAHUN WOT BEC WOTPES С ПОАВЕСНЫМИ КРАНАМИ ПРИ СХЕМЕ ЗАГРУЖЕНИЯ OT CHETA CYMMAPHAS HPIX HHMH KPAHOB PPYSANNI TIPH PPYSOTO A DEMHOCTH KPAHOB Q, T OT MOKPHITHS H TPV301 Q-3 H CHECK 1.0 2,0 3,2 5,0 1,0 2,0 3,2 5.0 4* 4 0, 7 5 3 3,0 4* 7 🕈 4.0 7 4* 5 5* 0.7 6* 4* 5 4 5* 6* 3,5 4,0 77 # 6* * 6* 7* 8* 9 6* 6* 9 5* 8* 0,7 7* 7 * 4,0 6* 8 5 8* 4,0 7 * 1,4 9 # 7 * 8 40 * 2.1 9* 9 q 9 0,7 g# 6 * 7 7 9* 4.0 9* 8 9* 4,5 Q* 8* 9* g 9 9* 10 Q 2.1 9 * 10* q 10* 9* 7 1,0 8 9* g 10* 9* 9* 1,4 9* 9 9 8 5,0 10 2.1 q 9 10* 9 9 10 10 10 10 10 2,8 10 10 10 10 10 10 10 10 4,4 q 10* 10* g# 10* 10* 10 10* 5.5 2.1 10 10* 10* 10* 10 10 10 10 2.8 10 10 10 10 10 10 10 Q 10 Q 1,4 9 10* 10 10 Q 10 10 10 2.1 10 6.0 10 10 10 10 10 40 10 2.8 10 10 10 10 10 10 10 10 10 40 2,1 10 10 10 10 10 10 10 6,5 10 2.8 10 10 10 10 10 10 10 10 2.8 10 10 10 10 10 10 7,0

RALA W-A ADDAAN WOTTAMTA WELOAT BONDAO ACTOR OF ANAL ACCA AT THE PORT OF ANALY ACCEPT WHEN A STANDARD TO ACCEPT AND ACCEPT WHEN A STANDARD BANGOT BANGOT ALADERS WHANK HE AT MOTH ACCEPT BANGOT BANGOT


	PAYETHAS HAT	'PY3KA, KNA	1289011	OBPIN	HOMEP	BANKU	TO HIE	CAMEN	C110C0	PHOCIM	YN 31	NHHA
	СММАРНАЯ	OT CHETA	DE3			PECHPI				EME 31		
	OTHORPHTUS		Werx	HEIMU		3					4	
	H HETA		N MPY30B	Pryskmu Q=37	1,0		TPY30M				OB Q	
	3,0	0,7	5	8	6*	1,0	3,2	5.0 8	1,0 5	2,0	3,2	5,0
	5,-	1,0	5	g*	8	8	-8				-8	8
		0,1	6*	9*	8	8	8	g*	6*	8	8	8
	3,5	1,0	8	g	8	8	8 g#	9	8	8	8	8
		1,4	8	9		8		g	8	8	8	8_
		7,0	8	9	8	g*	9	9	8	88	9*	g
	4,0	1,0	8	9	8	8	g*	9	8	88	8	g*
	,,,,	1,4	8	10*	9*	9*	9	9	8	8	9.*	9
ļ		2,1	9	10	9	9	9	10*	g*	g*	9	9
		0,4	8	10*	8		10	10	q	9	10*	10
	4,5	1,0	8	10*	9:	9*	9	10*	8	8	9*	S
		1,4	9	10	9	9	9	10*	9*	g *	9	9*
		2,1	10*	10	10*	g	10*	10	9	9	g	10
		1,0	9	10		10	10	10	10*	10*	10	10
	5,0	1,4	9*	10	9	9	10*	10	g	9	9	10
	,,,	2,1	10	10	10	10*	10	10	9	g	10*	10
		۷,8	10	10	10	10	10	10	10	10	10	10
		1,4	10*	10		10	10	10	10	10	10	10
	5,5	2,1	10	10	10*	10	10	10	10*	10*	10	10
		2,8	10	10	10	10	10	10	10	10	10	10
		1,4	10	10	10	10	10	10	10	10	10	10
	6,0	2,1	10	10	10	10	10	10	10	10	10	10
		1,8	10	1	10	10	10	10	10	10	10	10
	1.5	2,1	10		10	10	10	10	10	10	10	10
	6,5	2,8	10		10	10	10	10	10	10	10	10
	7,0	2,8	10		10	10	10	<u> </u>	10	10	10	10
_				Ь	10	10	<u>L</u>		10	10	10	10
					4	.461	.4 - 40	0/93.	0 - Ch	14		1.40
								1 = -				4

КАЮЧ ПОДБОРД МАРОК БЛЛОК С ПРОДОЛЬНОЙ РАБОЧЕЙ ЯРМАТРОЙ КЛАССОВ А-Ш и А-ШВ ДЛЗ ПРОЛЕТА 9M ПРИ СЛАБО-И СРЕДНЕЛГРЕССИВНОЙ СТЕПЕНИ ВОЗДЕЙСТВИЗ РАЗООБРАЗНЫХ СРЕД ПРИ НАЛИЧИИ ПЕРЕПАДА ПРОФИЛЗ ПОСРЫТИЯ ВДОЛЬ ПРОЛЕТА ЗДАНИЗ

TAH RAHTEPDA	PY3KA, KNA	ARAON	KOBNY H	G 43MOI	IVKN UO	HEGAMEN	СПОСОБНО	CTH AA	HHAAE R	н́		
CYMMAPHAS	OT CHETA	UOTBEG -	HOLBEC-	CIOFBECHPIMA KANHUMA ULA CREME BALLA WEHAN								
CH TILLY OF TO	ł	KPAHOB	HEIMW ITTSA MN	ļ	E NAU	Thu and	7 7 111100		4			
N CHELY		h leasob	Q=3T	1,0	2,0	3,2	5,0	1,0 KP	AHOB Q,	3,2	5,0	
3.0	0,7	7	8	7	8 *	8	8	7	7	7	8 *	
3,0	1,0	7	8	7	8*	8	8	7	7	7	8*	
	0,7	7	8	8	8	8	8	8*	8	8	8	
3,5	1,0	7	8	8	8	8	8	8*	8	8	8	
	1,4	8*	8	8	8	8	8	8	8	8	8	
	0,7	8	8	8	8	8	8	8	8	8	8	
4,0	1,0	8	8	8	8	8	8	8	8	8	8	
1,*	1,4	8	9*	8	8	8	9*	8	8	8	8	
	2,1	8	10*	8	8	9*	9*	8	8	8	9*	
	7,0	8	9*	8	8	8	8	8	8	8	8	
4,5	1,0	8	9*	8	8	8	9*	8	8	8	8	
7,7	1,4	8	9	8	8	9*	9*	8	8	8	8	
	2.{	9*	10	9	9	9	10 *		9 *	9#	9	
	1,0	8	9	8	8	9*	9*	8	8	8	8	
۲.۸	1,4	8	10*	8	g*	9	9	8	8	8_	9 *	
5,0	2,1	9	10	g	9	10*	10*	9	9	g	9	
	2,8	10	10	1(10	10	10	10	10	10	10	
	1,4	g *	10	9	9	9	10*	8	9 *	9#	9	
5,5	2,1	9	10	9	10*	10	10	9	9	10 *	10*	
	2.8	10	_	1C	10	10	10	10	10	10	10	
	1,4	9	10	9	9	10*	10*	9	9	9	10	
6,0	2,1	10*	10	1(*	10	10	10	10*	10*	10	10	
	2,8	10		1(10	10	10	10	10	16	10	
	2,1	10	T -	11	10	10	10	10	10	10	10	
6,5	1,8	10		11	10	10	10	10	10	10	10	

ТЭЛ ОЧП , , , , , , , , , , ,	CXEM	ГРУЗОПОДТЬ ЕМНОСТЬ В ОН АРХ И ВЕЛИ - И ИН НЬ	KAPHOP H LAA3OB	KH, PIN ON NHR	ЗНАЧЕНИЕ НАГРУЗОК, КН, ОТ ПОДВЕСНЫХ КРАНОІ И ГРУЗОВ ДАЯ РАСЧЕТА ПО ПРЕДЕЛЬНЫМ СОСТО- ЯНИЯМ ГРУППЫ			
		408441 Q,T		Pmax	Pmin	Pmax	<u> </u>	
		1,0	 	31	29	7	6	
		2,0	I	50	46	9	8	
	15	3,2	1,5 3,0 1,5	74	67	11	10	
		5,0	1 1 Pmax 1 Pmin	107	97	11	10	
6		1,0		31	29	g	8	
	و	2,0	<u> </u>	53	48	9	8	
	_	3,2	0,9 4,0 0,9	74	67	11	10	
		5,0	1 Pmax Pmin1	107	97	14	13	
	1704BE	CHЫE Q=3,0	>1,0 \$ Pmax 6,0	35	32		_	
		1,0		31	29	9	8	
	3	۷,0	2,4 4,2 12,4	53	48	g	8	
	3	3,2	1 9,0 1	74	67	11	10	
		5,0	1 Pmax Pmin	107	97	14	13	
g		1,0		33	30	7	6	
	4	2,0	3,0 6,0 13,0	55	50	7	6	
	,	3,2	<u>,</u> 9,0 1	75	68	13	12	
		5,0	Pmax Pmin	114	104	8	7	

- 1. NOABECHLE KPAHLI MPHHATLI NO FOCT 7890-84.
- 2.3 начения нагрузок от подъесных кранов определены от двух кранов в пролете при шаге балок бм и веса груза, тали, крана, подкрановых путей и подвесок, с учетом коэффициента сочетаний Ψ = 0,85. Коэффициент надежности по назначению $\delta \pi$ = 4,0.
- 3. ЗНАЧЕНИЯ РАВНОМЕРНО РАСПРЕДЕЛЕННЫХ РАСЧЕТНЫХ (ПРИ $f_f>1$) НАГРУЗОК ОТ ПОКРЫТИЯ (9) И СНЕТА (Р) ПРИВЕДЕНЫ В ДОКУМЕНТЕ 1.462.1-10/93.0--СМЗ И СМЧ.
- 4. ЗНАКОМ Ф ОБОЗНАЧЕНА РАСЧЕТНАЯ БААКА, ПО КОТОРОЙ ПОСТРОЕНЫ КЛЮЧИ ПОДБОРА.
- 5. HATPYSKU OT NOKPLITUR IN CHETA TEPERATOTCH HA BANKU B BULE COCPE-LOTGUEHHLIX CHA B MECTAX OTHPAHUR TIPOLONGHLIX PEBEP TAUT.

		1.462.1-10/93.0-cm6						
Разраб, Розенблюм	Ko.	НАГРУЗКИ НА БАЛКИ ОТ	CTAAUS P	VNCT	AUCTOR			
MCTIONHUM CEMEHOBA WITTONE PUM AOTHURCKHU Z	Pref-	- HNA, TORPORTH OTO OF OPYLOBA-	ЦНШ	DA OM.				