Министерство промышленности строительных материалов СССР Главниипроект

Научно-исследовательский и проектный институт по газоочистным сооружениям, технике безопасности и охране труда в промышленности строительных материалов НИПИОТстром

ВРЕМЕННОЕ МЕТОДИЧЕСКОЕ ПОСОБИЕ

по расчету выбросов от неорганизованных источников в промышленности строительных материалов

ВВЕДЕНИЕ

Методическое пособие предназначено для ориентировочных расчетов количества вредных веществ, выбрасываемых в атмосферу неорганизованными источниками предприятий промышленности строительных материалов. Она может быть использована также при проведении инвентаризации выбросов путем расчета их количественных характеристик в тех случаях, когда прямые методы измерений по каким-либо причинам затруднены.

Временное методическое пособие разработано институтом НИПИОТ стром на основании материалов натурных замеров, проведенных в 1981-1982 г.г., и анализа литературных источников

Методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов подготовлено группой авторов — сотрудников НИПИОТстрома Н Л.Орловым, А.С.Гавриловой, В.Д.Чебурковой, Л.Н.Перестюк.

Временное методическое пособие разработано в соответствии с этапом 03.06Д1д по заданию 03 проблемы 0.85.04 ГКНТ "Создать и внедрить эффективные методы и средства контроля загрязнения окружающей среды"

С введением в действие настоящего "Временного методического пособия ..." утрачивает силу "Временное методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов", выпуска 1982 г.

1. Перечень основных источников неорганизованных выбросов и выделяющихся вредных веществ на предприятиях отрасли

Основными вредными веществами, поступающими от неорганизованных стационарных источников загрязнения окружающей среды в промышленности строительных материалов являются пылевыбросы и газообразные компоненты (СО, SOx, NOx и др.), выделяющихся при работе карьерного транспорта и буро-взрывных работах.

Расчет объема неорганизованных выбросов необходим для учета допустимых валовых выбросов предприятий, расположенных в зонах повышенного загрязнения атмосферы.

В промышленности строительных материалов источниками неорганизованных выбросов являются

узлы пересыпки материала;

перевалочные работы на складе;

хранилища пылящих материалов;

узлы загрузки продукции в неспециализированный транспорт навалом,

хвостохранилища;

карьерный транспорт и механизмы;

дороги с покрытиями и без покрытия;

погрузочно-разгрузочные работы;

бурение шпуров и скважин;

взрывные работы.

Пыль, образующаяся при бурении, взрывных работах, пилении камня, погрузочноразгрузочных работах, транспортировке и других работах, характеризуется широким диапазоном размера частиц – от 1-2 мм до долей микрона.

В атмосферу обычно поступает пыль, размер частиц которой менее 10мкм Крупные частицы или сразу падают на почву, или оседают из воздуха через непродолжительное время. Вынос в атмосферу мельчайших минеральных частиц пыли в свободном состоянии в виде аэрозолей загрязняет воздушное пространство главным образом вблизи предприятий и на непродолжительное время, но наносят определенный ущерб народному хозяйству.

Пыль оседая на землю, поверхность водоемов, зданий, сооруженийвыступает в основной своей роли – источника загрязнения почвы и водоемов, что предопределяет накопление вредных веществ до и выше предельных концентраций

2. Организация работ по контролю промышленных выбросов в атмосферу

На крупных предприятиях строительных материалов рекомендуют организовывать службу пылеулавливания (подразделения по охране природы) или возложить ответственность за эти работы на санитарно-промышленные лаборатории. План организации контроля разрабатывается предприятием на основании требований местных органов санитарного надзора, УГКС и Госинспекции по охране атмосферного воздуха и согласовывается с ними

Выполнение природоохранных мероприятий контролируется главным инженером предприятия

Определение химического состава и запыленности карьеров и производственной территории можно производить как путем отбора проб воздуха на рабочих местах в карьере с последующим его анализом в лаборатории, так и с помощью переносных приборов, позволяющих определить содержание вредных примесей и пыли непосредственно на месте замера

Отбор проб необходимо производить в соответствии с инструкцией по определению загазованности и запыленности атмосферы карьеров. При отборе проб приемное устройство аппаратуры пылевого и газового контроля должно помещаться в зоне дыхания рабочих (τ е примерно на высоте 1-1.7 м).

Запыленность воздуха определяется высовым методом путем протягивания определенного объема исследуемого воздуха через фильтр и взвешивания фильтра в лаборатории до и после
отбора проб Протягивание воздуха осуществляется или электрическим аспиратором, или аспи-

ратором эжекторного типа. В качестве фильтров используются фильтры $A\Phi A-18$ или $A\Phi A-10$, изготовляемые из ткани $\Phi\Pi\Pi$. Минимальная навеска пыли на фильтрах должна быть не менее 1-2 мг.

Основными недостатками весового метода определения запыленности воздуха длительность отбора пробы и невозможность определения концентрации пыли на рабочем месте

Почти все применяемые для контроля запыленности и загазованности атмосферы карьеров и производственных территорий метод и приборы не позволяют получить оперативную информацию Оперативный, комплексный контроль вредных примесей в атмосфере карьеров и производственных территорий следует осуществлять с помощью передвижной лаборатории, оснащенной новейшими приборами экспрессного пылевого и газового контроля.

Замеры параметров и состава выбросов от неорганизованных источников проводятся один раз в квартал

3. Источники типа: склады, хвостохранилища

Общий объем выбросов для них можно охарактеризовать следующим уравнением

$$q = A + B = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * G * 10^{-6} * B'/3600 + (K_3 * K_4 * K_5 * K_6 * K_7 * q' * F), r/c$$
 /1/

где А - выбросы при переработке (ссыпка, перевалка, перемещение) материала, г/с,

В - выбросы при статическом хранении материала;

фракций пыли размером 0 - 200 мкм.

К₁ – высовая доля пылевой фракции в материале.
 Определяется путем отмывки и просева средней пробы с выделением

К₂ – доля пыли (от всей массы пыли), переходящая в аэрозоль;

Къзффициент, учитывающий местные метеоусловия и принимаемый в соответствии с табл. 2;

 Коэффициент, учитывающий местные условия, степень защищенности узла от внешних воздействий, условия пылеобразования.

Берется по данным табл. 3

К₅ – коэффициент, учитывающий влажность материала и принимаемый в соответствии с данными табл. 4;

К₆ – коэффициент, учитывающий профиль поверхности складируемого материала и определяемый как соотношение F_{факт} / F. Значение К₆ колеблется в пределах 1.3 – 1.6 в зависимости от крупности материала и степени заполначия

К₇ - коэффициент, учитывающий крупность материала и принимаемый в соответствии с табл. 5.

 $F_{\phi a \kappa i}^{\ \ \ \ \ }$ — это фактическая поверхность материала с учетом рельефа его сечения,

F – поверхность пыления в плане, M^2 ;

q' — унос пылис одного m^2 фактической поверхности в условиях, когда $K_3 = K_5 = 1$.

Принимается в соответствии с данными табл. 6.

Сумарное количество перерабатываемого материала, т/ч

коэффициент, учитывающий высоту пересыпки и принимаемый по данным табл. 7

Учитывать голько площадь, на которой производятся погрузочно-разгрузочные работы

Таблица № 1

NōNō	Наименование материала	Плотность материала, г/см ³	Весовая доля пы- левой фракции в материале, К ₁	
1	Огарки	3.9	0.04	0.03
2	Клинкер	3.2	0.01	0.003
3	Цемент	3.1	0.04	0.03
4.	Известняк	2.7	0.04	0.02
5	Мергель	2.7	0.05	0 02
6.	Известь комовая / молотая	2.7	0.07 / 0 07	0.05
7	Гранит	2.8	0 02	0.04
8	Мрамор	2.8	0.04	0 06
9	Мел	2.7	0.05	0 07
10.	Гипс комовый / молотый	2.6	0.03 / 0.08	0 02 / 0.04
11.	Доломит	2.7	0.05	0.02
12	Опока	2.65	0.03	0.01
13.	Пегматит	2.6	0.04	0.04
14	Гнейс	2.9	0.05	0.02
15.	Каолин	2.7	0.06	0 04
16.	Нефелин	2.7	0.06	0.02
17.	Глина	2.7	0.05	0 02
18.	Песок	2.6	0.05	0.03
19	Песчаник	2.65	0.04	0 01
20.	Слюда	2.8	0.02	0.01
21	Полевой шпат	2.7	0.07	0.01
22.	Шлак	2.5 – 3.0	0.05	0 02
23	Диорит	2.8	0.03	0 06
24	Порфироды	2.7	0.03	0 07
25.	Графит	2.2 – 2.7	0.03	0 04
26	Уголь	1.3	0 03	0 02
27	Зола	2.5	0.06	0 04
28	Диатомит	2.3	0.03	0.02
29	Перлит	2.4	0.04	0 06
30.	Керамзит	2.5	0 06	0 02
31	Вермикулит	2.6	0.06	0 04
32	Оглопорит	2.5	0.06	0 04
33.	Туф	2.6	0.03	0 02
34	Пемза	2.5	0 03	0 06
35	Сульфат	2.7	0 05	0 02
36	Шамот	2.6	0.04	0 02
37	Смесь песка и извести	2.6	0 05	100
38	Кирпич бой		0 05	0 01
39	Минеральная вата		0 05	0 01
40	Щебенка		0 04	0 02

Таблица № 2

Таблица № 3

Зависимость величины K₃ от скорости ветра

Скорость ветра, м/с	К3
до 2	1
до 5	1.2
до 7	1.4
до 10	1.7
до 12	2.0
до 14	2.3
до 16	2.6
до 18	2.8
до 20	
и выше	3.0

Зависимость величины К₄ от местных условий

Местные условия	K ₄
Склады хранилища открытые	
а) с 4-х сторон	1
б) с 3-х сторон	0.5
в) с 2-х сторон полностью и с	
2-х сторон частично	0 3
г) с 2-х сторон	02
д) с 1-й стороны	0.1
е) загрузочный рукав	0.01
ж) ² закрыт с 4-х сторон	0.005

Таблица № 4 Зависимость величины K_5 от влажности материалов

Влажность материалов, % ³	К5
0 – 0 5	1.0
до 10	0.9
до 3 0	0.8
до 5 0	0.7
до 70	0.6
до 8 0	0.4
до 9.0	0.2
до 10.0	0.1
свыше 10	0.01

Таблица № 5 Зависимость величины К₇ от крупности материала

Размер куска,	₩ 7
мм	
> 500	0 1
500 - 100	0.2
100 – 50	04
50 – 10	0.5
10 – 5	0.6
5 – 3	07
3 – 1	0.8
1	1.0

Склады и хвостохранилища рассматриваются как равномерно распределенные источники пылевыделений

Проверка фактического дисперсного состава пыли и уточнение значения K_2 производится отбором проб запыленного воздуха на границах пылящего объекта (склада, хвостохранилища) при скорости ветра 2 м/с, дующего в направлении точки отбора пробы

Таблица № 6 Зависимость величины q' при условии K₃ = K₅ = 1

_	Складируемый материал	г/м ² *c	

Таблица № 7 Зависимость величины В' от высоты пересыпки

Высота падения	B'
материала	

² При переводе неорганизованных источников узла пересыпки в организованные считать выброс пыли в агмосферу до 30%

³ Песок для складов при влажности 3% и более выбросы не считать

	8
Клинкер, шлак	0.002
Щебенка, песок, кварц	0.002
Мергель, известняк, огарки, цемент	0.003
Сухие глинистые материалы	0.004
Хвосты асбестовых фабрик,	
песчаник, известь	0.005
Уголь, гипс, мел	0.005

0.5	0.4
10	0.5
1 5	0.6
20	0.7
4.0	1.0
60	1 5
8 0	2.0
100	2.5

4. Пересыпка пылящих материалов

Интенсивными неорганизованными источками пылеобразования являются пересыпки маиериала, погрузка материала в открытые вагоны, полувагоны, загрузка материала в открытые вагоны, грейфером в бункер, разгрузка самосвалов в бункер, ссыпка материала открытой струей в склад и др. Объемы пылевыделений от всех этих источников могут быть расчитаны по формуле 4 /2/

$$Q = K_1 * K_2 * K_3 * K_4 * K_5 * K_7 * G * 10^{-6} * B'/3600, r/c$$
/2/

где К1, К2. - коэффициенты, аналогичные коэффициентам в формуле /1/,

 $K_3, K_4,$

K5, K7

G – производительность узла пересыпки, т/ч

В' – коэффициент, учитывающий высоту пересыпки и принимаемый по данным табл 7

4.1. Пересыпка угля⁴

При пересыпках, погрузке и разгрузке угля на технологическом комплексе поверхности угольных шахт удельный выброс пыли определяется по формуле:

$$Jyi = E*Ayi / \Pi y, \kappa r/T$$
 /3/

где Ауі – количество угля, прошедшего через і -ую точку пересыпки /погрузки, разгрузки/, т/ч;

Пу – добыча угля на шахте, т/ч;

Е – удельное пылевыделение, кг/т, определяемое следующим образом

$$E = a * wpn + C, \kappa r/r$$
 /4/

где a, n, C – эмпирические параметры, значения которых для углей разных марок представлены в таблице 8;

wp – влажность угля, %.

Удельное пылеобразование при пересыпках, погрузке, разгрузке рядового угля или смеси нескольких стандартных классов расчитывавются по формуле:

$$E = \sum Ei * Yi / 100, \kappa r/\tau$$
/5/

где Еі удельное пылевыделение і-го стандартного класса крупности угля, кг/т,

¹ "Методика определения удельных выбросов вредных веществ в атмосферу на единицу продукции при подземной обыче угля и сланца", ВНИИОСУГОЛЬ, Пермь, 1978.

Таблица № 8

Зна	чения параметров п	<u>, а, С для определ</u>	ения удельного пы	левыделения (Е)
Марка	Класс			
угля	крупности,	n	a	С
	ММ			
1	2	3	4	5
ļ	25 - 50	- 4.8157	3.5981	-0.00001698
<u> </u>	13 – 25	- 7.1572	6.2082	- 0 00001698
Α	6 – 13	- 8.8583	7.5471	- 0.00001698
	3 – 6	- 8.9905	8.2518	- 0 00001698
	0 – 3	- 9.3696	8.6744	- 0.00001698
	25 - 50	- 3.8743	2.1638	- 0.003015
	13 – 25	- 5.2677	3.8469	- 0 003015
ПА	6 – 13	- 5.9840	4.7127	- 0.003015
	3 – 6	- 6.3410	5.1443	- 0 003015
	0 – 3	- 6.5863	5.4408	- 0.003015
	25 - 50	- 5.9216	4.3424	- 0.1008
	13 – 25	- 6.4486	4.8175	- 0.1008
T	6 – 13	- 7.1437	5.4442	- 0.1008
	3 - 6	- 7.5095	5.7740	- 0 1008
	0 – 3	- 7.7292	5.9723	- 0 1008
	25 - 50	- 3.3983	3.1191	- 0.1374
	13 – 25	- 3.5899	3.2850	- 0 1374
OC	6 – 13	- 3.6121	3.3695	- 0 1374
	3 – 6	- 3.6505	3.4146	- 0 1374
	0 – 3	- 3.6735	3.4415	- 0.1374
	25 - 50	- 2.9541	3.0767	- 0.6025
	13 – 25	- 3.1658	3.3130	- 0.6025
ж	6 – 13	- 3.2743	3.4340	- 0 6025
	3 - 6	- 3.3815	3.4978	- 0 6025
	0 – 3	- 3.3657	3.5363	- 0.6025
	25 – 50	- 3.0449	2.8426	- 0 1431
	13 – 25	- 3.2691	3.1141	- 0.1431
к	6 – 13	- 3.3852	3.2547	- 0 1431
<u></u>	3 – 6	- 3.4458	3.3281	- 0.1431
<u></u>	0 – 3	- 3.4808	3.3705	- 0 1431
	25 - 50	- 5.7268	7.5392	- 29.72
	13 – 25	- 5.9816	7.8029	- 29.72
	6 – 13	- 6.1128	7.9417	- 29.72
-	3 – 6	- 6.7821	8.0140	- 29.72
	0 - 3	- 6.2242	8.0595	- 29.72
	25 - 50	- 8.1545	9.7551	- 0 6152
	13 - 25	- 11.5166	13.8668	- 0 6152
Д	6 – 13	- 13 2431	15.9773	- 0 6152
^ <u> </u>	3-6	- 14 1611	17.0994	- 0 6152
1	3 – 0	1-14 1011	17.0994	1-00132

При постоянной интенсивности источника пылевыделения уровень местного загрязнения атмосферы является функцией скорости воздуха в месте расположения источника, направления

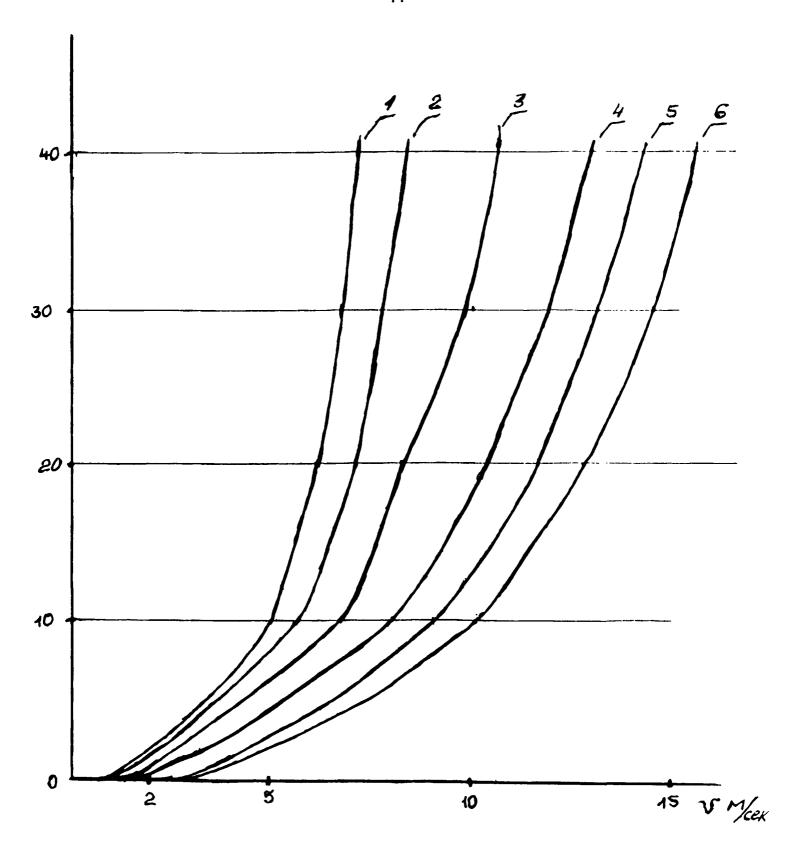
воздушного потока, степени его турбулентности, расстояния от очага пылевыделения до места отбора пробы воздуха [10].

С возрастанием скорости воздушного потока до наступления равновесия преобладает процесс рассеивания выделяемой источником пыли, и ее концентрация в воздухе снижается. При дальнейшем возрастании скорости потока начинает преобладать процесс сдувания пыли и запыленность воздуха увеличивается.

Процесс сдувания пыли весьма сложен, его интенсивность зависит от целого ряда факторов: дисперсного состава пыли и формы пылинок, ее минералогического и химического состава, удельного веса, физико-химических свойств, величины сил адгезии, скорости воздушного потока, уровня его запыленности и т.д.

Основным из этих факторов являются скорость воздушного потока, так как сдувание пыли происходит лишь в том случае, когда действие аэродинамических сил на пылинку превышает действие всех остальных сил.

На рис 1 представлена зависимость интенсивности сдувания от скорости ветра для пыли различных материалов. Наибольшая сдуваемость и наименьшая критическая скорость характерны для пыли угля и графита, а наименьшая сдуваемость и наибольшая критическая скорость – для пыли клинкера.


Относительно высокая сдуваемость пыли угля может быть объяснена ее меньшим объемным весом и шидрофобностью

При построении графической зависимости была использована средняя многолетняя повторяемость ветра по градациям скоростей для г. Новороссийска.

Сдувы определяются как выбросы при статическом хранении материала.

$$q = K_3*K_4*K_5*K_6*K_7*q'*F$$
, r/c

/6/

puc l

Зависимость удельной сдуваемости пыли от скорости воздушного потока для различных пылей

1 — уголь, графит, 2 — гипс, мел, песчаник, известь, известняк (мягкий), 3 — глинистые материалы, керамзит, перлит, 4 — цемент, огарки, 5 — щебень, песок, шлак, 6 — клинкер, кварц. гранит

5. Карьеры

Карьеры можно рассматривать, как единые источники равномерно распределенных по площади выбросов от автотранспортных выемочно-погрузочных и буро-взрывных работ

5.1. Выбросы пыли при автотранспортных работах

Движение автотриспорта в карьерах обслуживает выделение пыли, а также газов от двигателей внутреннего сгорания. Пыль выделяется в результате взаимодействия колес с полотном дороги и сдува ее с поверхности материала, груженного в кузов машины.

Общее количество пыли, выделяемое автотранспортном в пределах карьера, можно характеризовать следующим уравнением:

$$O = C_1 * C_2 * C_3 * N * \alpha * q_1 * C_6 * C_7 / 3600 + (C_4 * C_5 * C_6 * q_2 * F_0 * n), r/c$$
/7/

- где С₁ коэффициент, учитывающий среднюю грузоподъемность единицы автотранспорта и принимаемый в соответствии с табл. 9
 Средняя грузоподъемность определяется, как частное от деления суммарной грузоподъемности всех действующих в карьере машин на их число "n" при условии, что максимальная и минимальная грузоподъемности отличаются не более, чем в 2 раза.
 - С₂ коэффициент, учитывающий среднюю скорость передвижения транспорта в карьере и принимается в соответствии с табл 10
 Средняя скорость транспортирования определяется по формуле N_{cp} = N*L / п, км/ч
 - С₃ коэффициент, учитывающий состояние дорог и принимаемый в соответствии с табл. 11.
 - С₄ коэффициент, учитывающий профиль поверхности материала на платформе и определяемый как соотношение F_{факт} / F₀
 - F_{факт} фактическая поверхность материала на платформе,
 - F₀ средняя площадь платформы. Значение C₄ колеблется в пределах 1 3 1.6 в зависимости от крупности материала и степени заполнения платформы;
 - С₅ коэффициент, учитывающий скорость обдува материала, которая определяется, как геометрическая сумма скорости ветра и обратного вектора средней скорости движения транспорта; значение коэффициента приведено в табл. 12
 - С₆ коэффициент, учитывающий влажность поверхностного слоя материала,
 равный С₆=С₅ в уравнении (1) и принимаемый в соответствии с табл 4
 - N число ходок (туда и обратно) всего транспорта в час;
 - средняя протяженность одной ходки в пределах карьера, км,
 - ${\bf q}'$ пылевыделение в атмосферу на 1 км пробега при ${\bf C}_1 = {\bf C}_2 = {\bf C}_3 = {\bf 1}$, принимается равным 1450 г;
 - q'_2 пылевыделение с единицы фактической поверхности материала на платформе, г/м²*с; $q'_2 = q'$ (табл. 6)
 - п число автомашин, работающих в карьере
 - С₇ коэффициент, учитывающий долю пыли, уносимой в атмосферу и равный 0.01.

Таблица № 9

Таблица № 10

Зависимость C₁ от средней грузоподъемности автотранспорта

Средняя грузоподъемность,	C ₁
<u>T</u>	
5	0.8
10	1.0
15	1.3
20	1.6
25	1.9
30	2.5
40	3.0

Зависимость C₂ от средней скорости транспортирования

Местные условия	C ₂
Склады хранилища открытые	<u> </u>
5	0.6
10	10
20	2 0
30	3 5

Таблица N_2 12 Зависимость C_5 от скорости обдува кузова

Влажность материалов, % ⁵	C ₅
до 2	1.0
5	1.2
10	1.5

Таблица № 11 Зависимость С₃ от состояния дорог

Состояние карьерных дорог	C ₃
Дорога без покрытия (грунтовая)	10
Дорога с щебеночным покрытием	0.5
Дорога сщебеночным покрытием, обработанная р-ром хлористого кальция, ССБ, битумной эмульсией	0 1

5.2. Выбросы токсичных газов при работе карьерных машин

Расход топлива в кг/час на одну л.с. мощности составляет ориентировочно для карбюраторных двигателей 0.4 кг/л с.ч и для дизельных двигателей – 0 25 кг/л с.ч Количество выхлопных газов при работе карьерных машин составляет 15 – 20 кг на 1 кг израсходованного топлива

Приближенный расчет количества токсичных веществ, содержащихся в выхлопных газах автомобилей, можно производить, используя коэффициенты эмиссии⁶, приведенные в табл 13

Таблица № 13 Выбросы вредных вешеств при сгорании 1 т топлива

	Выбросы вредных	Выбросы вредных веществ двигателями		
	карбюраторными (m ₁)	дизельными (m ₂)		
1	2	3		
Окись углерода	0.6 т/т	0 І т/т		
Углеводороды	0.1 т/т	0.03 т/т		
Двуокись азота	0.04 т/т	0.04 т/т		

¹ Несок для складов при влажности 3% и более выбросы не считать

[&]quot;Данные заимствованы в "Инструкции по определению вредных веществ, выбрасываемых автогранспортом", разработанной ГГО Главгидрометеослужбы

где n₁,n₂, n₁ – количество одновременно работающих буровых станков развычных систем;

z₁,z₂, z₁ – количество пыли, выделяемое из скважин перед пылеочисткой, г/ч, η₁, η₂ η₁ – эффективность установленного пылеочистного оборудования (табл

Таблица № 14 Интенсивность пылевылеления некоторых машин в карьерах⁷

Источники выделения	Интенсивность пылевыделения		Примечание	
иыли				
	мг/с	г/час		
Буровой станок БМК	27	97	с пылеуловителем	
Буровой станок БСШ-1	110	396	с пылеуловителем	
Буровой станок БА-100	2200	7920	без пылеуловителя	
Буровой станок СБО-1	250	900	с пылеуловителем	
Пневматический бурильный мо-	100	360	при бурении сухим спо-	
лоток	<u> </u>	1	собом	
Пневматический бурильный мо-	5	18	при бурении мокрым спо-	
лоток			собом	
Экскаватор СЭ-3	500	1800	погрузка сухой руды	
Экскаватор СЭ-3	120	432	погрузка мокрой руды	
Бульдозер	250	900	при работе по сухой по-	
•	1		роде	
Автосамосвал	5000	18000	при движении по сухим	
			дорогам без твердого по-	
			крытия	

Таблица № 15

Значение п для расчета объема пылевыбросов при бурении

The second of Abia particle of the control of the c				
Способ бурения	Системы пылеочистки	η		
Шарошечное	Циклоны	0.75		
	Мокрый пылеуловитель	0 85		
Огневое	Рукавный фильтр	0 95		

5.5. Выбросы пыли при взрывных работах

15).

Взрывные работы сопровождаются массовым выделением пыли Большая мощность пылевыделения обуславливается кратковременное загрязнение атмосферы, в сотни раз превышающее ПДК. Для расчета единовременных выбросов пыли при взрывных работах можно воспользоваться уравнением (11):

$$Q_4 = a_1 * a_2 * a_3 * a_4 * \Pi * 10^6, \Gamma$$
 /11/

где ат - количество материала, поднимаемого в воздух при взрыве 1 кг ВВ (4-5 т/кг),

 a_2 – доля переходящей в аэрозоль летучей пыли с размером частиц 0–50 мкм по отношению к взорванной горной массе (в среднем $a_2 = 2 * 10^{-5}$),

 a_3 — коэффициент, учитывающий скорость ветра в зоне взрыва ($a_3 = K_3$), см табл 2

 коэффициент, учитывающий влияние обводнения скважин и предварительного увлажнения забоя (табл. 16),

² Заимствовано из монографии В.С Никитина "Методика определения интенсивности пыленыделения различных источников непрерывного действия в карьерах", Москва, 1964

Таблица № 16

Значение коэффициента а₄, учитывающего влияние обводнения скважин и предварительного увлажнения забоя

Предварительная подготовка забоя	Значение а.
Орошение зоны оседания пыли водой, 10 л/м2	0 7
Обводнение скважины (высота столба воды 10 – 14 м)	0.5

Поскольку длительность эмиссии пыли при взрывных работах невелика (в пределах 10 мин), то эти загрязнения следует принимать во внимание в основном при расчете залповых выбросов предприятия

Количество газовых примесей, выделяющееся при взрывах, можно рассчитать, используя данные таблиц 17 и 18

Таблица № 17

Тип ВВ	Взрываемая порода	Категория крепости (СНИП Ш-II-77)	Количество выделяемых газов, л/кг BB	
			CO	NO ₂
Зерногранулит 80/20	магнетитовые роговики	VIII	15.5	2 54
	некондиционные роговики		10 2	7 0
	сланцы	VII – VI	94	7 7
Зерногранулит 50/50	магнетитовые роговики	VIII	33 2	2 82
	некондиционные роговики		30 8	3 34
Тротил	магнетитовые роговики	VIII	65 4	2 91
	некондиционные роговики		52 2	3 19

Таблица № 18

Тип ВВ	ВВ, крепос	Коэффициент крепости по Протодьякопову	Количество выделяемых газов, л/кг ВВ	
			CO	NO ₂
Зерногранулит 79321	0 60	10 – 12	10 2	70
, , .	0 75	13 – 15	13 0	3 3
Тротил	0 60	12 – 14	52 0	3 2
	0 70 - 0 80	14 – 18	70 0	29
Смесь тротила и зерногранулита 79/21	0 66	8 – 10	31	2 8

Примечание Удельный вес образующихся газовых примесей

γ_{CO} 1.25 κι/HM³,

γ_{NO2} 2.05 κг/нм³, γ_{SO2} 2.67 κг/нм³

ЗАКЛЮЧЕНИЕ

В результате выполнения этапа 03 06 ДІд задания 03 проблемы 0 85 04 ГКНТ "Создать и внедрить эффективные методы и средства контроля загрязнения окружающей среды" было разработано временное методическое пособие по расчету выбросов от неорганизованных источников в промышленности строительных материалов

В пособии определены основные источники неорганизованных выбросов, приведены формулы расчета для разных типов источников /склады, узлы пересыпки, погрузочно-разгрузочные работы, карьерный транспорт и механизмы и т д /, даны коэффициенты, учитывающие долю пылевой фракции в материале, местные метеусловия, степень защищенности узла от внешних воздействий, влажность, крупность материала, высоту пересыпки и др

СПИСОК ЛИТЕРАТУРЫ

- 1 Руководство по контролю загрязнения атмосферы. Л., Гидрометеоиздат, 1979
- 2 Лейте В Определение загрязнений воздуха в атмосфере и на рабочем месте. Л., "Химия", Ленинградское отделение, 1980.
 - 3 ГОСТ 17.2.1.04-77. Охрана природы. Атмосферы.
- 4. Гусев А.А., Товпенцева А.Г. Исследование загазованности атмосферы вблизи предприятий методом моделирования с применением меченых атомов. Водоснабжение и санитарная техника, 1972, № 8, стр. 30
- 5 Никитин В.С. Расчет концентраций при проектировании низких факельных выбросов промышленных предприятий. Водоснабжение и санитарная техника. 1978, № 8, стр. 23
- 6 Тишкин В С. Расчет вентиляционных и технологических факельных выбросов Водоснабжение и санитарная техника. 1979, стр. 12
- 7 Указания по расчету в атмосфере вредных веществ, содержащихся в выбросах предприятий. М. Стройиздат. 1975
- 8 Определение удельных выбросов вредных веществ на Велико-Анадольском огнеупорном и Красноармейском динасовом заводах. Отчет УкрНИИО, Харьков, 1980.
- 9 Исследование неорганизованных выбросов, взрывобезопасности, санитарногигиенических условий труда и выдача исходных данных для проектирования опытнопромышленной установки термоподготовки и трубопроводной загрузки шихты Отчет № 79034816. Макеевка 1980.
- 10 Никитин В.С., Левинский О.Б., Суслов Н.В. Обеспыливание атмосферы карьеров. Ташкент, 1974, стр. 39 47
- 11 Исследования на моделях укрытий конвертеров ММК емкостью 400 тонн. Отчет ВНИПИ Черметэнергоочистка (ВНИПИ ЧЕО), руководитель работы с.н с Медяная С И., УДК 628511.669 184 № гос регистрации 80025743, инв. № Б 958518, Харьков 1981, 71 с
- 12 Улавливание и очистка неорганизованных выбросов в электросталеплавильном производстве за рубежом. Обзорная информация. Черметинформация, вып 2 М, 1982 Серия Защита воздушного и водного бассейнов от выбросов металлургических заводов
- 13. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы Л., Гидрометеоиздат, 1975
- 14 Охрана окружающей среды. Справочник Составитель Л П Шариков Изд-во "Судостроение" Л , 1978

СОДЕРЖАНИЕ

		стр.
BBE,	дение	3
1.	Перечень основных источников неорганизованных выбросов и выделяющихся вредных веществ на предприятиях отрасли	4
2.	Организация работ по контролю промышленных выбросов в атмосферу	4
3.	Источники типа: склады, хвостохранилища	5
4.	Пересыпка пылящих материалов	8 .
5.	Карьеры	12
	5.1. Выбросы пыли при автотранспортных работах	12
	5.2. Выбросы токсичных газов при работе карьерных машин	13
	5.3. Выбросы при выемочно-погрузочных работах	14
	5.4. Выбросы при буровых работах	14
	5.5. Выбросы пыли при взрывных работах	15
6.	ЗАКЛЮЧЕНИЕ.	17
	Список литературы	18