МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИКА КОНТРОЛЯ ФЛЮЕНСА И МОЩНОСТИ ПОГЛОЩЕННОЙ ДОЗЫ ПРИ ИСПЫТАНИЯХ МАТЕРИАЛОВ И ТЕХНИЧЕСКИХ УСТРОЙСТВ НА УСКОРИТЕЛЯХ ПРОТОНОВ

РД 50-25645.308-85

ИСПОЛНИТЕЛИ:

А. Д. Артемов; В. В. Бодин, канд. техн. наук; Б. А. Бриксман, канд. техн. наук; В. А. Гончарова; А. И. Григорьев, д-р мед. наук; Ю. А. Данилов, д-р физ.-мат. наук; А. А. Ключников, канд. физ.-мат. наук; Е. Е. Ковалев. д-р техн. наук; И. И. Кузьмин, канд. физ.-мат. наук; П. В. Курышев; В. С. Литвиненко, канд. техн. наук; В. К. Милинчук, д-р хим. наук; В. Н. Никитинский; В. А. Панин; И. Я. Ремизов, канд. техн. наук; С. И. Розман; В. А. Сакович, канд. техн. наук; В. М. Сахаров, канд. техн. наук; В. А. Семенов; В. Г. Семенов, канд. физ.-мат. наук; В. И. Степакин, канд. техн. наук; Ю. А. Цоглин, канд. техи. наук.

УТВЕРЖДЕНЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 18.12.85 г. № 4136.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

РД

Методика контроля флюенса и мощности поглощенной дозы при испытаниях материалов и технических устройств на ускорителях протонов

50-25645.308-85

Введены впервые

OKCTY €910

Утверждены постановлением Государственного комитета СССР по стандартам от 18 декабря 1985 г. № 4136, срок введения установлен с 01.01.87

Настоящие методические указания распространяются на испытания материалов и технических устройств на радиационную стойкость к воздействию протонного излучения.

Методические указания устанавливают методику контроля флюенса протонов на поверхности и внутри материалов и технических устройств методом пороговых детекторов для протонного излучения с энергией в диапазоне 10—100 МэВ и флюенсом не менее 10^{10} см $^{-2}$ и методику контроля мощности поглощенной дозы непосредственно в материалах и технических устройствах калориметрическим методом для протонного излучения с энергией в диапазоне 30—1000 МэВ и мощностью поглощенной дозы не менее 1 Гр/с.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Контроль флюенса протонов проводят методом пороговых детекторов, заключающимся в измерении активности радионуклидов, которая пропорциональна среднему по объему детектора флюенсу протонов.
- 1.2. Пороговые детекторы устанавливают на поверхности и внутри материалов и технических устройств в местах, определяемых программой испытаний.
- 1.3. Для контроля флюенса протонов на поверхности материалов и технических устройств используют измерение активностей радионуклидов ¹¹C, ¹⁸F, ²⁴Na, образованных в результате ядерных реакций протонов с пороговыми детекторами, изготовленными из полиэтилена, фторопласта и алюминия, толщиной 100, 50 и 200 мкм, соответственно.

- 1.4. Для контроля флюенса протонов внутри материалов и технических устройств используют измерение активностей радионуклидов ⁶⁵Zn, ⁵⁶Co, ⁵⁷Co и ⁵⁸Co, образованных в результате ядерных реакций протонов с пороговыми детекторами, изготовленными из меди и никеля толщиной 10 мкм.
- 1.5. Активность радионуклидов измеряют методом спектрометрии гамма-излучения с использованием сцинтилляционных или полупроводниковых детекторов.
- 1.6. Контроль мощности поглощенной дозы проводят калориметрическим методом, заключающимся в измерении тепловыделения в материалах и технических устройствах, облучаемых непосредственно внутри калориметра.
- 1.7. При проведении испытаний используют два идентичных калориметра (с изделием и без него) для учета влияния фонового тепловыделения в стенках калориметра.
- 1.8. При контроле флюенса протонов и мощности поглощенной дозы допускается функционирование технических устройств в процессе испытаний, если это предусмотрено программой испытаний.

Дополнительное тепловыделение от работы испытуемых изделий при использовании калориметрического метода необходимо учитывать как фоновое.

2. ОЦЕНИВАЕМЫЕ ПОКАЗАТЕЛИ И РАСЧЕТИ НЕ СООТНОШЕНИЯ

2.1. Показатели, используемые при контроле флюенса протонов: значения активностей радионуклидов, образовавшихся в соответствующих пороговых детекторах;

число ядер в соответствующих пороговых детекторах;

константы, определяющие вероятность образования данных радионуклидов в измеряемом диапазоне энергий протонов;

ядерно-физические характеристики радионуклидов, включающие в себя периоды полураспада, энергии гамма-излучения и выходы на распад гамма-излучения данной энергии.

2.2. Флюенс протонов Ф, см $^{-2}$, падающих на пороговый детектор, вычисляют по формуле

$$\Phi = \frac{\lambda A}{n\sigma(1-e^{-\lambda(t_2-t_1)})},$$

где A — активность радионуклида в пороговом детекторе на момент окончания облучения, Бк; n — число ядер в пороговом детекторе; σ — константа, определяющая вероятность образования данного радионуклида при единичном флюенсе протонов данной энергии (значения σ приведены в табл. 2 рекомендуемого приложения 1), см²; λ — постоянная радиоактивного распада образовавшегося радионуклида с периодом полураспада T, λ =0,693 T-1, C-1; t_1 и t_2 — время начала и окончания облучения порогового детектора, соответственно.

2.3. Активность радионуклида в пороговом детекторе вычисляют по формуле

$$A = \frac{Se^{\lambda(f_3-t_2)}}{(t_4-t_3) \, \epsilon n \, (1-e^{-\lambda(t_4-t_3)})} ,$$

- где S число импульсов в пике полного поглощения энергии гамма-излучения аналитической линии данного радионуклида; t_3 и t_4 время начала и окончания измерения активности радионуклида в пороговом детекторе, соответственно; ϵ эффективность регистрации детектором гамма-излучения с данной энергией. (ϵ определяют методом, изложенным в п. 11 справочного приложения 2, с использованием образцовых спектрометрических источников гамма-излучения); η —выход гамма-излучения данной энергии на акт распада радионуклида.
 - 2.4. Число ядер в пороговом детекторе вычисляют по формуле $n = mn_0$.

где m — масса порогового детектора, г; n_0 — число ядер в 1 г материала порогового детектора.

Значения n_0 для пороговых детекторов приведены в табл. 3 рекомендуемого приложения 1.

2.5. Число импульсов в пике полного поглощения энергии гамма-излучения вычисляют по формуле

$$S = \sum_{i=k_1}^{k_2} N_i - (N_{k_1} + N_{k_2}) (k_2 - k_1 + 1)/2,$$

где N_1 — число импульсов в i-м канале амплитудного анализатора; k_2 , k_1 — номера каналов анализатора, соответствующие минимальному числу импульсов в распределении амплитуд импульсов справа и слева от пика полного поглощения.

2.6. Показатели, используемые при контроле мощности поглощенной дозы протонного излучения:

градуировочный коэффициент калориметра К, мВ/Вт-1;

напряжение на нагревателе калориметра U, \dot{B} ; сила тока в цепи нагревателя I, \dot{A} :

сигнал тепломера Е, мВ;

сигнал термопары E_{τ} , мкВ;

масса калориметра М. г;

масса объекта испытаний M_{M} , г.

2.7. Мощность поглощенной дозы \dot{D} , $\Gamma p/c$, в материале объекта испытаний вычисляют по формуле

$$\dot{D} = \frac{E_1/K_1 - M_1 E_0/M_0 K_0}{M_{\rm M}} \cdot 10^3,$$

где индексы 1 и 0 относятся к заполненному и пустому калориметрам, соответственно.

2.8. Значения K_0 , K_1 , M_0 , M_1 являются паспортными характеричиками калориметра.

2.9. Температуру объекта испытаний Т, °С, вычисляют по фор-

имле

$$T = E_{T}/40.4 - T_{0}$$

т C C - температура холодного спая термопары калориметра, °C. 2.10. Заданную температуру облучения (выше достигаемой за счет радиационного разогрева) обеспечивают включением электронагревателя, встроенного в калориметр, и подбором необходимой силы тока в цепи нагревателя. В этом случае мощность поглощенной долы вычисляют по формуле

$$D = \frac{E_1 K_1 - M_1 E_0 / M_0 K_0 - UI}{M_M} \cdot 10^3.$$

3. УСЛОВИЯ И ПОРЯДОК ПРОВЕДЕНИЯ КОНТРОЛЯ ФЛЮЕНСА И МОЩНОСТИ ПОГЛОЩЕННОЙ ДОЗЫ ПРОТОННОГО ИЗЛУЧЕНИЯ

- 3.1. Испытания проводят на ускорителе протонов, параметры которого: эпергия протонов, диапазон изменения энергии протонов и тока пучка, форма и размеры выведенного пучка протонов, обосночивают выполнение программы испытаний.
- 3.2. Контроль флюенса и мощности поглощенной дозы протонного излучения проводят в следующей последовательности;

илиеряют параметры регистрирующей аппаратуры;

устанавливают пороговые детекторы и калориметры;

облучают установленные образцы;

измеряют активность, наведенную в пороговых детекторах и синмиют показания термопары и тепломера калориметра;

рассчитывают флюенс протонов и мощность поглощенной дозы.

- 3.3. В помещении, предназначенном для проведения измерений, установки, включающую многожандльный анализатор импульсов, полупроводниковый детектор и блок детектирования со сцинтилляционными детекторами. Выполняют подключения в соответствии с инструкциями по эксплуатации и проверяют работоспособность установки в целом.
- 3.4. Определяют характеристики спектрометрической установым и последовательности, приведенной в справочном приложении 2.
- 3.5. Маркируют пороговые детекторы и определяют их массу с погрешностью не более 0,1 мг.
- 3.6. Устанавливают пороговые детекторы в местах, определенных программой испытаний. Пороговые детекторы, изготовленные из мести и никеля, устанавливают вместе.
- 3.7. Производят облучение в соответствии с программой испытаний.
- 3.8. После окончания облучения и требуемой для конкретных короговых детекторов выдержки, указанной в п. 8 рекомендуемого

приложения 1, измеряют с помощью спектрометрической установ-

ки спектры гамма-излучения пороговых детекторов.

3.9. Спектры гамма-излучения пороговых детекторов измеряют с помощью полупроводникового детектора. Измерение спектров гамма-излучения пороговых детекторов, изготовленных из полиэтилена, фторопласта и алюминия, проводят также с помощью сцинтилляционного детектора.

3.10. Продолжительность измерения конкретного порогового детектора должна быть такою, чтобы выполнялось условие

$$\sum_{i=k_1}^{k_2} N_i \geqslant 5(N_1 + N_2)(k_2 - k_1 + 1).$$

- 3.11. После каждого измерения выделяют в спектре зоны, содержащие пики полного поглощения энергии гамма-излучения аналитических линий, приведенных в табл. 1 рекомендуемого приложения 1, и выводят их на цифропечатающее устройство.
- 3.12. Обрабатывают результаты и рассчитывают флюенс протонов.
- 3.13. В помещении, предназначенном для проведения измерений, размещают регистрирующую аппаратуру. Выполняют требуемые инструкциями подключения, соединяют приборы экранированным кабелем (не менее чем 8-жильным) с калориметрами. Проверяют работоспособность установки в целом.
- 3.14. Определяют массу изделия, подлежащего испытанию, и размещают его в калориметре.
- 3.15. Устанавливают пустой калориметр в месте, определенном программой испытаний.
 - 3.16. После включения ускорителя следует убедиться в том, что

пучок протонов полностью перекрывает калориметр.

- 3.17. После выхода значений E_0 на стационарный режим (по показаниям измерительной аппаратуры) регистрируют это значение и заменяют пустой калориметр на калориметр с изделием.
- 3.18. После выхода значения E_1 на стационарный режим ведут его регистрацию в течение всего процесса облучения.
- 3.19. Рассчитывают значения мощности поглощенной дозы по формулам, приведенным в разд. 2 настоящих методических указаний.

4. ТРЕБОВАНИЯ ПО БЕЗОПАСНОСТИ ТРУДА

- 4.1. Работы, проводимые по данным методическим указаниям, соответствуют III классу группы Γ радиационной опасности, согласно ОСП-72/80.
- 4.2. Требования по технике безопасности должны соответствовать «Основным санитарным правилам работы с источниками ионизирующих излучений ОСП-72/80» и «Нормам радиационной безопасности НРБ-76».

- 4.3. В работе необходимо руководствоваться инструкциями по радиационной безопасности, действующими на конкретной базе испытаний, рекомендациями по методам безопасной работы с измерительной аппаратурой, изложенным в соответствующих разделах эксплуатационной документации, а также «Правилами безопасной эксплуатации электроустановок потребителей».
- 4.4. Сотрудники, направляемые для проведения работ в соответствии с данными методическими указаниями, должны иметь:

доступ к работе с источниками ионизирующего излучения по медицинским показаниям;

удостоверение, подтверждающее квалификационную группу по электробезопасности не ниже IV для руководителя работ, и не ниже III для исполнителей.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ И ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЙ

- 5.1. Вычисляют площадь под пиками полного поглощения энергии гамма-излучения аналитических линий по п. 2.5 настоящих методических указаний.
- 5.2. Вычисляют активности образовавшихся в пороговых детекторах радионуклидов по п. 2.3 настоящих методических указаний.
- 5.3. Рассчитывают флюенс протонов для конкретных детекторов по п. 2.2 настоящих методических указаний.
- 5.4. Для определения флюенса протонов, измеренного пороговыми детекторами, изготовленными из меди и никеля, вычисленные активности A радионуклидов 65 Zn, 56 Co, 57 Co, 58 Co и числа ядер в детекторах складывают.
- 5.5. При определении флюенса протонов по п. 5.4 вместо σ используется $\sigma_{9\varphi\varphi}$ константа, определяющая суммарную вероятность образования указанных радионуклидов в диапазоне энергий протонов 10—100 МэВ. Значение $\sigma_{9\varphi\varphi}$ приведено в п. 5 рекомендуемого приложения 1.
- 5.6. Абсолютную погрешность измерения числа импульсов в пике полного поглощения вычисляют по формуле

$$\Delta S = [S + \frac{N_1 + N_2}{2} (k_2 - k_1 + 1)]^{1/2}$$

5.7. В относительную погрешность измерения флюенса протонов Φ входят относительные погрешности следующих величин: λ ; S; ϵ ; n; σ ; t_1 ; t_2 ; t_3 ; t_4 ; η .

Относительные средние квадратические погрешности указанных величин: $\delta\lambda = 0,006$; $\delta S = 0,01 - 0,03$; $\delta n = 0,005$; $\delta \epsilon = 0,05$; $\delta \sigma = 0,06 - 0,10$; $\delta t_1 = \delta t_2 = \delta t_3 = \delta t_4 = 0,0005$; $\delta n = 0,0005$.

5.8. Систематическая погрешность флюенса Φ определяется в основном погрешностями $\delta \epsilon$; $\delta \sigma$ и составляет $\pm 15\%$.

- 5.9. Относительная погрешность флюенса Φ равна $\pm (20-25)$ % для измерений на поверхности и $\pm (30-50)$ % для измерений внутри материалов и технических устройств.
- 5.10. Рекомендуют следующую форму записи результатов измерений и вспомогательной информации:

В заголовке указывают дату, тип ускорителя, энергию протонов и ток пучка. Приводят также информацию, относящуюся к измеряемому радионуклиду: период полураспада, энергию аналитической линии, выход на распад, эффективность регистрации и значения констант, определяющих вероятность образования измеряемого радионуклида для данной энергии протонов.

- 5.11. В относительную погрешность измерения мощности поглощенной дозы протонного излучения входят погрешности следующих величин: *U, I, E, K, M*. Значения относительных погрешностей измерения каждой из этих величин зависят от класса точности использованной аппаратуры.
- 5.12. Систематическая погрешность тепловыделения в калориметре составляет $\pm 2\%$.
- 5.13. Суммарная погрешность определения мощности поглощенной дозы составляет 3—6% и зависит от соотношения сигналов калориметров при условии полного перекрытия калориметра пучком протонов.
- 5.14. Рекомендуют следующую форму записи результатов измерений:

Наименование объекта E_{τ} , E_{0} , E_{1} , U , I , $M_{\rm M}$, D

6. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

- 6.1. По результам испытаний оформляют протокол испытаний.
- 6.2. В протокол испытаний для каждого объекта заносят следующие данные:

дату проведения испытаний;

наименование объекта испытаний;

параметры ускорителя протонов (энергия протонов, ток пучка);

время начала облучения объекта испытаний;

наименование порогового детектора и его номер;

место расположения порогового детектора;

массу объекта испытаний;

время окончания облучения объекта испытаний;

значение флюенса протонного излучения с соответствующей погрешностью:

значение мощности поглощенной дозы протонного излучения с соответствующей погрешностью.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ И МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОНТРОЛЯ ФЛЮЕНСА ПРОТОНОВ И МОЩНОСТИ ПОГЛОЩЕННОЙ ДОЗЫ

7.1. Для контроля флюенса протонов при испытаниях использутот следующее оборудование и измерительную ядерно-физическую аппаратуру:

полупроводниковый Ge-Li детектор гамма-излучения типа ДГДК-50 в криостате типа КР-1;

базовый блок детектирования типа БДБС-1еМ;

многоканальный анализатор импульсов, имеющий 1024 или 4096 каналов и блоки усиления и формирования амплитуд импульсов с полупроводниковых или сцинтилляционных детекторов (например, анализатор АИ-1024А-90 или АИ-4096А-90);

анализатор импульсов, имеющий 256 или 128 каналов с соответствующими блоками усиления и формирования амплитуд импульсов для измерения спектров со сцинтилляционного детектора (например, анализатор АИ-256 или АИ-128);

блок стабилизированного высокого напряжения (до 2,5 кВ) (например, БНВ2-95 или ВС-22);

комплект образцовых спектрометрических источников гамма-излучения ОСГИ-11 или ОСГИ-13;

секундомер типа СДС пр1-2-000;

устройство, позволяющее размещать образцовые источники гамма-излучения и пороговые детекторы на фиксированных расстояниях от детектора гамма-излучения;

весы аналитические типа ВЛА-200.

- 7.2. Материалы для изготовления пороговых детекторов приведены в рекомендуемом приложении 1.
- 7.3. Для контроля мощности поглощенной дозы при испытаниях используют следующее оборудование и измерительную аппаратуру:

калориметры теплового потока;

цифровой вольтметр постоянного тока с разрешением не ниже 1 мкВ (например, типа В7-21) или самопишущий милливольтметр (например, типа КСП);

блок стабилизированного регулируемого напряжения постоянного тока (например, типа Б5-49);

миллиамперметр постоянного тока класса 0,5; весы аналитические, например, типа ВЛА-200.

РЕКОМЕНДУЕМЫЕ МАТЕРИАЛЫ, НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ И КОНСТАНТЫ

1. В качестве материалов для изготовления пороговых детекторов рекомендуется использовать:

фольгу алюминиевую марки ABC00 по ГОСТ 618—73 толщиной 200 мкм; пленку из фторопласта-4 по ГОСТ 24222—80 толщиной 50 мкм; пленку полиэтиленовую марки H0 по ГОСТ 10354—82 толщиной 100 мкм; фольгу медную марки ФМЭ по ГОСТ 14958—69 толщиной 10 мкм; фольгу никелевую марки H0 по ГОСТ 849—70 толщиной 10 мкм. 2. Ядерно-физические характеристики радионуклидов, образующихся в ре-

2. Ядерно-физические характеристики радионуклидов, образующихся в результате взаимодействия протонов с веществом пороговых детекторов, приведены в табл. 1.

Таблица 1

Матернал порогового детектора	Образующий- ся радио- нуклид	Т	Аналитическая линия E (кэВ) γ	η(%)	Используе- мый детектор
Al	²⁴ Na	14,96 ч	1369	100	Сцинтилля-
C₂F₄	18F	109,7 мин	511	194	ционный
C _n H _{2n}	11C	20,34 мин	511	200	
Cu	⁶⁵ Zn	245 дн.	1115	49	Полупро-
	⁵⁶ Co	77,3 дн.	847	100	водниковый
Ni	57Co	270 дн.	122	87	
	⁵⁸ Co	71,3 дн.	810	99	

3. Значения констант, определяющих вероятности образования соответствующих радионуклидов в измеряемом диапазоне энергий протонов приведены в табл. 2.

Таблина 2

		σ·10-27 cm	1 ²			σ·10-27 c	M 2
Е _р , МэВ	²⁴ Na	пС	18 <i>F</i>	Е _р , МэВ	²⁴ Na	пС	18 <i>F</i>
10 15 20 25 30 35 40 45 50	 0,50 1,3 3,0 5,3 7,5		5,0 60 90 110 80 87 58 48 41 45	60 65 70 75 80 85 90 95	9,9 13,0 12,0 13,0 10,3 10,2 10,7 10,5 10,8	80 77 75 73 70 63 65 62 60	53 58 52 53 46 52 41 35 38

4. Для промежуточных значений энергии протонов значения констант вычисляют с помощью линейной интерполяции.

5. Для пороговых детекторов из меди и никеля используемых совместно, при контроле флюенса протонов внутри объекта испытаний в диапазоне энергии протонов 10-100 МэВ рекомендуется значение $\sigma_{2\Phi,\Phi} = (330+100) \cdot 10^{-27}$ см².

тонов 10—100 МэВ рекомендуется значение $\sigma_{\vartheta \Phi \Phi} = (330\pm 100) \cdot 10^{-27}$ см². 6. Для контроля флюенса протонов снаружи электрорадиоизделий и технических устройств в зависимости от энергии протонов используют следующие пороговые детекторы: C_2F_4 — для $10 \leqslant E_p \leqslant 40$ МэВ; C_1H_{2n} ; C_2F_4 — для $20 \leqslant E_p \leqslant 100$ МэВ; A1; C_nH_{2n} ; C_2F_4 — для $40 \leqslant E_p \leqslant 100$ МэВ.

7. Числа ядер n_0 в 1 г соответствующих пороговых детекторов приведены в табл. 3.

Таблица З

Материал детектора	Элемент	n ₀
Полиэтилен	С	4,295 · 1022
Фторопласт	F	$2,409 \cdot 10^{22}$
Алюминий	Al	$2,234 \cdot 10^{22}$
Медь	Cu	9,482.1021
Никель	Ni	$1,027 \cdot 10^{22}$

8. Рекомендуемые длительности выдержки пороговых детекторов между окончанием облучения и началом измерения: для $^{18}F-4$ ч, для 24 Na — 2 ч и для 65 Cu — 24 ч.

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК СПЕКТРОМЕТРИЧЕСКИХ УСТАНОВОК

- 1. Устанавливают ширину канала 10 мВ (для АИ-1024А—90) и 40 мВ (для АИ-4096А-90).
- 2. Устанавливают непосредственно на детектор ДГДК-60 источник гамма-излучения ⁸⁸Y из набора ОСГИ-13.
- 3. Выбирают коэффициент усиления так, чтобы максимум пика полного поглощения, соответствующий энергии гамма-излучения $E_{\gamma}=2{,}734\,$ МэВ, находился в 900 канале анализатора.
- 4. Измеряют распределения амплитуд импульсов от всех источников гаммаизлучения, входящих в комплект ОСГИ-11 и ОСГИ-13 и выводят зоны, содержащие пики полного поглощения на цифропечатающее устройство.
 - 5. Повторяют п. 4, устанавливая последовательно источники гамма-излуче-

ния на различных (до 30 см) расстояниях от детектора с шагом 5 см.

- 6. Длительность измерения задается по «живому» времени и для конкретного источника должна быть такой, чтобы полное число импульсов в пике полного поглощения было не менее 10⁴.
- 7. Строят в линейном масштабе график зависимости номера канала анализатора, содержащего максимальное число импульсов пика полного поглощения от соответствующей энергии гамма-излучения.
- 8. Определяют на основании полученной градуировочной характеристики положения пиков поглощения энергий гамма-излучения, соответствующих аналитическим линиям радионуклидов, приведенных в табл. 1 приложения 1.
- 9. Для каждого распределения амплитуд вычисляют значения по п. 2.5 настоящих методических указаний.
- 10. Рассчитывают число гамма-квантов N_{γ} , испускаемых образцовыми источниками, используя выражение

$$N_{\nu} = A_{\rm i} \eta e^{-\lambda t_{\rm i}}$$
,

- где A_{i} активность радионуклида в i-м источнике из комплекта ОСГИ, указанная в паспорте на комплект;
 - t_4 время, прошедшее от момента аттестации источников (указан в паспорте) до начала измерений.
- 11. Вычисляют эффективность регистрации в пике полного поглощения для каждой энергии гамма-излучения по формуле

$$\varepsilon = \frac{S}{N_{\gamma} t_3}$$

- 12. Строят в двойном логарифмическом масштабе графики зависимости значения ε от E_v для различных расстояний источник детектор.
- 13. Определяют значения є для энергий гамма-излучения аналитических линий радионуклидов, приведенных в табл. 1 рекомендуемого приложения 1.
- 14. Для определения характеристик сцинтилляционного детектора базового блока детектирования устанавливают на анализаторе АИ-1024А-90 или АИ-4096А-90 128 или 256 каналов или используют анализаторы АИ-128, АИ-256.
- 15. Устанавливают непосредственно на сцинтилляционный детектор источник гамма-излучения 6°C о из набора ОСГИ-11 или ОСГИ-13.
- 16. Выбирают коэффициент усиления так, чтобы максимум пика полного поглощения, соответствующий энергии гамма-излучения $E_{\gamma}=1,332$ МэВ, находился в 100-м канале (для 128 каналов анализатора) и в 200-м канале (для 256 каналов анализатора).
 - 17. Повторяют операции по пп. 4-13.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Методика контроля флюенса и мощности поглощенной дозы при испытаниях материалов и технических устройств на ускорителях протонов

РД 50—25645.308—85

Редактор Т. Ф. Писарева Технический редактор Н. П. Замолодчикова Корректор Л. В. Сницарчук

H/K

Сдано в наб. 06.03.86 Подп. в печ. 08.05.86 Т—11140 Формат $60\times90^1/_{16}$ Бумага книжно-журналь ная Гарнитура литературная Печать высокая 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,77 уч.-изд. л Тираж 3000 Зак. 2123 Цена 5 коп. Изд. № 9004/4