УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

16 мая 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций (2-карбокси-3,4диметоксифенил)метиленгидразид-4-

пиридинкарбоновой кислоты соли диэтиламмония моногидрата (салюзида) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1347—03

1. Область применения

Настоящие методические указания устанавливают количественный хроматографический анализ воздуха рабочей зоны на содержание (2-карбокси-3,4-диметоксифенил)метиленгидразид-4-пиридинкарбоновой кислоты соли диэтиламмония моногидрата (салюзида) в диапазоне концентраций от 1 до 20 мг/м³.

2. Характеристика вещества

2.1. Структурная формула

- 2.2. Эмпирическая формула $C_{20}H_{28}N_4O_6$.
- 2.3. Молекулярная масса 420,5.
- 2.4. Регистрационный номер CAS отсутствует.

2.5. Физико-химические свойства.

Салюзид – кристаллический порошок желт $_{0-3}$ еленого цвета. Малорастворим в воде, нерастворим в эфире, растворим в щелочах и неорганических кислотах, температура воспламенення $89,6\,^{\circ}$ С. Агрегатное состояние в воздухе – аэрозоль.

2.6. Токсикологическая характеристика.

Салюзид обладает общетоксическим действием.

Предельно допустимая концентрация в воздухе рабочей зоны — 2 мг/м^3 . Класс опасности – третий.

3. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью не более $\pm\,21\,\%$ при доверительной вероятности 0,95.

4. Метод измерений

Измерения массовой концентрации салюзида основаны на использовании высокоэффективной жидкостной хрома гографии с применением спектрофотометрического детектора.

Отбор проб проводится с концентрированием на фильтр.

Нижний предел измерения содержания сал $_{03}$ ида в хроматографируемом объеме раствора – 0,020 мкг.

Нижний предел измерения концентрации салюзида в воздухе -1 мг/м^3 (при отборе 100 дм^3 воздуха).

Определению не мешают вещества, сопутствующие производству салюзида (крахмал, целлюлоза микрокристаллическая, титана оксид, поливинилпирролидон низкомолекулярный).

5. Средства измерений, вспомогательные устройства, материалы, реактивы

5.1. Средства измерений, вспомогательные устройства, материалы

Хроматограф жидкостный микроколоночный «Милихром» со спектрофотометрическим детектором

Хроматографическая колонка стальная

КАХ-44-3, 50 × 2 мм, заполненная сорбентом

Сепарон С18, фракция 5 мм

Аспирационное устройство

Фильтродержатель

ТУ 95.72.05—77

Весы аналитические

ΓΟCT 24104---88E

ТУ 64-1-862-82

Устройство для фильтрации жидкостей,	
НПФ «Биохром»	
Посуда мерная лабораторная	ГОСТ 1770—74Е
Пипетки, вместимостью от 0,2 до 10 см ³	ГОСТ 29227—91
Пробирки с пришлифованными пробками, вместимостью 10 см ³	
вместимостью 10 см ³	ГОСТ 25336— 82 Е
Фильтры АФА-ВП-10	ТУ 95-743—80
Фильтры HVLP 047, фирмы «Миллипор»	
Бюксы ⁵⁰ / ₃₀	ΓΟCT 25336—82E

5.2. Реактивы

Салюзид, ФС 42-1437-89, содержание основного вещества не менее 99,0 % Ацетонитрил «для жидкостной хроматографии» ТУ-6-09-14-2167—84 Калий дигидрофосфат, хч ГОСТ 4198—75 Кислота ортофосфорная, хч ГОСТ 6552—58 Вода дистиллированная ГОСТ 6709—72

Допускается применение иных средств измерения, вспомогательных устройств, реактивов и материалов, обеспечивающих показатели точности, установленные для данной МВИ.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ соблюдают меры противопожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

7. Требования к квалификации оператора

К выполнению измерений и обработке результатов допускаются лица с высшим и средним специальным образованием, имеющие навыки работы на жидкостном хроматографе.

8. Условия измерений

8.1. Приготовление растворов и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и влажности воздуха не более 80 %.

8.2. Измерения на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерения

9.1. Приготовление растворов

- 9.1.1. Стандартный раствор салюзида в растворе элюента концентрацией 200 мкг/см³ готовится растворением 10 мг вещества в мерной колбе вместимостью 50 см³. Раствор устойчив в течение недели при хранении в холодильнике.
- 9.1.2. Раствор элюента готовят смешиванием в мерном цилиндре 80 см³ 0.02 М раствора дигидрофосфата калия, который готовят растворением 1,36 г указанной соли в 500 см³ дистиллированной воды, и 20 см³ ацетонитрила. Раствор доводят до рН 5 ортофосфорной кислотой. Непосредственно перед измерением раствор фильтруют с помощью устройства для фильтрации и фильтров «Миллипор» и дегазируют под вакуумом.

9.2. Подготовка прибора

Общую подготовку прибора осуществляют согласно инструкции по эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала от массы анализируемого вещества в хроматографируемом объеме пробы, устанавливают по методу абсолютной калибровки с использованием серии градуировочных растворов, которые готовят разбавлением стандартного раствора согласно табл. 1.

Растворы помещают в пробоотборное устройство хроматографа.

Условия хроматографирования градуировочных смесей и анализируемых проб:

состав элюента: $0.02 \text{ M KH}_2\text{PO}_4$ –ацетонитрил, 8:2, pH 5; скорость потока элюента 100 мм³/мин; объем вводимой пробы 2 мм³; длина волны спектрофотометрического детектора 280 нм;

время удерживания салюзида 2 мин 30 с.

На полученной хроматограмме измеряют площади пиков с помошью интегратора хроматографа (в условных единицах) при анализе шести растворов разных концентраций и холостой пробы, проводя не менее пяти параллельных определений для каждого раствора, и строят градуировочную кривую зависимости площади пика от количества компонента в пробе (мкг). Проверку градуировочного графика проводят при изменении условий анализа, но не реже 1 раза в месяц.

Таблица 1 Растворы для установления градуировочной характеристики при определении салюзида

№ стан- дарта	Стандартный раствор салюзида, см ³	Раствор элюента, см ³	Концентрация вещества, мкг/см ³	Содержание вещества в хроматографируемом объеме пробы, мкг
1	0	20	0	0
2	1	19	10	0,02
3	2	18	20	0.04
4	3,5	16,5	35	0,07
5	5	15	50	0,1
6	10	10	100	0,2
7	20	0	200	0,4

9.4. Отбор пробы воздуха

Воздух с объемным расходом 20 дм 3 /мин аспирируют через фильтр АФА ВП-10. Для измерения ½ ПДК салюзида достаточно отобрать 100 дм 3 воздуха. Пробы можно хранить в течение недели.

10. Выполнение измерения

Фильтр с отобранной пробой помещают в бюкс и приливают пипеткой 5 см³ раствора элюента. Периодически встряхивая, выдерживают раствор в течение 5 мин и сливают его в пробирку. Аналогичным образом проводят повторную экстракцию с фильтра и объединяют растворы. Степень десорбции с фильтра 96 %. Хроматографирование раствора пробы проводят в тех же условиях, что и хроматографирование градуировочных растворов. Количественное определение содержания анализируемого вещества в растворе проводят по предварительно построенному градуировочному графику.

11. Расчет концентрации

Концентрацию анализируемого вещества (C, мг/м³) в воздухе вычисляют по формуле:

$$C = \frac{a \cdot \theta}{6 \cdot V}$$
, где

a — содержание вещества в анализируемом объеме пробы, найденное по градуировочному графику, мкг;

6 – объем пробы, взятый для хроматографирования, см³;

 ε – общий объем раствора пробы, см³;

V — объем воздуха, отобранного для анализа и приведенного к стандартным условиям, дм 3 (см. прилож. 1).

12. Оформление результатов анализа

Результат количественного анализа представляют в виде ($C \pm \Delta$) мг/м³, P = 0.95, где $\Delta -$ характеристика погрешности, $\Delta = 0.15C + 0.06$.

13. Контроль погрешности методики

Значения полученных метрологических характеристик погрешности, норматива оперативного контроля точности и норматива оперативного контроля воспроизводимости приведены в табл. 2 в виде зависимости от значения массовой концентрации анализируемого компонента в пробе C.

Таблица 2
Результаты метрологической аттестации методики количественного химического анализа

Диапазон	Наименование метрологической характеристики				
определяемых	характеристика	норматив оператив-	норматив оперативного		
концентраций салюзида,	погрешности,	ного контроля точно-	контроля воспроизво-		
мг/м ³	$\Delta, \text{ M}\Gamma/\text{M}^3$ $(P = 0.95)$	сти, K , мг/м ³ ($P = 0.90, m = 2$)	димости, D , мг/м ³ $(P=0.95, m=2)$		
0 1 20					
От 1 до 20	0.15C + 0.06	0.13C + 0.10	0,09C + 0,16		

13.1. Оперативный контроль воспроизводимости

Оперативный контроль воспроизводимости выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Анализируют в соответствии с прописью методики разными аналитиками, максимально варьируя условия проведения анализа: партии реактивов, наборы мерной посуды и т. д., и получают два результата C_1 и C_2 анализов. Результаты анализа не должны отличаться друг от друга на величину большую, чем норматив оперативного контроля воспроизводимости D:

$$|C_1 - C_2| \leq D$$

При превышении расхождения между двумя результатами норматива оперативного контроля воспроизводимости эксперимент повторя-

ют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Внутренний оперативный контроль воспроизводимости проводят не реже, чем 1 раз в неделю.

13.2. Оперативный контроль точности

Оперативный контроль точности выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Затем к одной пробе, отобранной на фильтр, делают добавку анализируемого компонента δC из раствора, нанося ее на фильтр. Величина добавки должна соответствовать 50-150% от содержания компонента в пробе. Величина C_2 не должна выходить за верхнюю границу диапазона измерения. Результаты анализа C_1 без добавки и C_2 с добавкой получают по возможности в одинаковых условиях: одним аналитиком, с одной партией реактивов, с одним набором посуды и т. д.

Погрешность процедуры отбора проб контролируют путем поверки используемых пробоотборников. Расчет норматива оперативного контроля погрешности K проводят по характеристике погрешности методики за вычетом характеристики погрешности пробоотборника. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|C_2 - C_1 - \delta C| \le K$$

14. Нормы затрат времени на анализ

Для проведения серии анализов из шести проб при последовательном отборе проб воздуха требуется 2 ч.

Методические указания разработаны Российским государственным медицинским университетом (лаборатория токсикологии и экологии, Гугля Е. Б.).