СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА МЕТАЛЛИЧЕСКИЕ МАЧТЫ И БАШНИ РАДИОПРЕДПРИЯТИЙ
Общие требования безопасности
ОКСТУ 0012

OCT45.091.350-9T

Дата введения OI.II.9I

Настоящий стандарт распространяется на металлические мачты и башни, применяемые в качестве стационарных антенных опор и антенн-мачт радиопредприятий. Стандарт устанавливает требования при проектировании, обеспечивающие безопасность труда обслуживающего персонала при работе на металлических антенных опорах.

Требования безопасности персонала при обслуживании металлических мачт и башен относятся к конструктивным решениям опор, электрооборудованию, молниезащите, элементам высокочастотных узлов антеннофидерных устройств, а также ко всем видам подъемных устройств (ПУ), предназначенных для польема обслуживающего персонала на опоры.

Пояснения терминов, применяемых в стандарте, приведены в приложении.

І. ОБШИЕ ТРЕБОВАНИЯ К ОПОРАМ

- 1.1. Антенные опоры (мачты и башни) должны быть снабжены элементами и приспособлениями, обеспечивающими обслуживающему персоналу безопасность подъема на опору и спуска с нее. К антеннам, механизмам, электрооборудованию и другим устройствам, расположенным на опоре и требующим обслуживания, должен быть обеспечен безопасный доступ с лестниц, площадок, люльки ПУ или кабины подъемника.
- I.2. Все антенные опоры независимо от высоты (кроме опор со стороной грани или диаметром 700 мм и менее) должны иметь лестницы.

Антенные опоры со стороной грани или диаметром 700 мм и менее, в которых конструктивно невозможно разместить лестницы, независимо от высоты должны быть снабжены ПУ упрощенной конструкции для подъема людей, инструментов и материалов (без направляющих приспособлений с люлькой).

- І.З. Антенные опоры высотой более 160 м помимо лестниц должны быть оснащены ПУ, соответствующими требованиям "Правил устройства и безопасной эксплуатации грузоподъемных кранов", утвержденных Госгортехнадзором СССР от 30.12.69 г.
- Антенные опоры, на которых аппаратура расположена в каби нах на высоте более 10 м, должны быть оборудованы лифтами, отвечаюшими требованиям "Правил устройства и безопасной эксплуатации лифтов", утвержденных Госгортехналзором СССР от 26.01.71 г.
- Антенны-мачты с оттяжками, секционированными изоляторами, и антенные опоры с подвешенными к ним антенными полотнами, эксплуатируемыми без спуска на землю, должны быть снабжены ПУ, обеспечивающими безопасный доступ к уздам конструкции или оборудования, канатам и изоляторам оттяжек, узлам антенных полотен.
- Материалы для элементов и соединений металлических конструкций лестниц, площадок, ограждений, а также элементов, к которым прикрепляются ПУ, должны соответствовать CHwII II-23-81 "Стальные конструкции", утвержденным Постановлением Госстроя СССР от 14.08.81 г. № 144, и СНиП 2.03.06-85 "Алюминиевые конструкции", утвержденным Постановлением Госстроя СССР от 2.10.85 г. № 167.
- 1.7. Качество изготовления и монтажа металлических конструкций лестниц, площадок, ограждений и элементов прикрепления ПУ должно соответствовать требованиям СНиП III-I8-75 "Металлические конструкции. Правила производства и приемки работ", утвержденным Постановлением Госстроя СССР от 20.10.75 г. № 181, и СНиП 3.03.01-87 "Несущие и ограждающие конструкции", утвержденным Постановлением Госстроя CCCP of 04.I2.87 r. № 280.
- Размеры проемов в металлоконструкциях сооружений должны обеспечивать прохождение через них неразъемных элементов оборудования и механизмов. Величина зазора в свету между габаритными размерами элемента и конструкцией проема должна составлять не менее 100 мм с каждой стороны (при отсутствии специальных технических требований).
- 1.9. Электробезопасность антенных опор обеспечивается выполнением требований к их светоограждению, внутреннему освещению, электропитанию элементов подогрева гермовставок антенн, электроинструмента и другого электрооборудования, молниезащите, элементам высокочастотных узлов антенно-фидерных устройств.

2. ТРЕБОВАНИЯ К ЛЕСТНИЦАМ И ПЛОЩАДКАМ ОПОР

2.І. Расчет элементов лестниц и площадок При разработке лестниц и площадок расчет их элементов должен производиться с учетом:

коэффициента надежности по нагрузке на настил от людей и материалов - 1,2;

коэффициента надежности по нагрузке на настил от собственной массы элементов — I.I:

коэффициентов надежности по назначению конструкций:

для подвесок из стальных канатов - 7;

для стержневых подвесок - 4;

коэффициентов условий работы:

при расчете стоек на устойчивость - 0,7;

при расчете перил ограждения - 1,5

2.2. Лестницы

- 2.2.1. Вертикальные лестницы, лестницы с углом наклона к торизонту более 75° должны быть шириной не менее 0,45 м и иметь ступени из круглой стали диаметром не менее 20 мм, выдерживающие вертикальную сосредоточенную нагрузку I350 Н (I35 кгс) с расстоянием между ступенями не более 0,35 м.
- 2.2.2. Вертикальные лестницы, лестницы с углом наклона к горизонту более 75° при высоте более 5 м должны иметь начиная с высоты 3 м ограждения в виде дуг. Дуги должны сыть расположены на расстоянии не более 0,8 м друг от друга и соединяться между собой не менее чем тремя продольными стержнями из круглой или полосовой стали. Расстояние от лестницы до дуги должно быть от 0,7 до 0,8 м и более при радиусе дуги 0,3-0,4 м.

Ограждение лестниц не требуется, если лестница проходит внутри решетчатого ствола с базой не более 0,9 м при квадратном сечении и не более 1,35 м при треугольном сечении ствола, а также внутри опоры из трубы диаметром не более 1,22 м; при этом расстояние от лестницы до ограждающих конструкций ствола не должно превышать 1,0 м.

- 2.2.3. Конструкция вертикальных лестниц, лестниц при угле наклона к горизонту более $75^{\rm O}$ и длине между точками закрепления более 3 м должна обеспечивать возможность их натяжения.
- 2.2.4. Лестницы с углом наклона к горизонту 75° и менее должны быть шириной не менее 0,6 м и иметь плоские ступени из стальных рифленых или гладких листов с наплавленным рельефом или ступени, выполненные из трех стержней диаметром не менее 18 мм и с шагом по высоте не более 250 мм. Лестницы должны иметь вертикальное ограждение в виде поручня и стоек, которые должны выдерживать горизонтальную сосредоточенную нагрузку 800 Н (80 кгс).
- 2.2.5. Конструкция переносных лестниц должна соответствовать ГОСТ 26887. Верхние концы переносных лестниц должны фиксироваться на конструктивных элементах мачт с помощью болтов и скоб.

2.2.6. При высоте лестниц более 10 м должны быть устроены площадки для отдыха через каждые 6-8 м. В отдельных случаях, по технологическим или конструктивным соображениям, допускается устройство площадок для отдыха с пролетом (шагом) 10 м, но не более 20 м. В этом случае должны быть установлены параллельно тетиве лестницы два направляющих прутка диаметром 20 мм для поочередного закрепления карабинов предохранительного пояса. Закрепление прутков должно производиться не более чем через 4 м в шахматном порядке.

В опорах из трубы диаметром не более I,22 м допускается устройство площадок для отдыха с шагом до I2 м, при этом через каждые три пролета, но не более чем через 36 м, трубы должны иметь сплошное перекрытие с устройством люка размерами не менее 0,5х0,5 м. Люки должны быть с легкими и удобно открывающимися вверх крышками.

2.2.7. Лестницы, которые из-за ограниченных внутренних размеров ствола опоры не могут быть снабжены площадками для отдыха, должны быть снабжены откидными площадками, перекрывающими сечение лестницы не менее чем на 50%, и приспособлениями для фиксации их в открытом и закрытом положениях.

2.3. Площадки

2.3.I. Площадки для отдыха или обслуживания технологического оборудования должны быть размерами не менее 0,5х0,5 м с ограждением высотой не менее I,I м. Число стержней ограждения, параллельных площадке, должно быть не менее трех (включая поручень) с расстояниями от настила площадки 0.I; 0.5 и I.I м.

В решетчатых стволах мачт с базой $I,35\,\mathrm{m}$ и менее допускается ограждение из двух стержней с расстояниями от настила площадки $0,2\,\mathrm{u}$ $I,I\,\mathrm{m}$.

Ограждение по конструктивному выполнению должно соответствовать требованиям п.2.2.4.

- 2.3.2. Настил площадок выполняется из стальных рифленых, гофрированных или перфорированных листов с отверстиями диаметром не более 20 мм.
- 2.3.3. Переходные площадки, площадки на траверсах и реях с настилом из листовой стали должны иметь продольный уклон не более 20%. При уклоне 20-40% поперек настила должны быть приварены ребра или прутки высотой (диаметром) от 20 до 40 мм. При уклоне более 40% площадки должны выполняться со ступенями, конструкция которых указана в п.2.2.4.
- 2.3.4. Отверстия для пропуска канатов в площадках должны быть диаметром не более IOO мм без острых кромок.

3. І. Общие положения

3.І.І. ПУ должно обеспечивать эксплуатационному персоналу безопасный доступ к местам производства работ на антенных сооружениях.

Условия безопасной эксплуатации должны быть определены органи-зацией-разработчиком оборудования.

Конструкция ПУ должна обеспечивать при аварийной ситуации безопасный спуск людей из рабочего положения.

- 3.1.2. При разработке ПУ расчет канатной системы производится исходя из нормативной скорости ветра I2 м/с (на высоте I0 м над уровнем земли). Расчет на воздействие сейсмической нагрузки не производится.
- 3.1.3. При определении грузоподъемности кабины (люльки) масса одного человека принимается равной 800 H (80 кгс).

Для обеспечения безопасного подъема и перемещения кабины (люль-ки) при помощи электропривода должны предусматриваться гибкие или жесткие направляющие. Количество и тип направляющих определяются при проектировании.

Допускается проектирование ПУ без направляющих при подъеме ка-бины (люльки) со скоростью до 20 м/мин.

3.І.4. Разработка узлов и деталей несущих элементов ПУ должна выполняться с учетом коэффициента надежности не менее 5, а для остальных элементов — не менее 2.

Коэфомимент запаса прочности при разработке канатных элементов принимается не менее:

```
для тяговых и подъемных — 9,0;
для несущих (наклонных и горизонтальных) — 5,0;
для всех остальных — 3,3.
```

- 3.1.5. Расчет усилий в канатных элементах ПУ выполняется по нормативным нагрузкам. Силы инерции и тормозные усилия, передающие—ся на канате от срабатывания ловителя кабины (люльки), не учитывают—ся.
- 3.1.6. Натяжение направляющих и несущих канатов должно осуществляться натяжными устройствами.
- 3.1.7. Концы канатов заливаются во втулки или заплетаются. Допускается закрепление концов канатов при помощи сжимов, при этом количество их принимается по расчету, но не менее 3. Сращивание канатов не допускается.
- 3.1.8. В качестве несущих, тяговых и грузовых канатов должны использоваться многопрядные нераскручивающиеся стальные канаты с

органическим сердечником. Для стационарных несущих канатов должны использоваться канаты со стальным сердечником.

- 3.1.9. Стальные канаты должны изготавливаться из оцинкованной проволоки. В переставных устройствах допускается использование канатов из неоцинкованной проволоки.
- 3.I.IO. Узлы и элементы ПУ должны изготавливаться в климатическом исполнении У (для районов с умеренным климатом) и XЛ (для районов с холодным климатом) по ГОСТ 15150.
- 3.1.11. Техническая документация на ПУ должна включать порядок проведения приемочных испытаний (приемо-сдаточных и периодических).
 - 3.2. Барабаны и блоки
 - 3.2.I. Диаметр блока, огибаемого стальным канатом, должен быть: при ручном приводе не менее I6 диаметров каната; при машинном приводе не менее 25 диаметров каната.

Допускается принимать диаметр барабана на 15% меньше указанных размеров.

Диаметр уравнительного или отклоняющего блока допускается уменьшать на 20%.

- 3.2.2. Канатоемкость барабана многослойной навивки должна быть такой, чтобы при сматывании на барабане оставалось не менее полутора витков каната.
- 3.2.3. Барабаны должны иметь с обеих сторон реборды, которые должны возвышаться над верхним слоем каната не менее чем на два ди-аметра каната при полном заполнении барабана.
- 3.2.4. Блоки для ПУ с электроприводом должны быть на подшипниках качения; для ПУ с ручным приводом допускается применять блоки на подшипниках скольжения. Блоки должны быть снабжены устройствами, которые исключают возможность выпадения каната из ручья блока.
- 3.2.5. На участке от верхнего грузового блока до нижнего отводного блока масса сбегающей нитки подъемного каната должна быть меньше массы пустой люльки не менее чем на 10%.

3.3. Подвижная часть ПУ

- 3.3.1. Люльки, в которых люди перемещаются и работают стоя, должны иметь перильное ограждение высотой не менее I,2 м с расстояниями между горизонтальными элементами не более 0,3 м. Пол люльки должен иметь по периметру бортик высотой 0,I м. Устройство дверей в люльке запрещается.
- 3.3.2. Ограждение кабины должно быть сплошным и выполнено из несгораемого материала. Двери кабины должны быть открывающимися внутрь или раздвижными с запором, исключающим самопроизвольное от-

крывание двери. Потолочное перекрытие кабины должно выдерживать на-грузку, соответствующую массе двух человек.

- 3.3.3. Полезная площадь пола кабины или люльки должна составлять не менее $0.25~\text{m}^2$ на одного человека.
- 3.3.4. На кабине или люльке должна быть табличка с указанием допустимой грузоподъемности (число людей или масса груза).
- 3.3.5. Кабины, платформы и люльки, перемещающиеся по направляющим или несущим канатам, должны быть оборудованы ловителями автоматического действия. Ловитель должен обеспечивать зависание кабины (люльки) на направляющем или несущем канате при обрыве подъемного каната.
- 3.3.6. Электролебедка должна быть оборудована колодочным тормозом, автоматически действующим при отключении двигателя. Связь вала электродвигателя с валом барабана должна осуществляться с помощью зубчатой или червячной передачи, исключающей возможность отсоединения барабана от электродвигателя и тормоза.

Конструкция тормоза должна обеспечивать коэффициент запаса торможения не менее 2,0.

- 3.3.7. Ручная лебедка должна быть оснащена автоматически действующим дисковым грузоупорным тормозом.
 - 3.4. Элементы управления
- 3.4.І. Для обеспечения лучшей видимости управление электролебедкой может осуществляться дистанционно при помощи выносного пульта на гибком кабеле.
- 3.4.2. Управление электролебедкой должно производиться путем непрерывного нажатия на одну из двух кнопок (подъема или спуска). При отпускании кнопки электропривод должен выключаться.
- 3.4.3. Для экстренного обесточивания электролебедок ПУ должна предусматриваться установка ящиков с однофидерными рубильниками, расположенными у пульта управления электролебедкой.

4. ТРЕБОВАНИЯ ЭЛЕКТРОБЕЗОПАСНОСТИ К АНТЕННЫМ ОПОРАМ

- 4. Г. Светоограждение, внутреннее освещение, электропитание элементов подогрева гермовставок антенн, электроинструмента и другого электрооборудования
- 4.І.І. Светоограждение, внутреннее освещение, электропитание элементов подогрева гермовставок антенн, электроинструмента и другого электрооборудования должны соответствовать "Правилам технической эксплуатации электроустановок потребителей" и "Правилам техники безопасности при эксплуатации электроустановок потребителей", утверж-

денным Главгосэнергонадзором от 21.12.84 г.

4.1.2. Внутреннее освещение выполняется у антенных опор, имеющих непрозрачные сплошностенчатые поверхности, внутренние размеры которых позволяют верхолазам перемещаться внутри антенной опоры и при необходимости выполнять работы.

Наименьшая освещенность на площадках обслуживания светильников светоограждения и другого оборудования должна быть не менее 10 лк, а на других площадках и ступеньках лестниц — не менее 0,5 лк, что должно обеспечиваться при использовании ламп накаливания.

4.1.3. Конструкции для прокладки кабелей и проводов по антенным опорам для электропитания элементов подогрева гермовставок антенн, инструмента и другого электрооборудования должны иметь электрическую связь с конструкциями опор, выполненную сваркой.

При прокладке кабелей и проводов напряжением свыше 42 В конструкции опор должны иметь металлическую связь с защитным заземлением или занулением. Антенные опоры, изолированные от земли, должны иметь разъединители, позволяющие при необходимости заземлять эти сооружения.

- 4.І.4. Светильники светоограждения опор должны располагаться в доступных местах, чтобы лампы можно было заменять с лестницы или площадки (за исключением опор сечением 700 мм и менее, для которых смена ламп разрешается с люльки).
- 4.I.5. При проектировании должны применяться изделия и аппараты, величина сопротивления изоляции которых соответствует указанной в:

```
    ГОСТ 8045 – для светильников напряжением 220 В;
    ГОСТ 19294 – для понижающих трансформаторов напряжением 380/42 В;
```

ГОСТ 16442 - для силовых кабелей с пластмассовой изоляцией;

ГОСТ 433 - для силовых кабелей с резиновой изоляцией;

ГОСТ 6323 - для электропроводок с пластмассовой изоляцией;

ТУ 16-705.456 - для электропроводок с резиновой изоляцией;

ГОСТ 12434 - для коммутационных аппаратов.

4.I.6. При проектировании должны применяться изделия и аппараты, конструктивное исполнение которых в части требований безопасности соответствует:

```
ГОСТ I2.2.007.I3 - для светильников светоограждения и штеп-
сельных розеток;
```

ГОСТ I2.2.007.2 - для понижающих трансформаторов;

ГОСТ 12.2.007.6 - для коммутационных аппаратов;

ГОСТ 12.2.007.0 - для кабелей.

4.2. Молниезащита

- 4.2.1. Молниезащита для металлических антенных опор должна удовлетворять требованиям "Инструкции по проектированию молниезащити радиообъектов" ВСН-I-77 Минсвязи СССР, утвержденной Министерством связи СССР от 27.04.77 г.
- 4.2.2. Величина импульсного сопротивления заземления металлических опор должна быть не более 20 См., а оттяжек — не более 50 См.
- 4.2.3. Материал токоотводов и заземлителей, их конструктивное выполнение и минимальное сечение должны соответствовать требованиям РДЗ4.2I.I22 "Инструкция по устройству молниезащиты зданий и сооружений", утвержденного Главтехуправлением Минэнерго СССР от I2.I0.87 г.
 - 4.3. Элементы антенно-фидерных устройств мачт и башен
- 4.3.1. Конструктивные решения антенно-фидерных устройств, качество их монтажа, наладка, испытания и измерения на электробезопасность должны соответствовать требованиям ГОСТ I2.1.019 и ГОСТ I2.3.019.
- 4.3.2. Расстояние от проводов фидера до поверхности земли должно быть не менее 3 м, для районов со снежным покровом толщиной более I м не менее 4 м.
- 4.3.3. В антенных опорах, поддерживаемых оттяжками, секционированными изоляторами, длина секции оттяжки определяется нормативнотехнической документацией на антенну, электрической прочностью изоляторов и минимальной длиной волны.
- 4.3.4. Высокочастотное заземление средневолновых и длинноволновых антенн должно быть соединено с заземлителями защитного заземления технического здания.
- 4.3.5. Основания антенн-мачт, изолированных от земли, должны быть обнесены оградой высотой не менее $I,5\,\mathrm{m}$ с запирающейся калит-кой и относом ограждения от токонесущих элементов на расстояние не менее $3\,\mathrm{m}$.
- 4.3.6. Электрическое оборудование, устанавливаемое на опорах радиовещательных центров, должно быть экранировано. На период монтажа и работы ПУ и системы технического обслуживания с применением стальных канатов на антенных системах передающих радиоцентров все передатчики должны быть отключены. При работе передающего центра все канатные элементы системы обслуживания должны быть демонтированы.

термины и пояснения

Термин	Пояснение
Подъемное устройство (ПУ)	Устройство, предназначенное для пере- мещения людей с инструментом и материа- лами по высоте и фронту антенных соору- жений при их монтаже и обслуживании
Кабина лифта	Подвесная конструкция закрытого типа, закрепленная на гибкой подвеске, с пе- ремещаемым по высоте рабочим местом
Кабина подъемника	Конструкция закрытого типа с перемеща- емым по высоте рабочим местом
Люлька	Подвесная конструкция полуоткрытого типа, закрепленная на гибкой подвеске, с перемещаемым по высоте и фронту рабочим местом
Платформа	Подвесная конструкция открытого типа, закрепленная на нескольких гибких подвесках, с перемещаемым по высоте рабочим местом
Несущий канат	Канат, предназначенный для перемещения по нему подвесной конструкции (люльки)
Грузовой канат	Канат, предназначенный для перемещения подвесной конструкции по высоте
Тяговый канат	Канат, предназначенный для перемещения подвесной конструкции по наклонному и горизонтальному несущим канатам
Стационарное ПУ	Устройство, устанавливаемое стационарно у места ведения работ
Переставное ПУ	Устройство, устанавливаемое только на период ведения работ
Уразнительный блок	Блок, предназначенный для выравнивания усилий в канатах полиспаста
Отклоняющий блок	Блок, предназначенный для изменения направления движения каната

информационные данные

- I. ВВЕДЕН В ДЕЙСТВИЕ директивным письмом организации от I7.06.9I № 3/72/1962
- 2. SAPETUCTPUPOBAH
- 3. Срок первой проверки I996 г., периодичность проверки 5 лет
- 4. B3AMEH OCT45.27-84
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта, перечисления, приложения
FOCT 12.1.019-79	4.3.1
ΓΟCT 12.2.007.0-75	4.1.6
FOCT I2.2.007.2-75	4.1.6
FOCT 12.2.007.6-75	4.1.6
ΓΟCΤ 12.2.007.13-88	4.1.6
TOCT 12.3.019-80	4.3.I
ГОСТ 433-73	4.1.5
ГОСТ 6323-79	4.1.5
ГОСТ 8045-82	4.I.5
ГОСТ I2434-83	4.1.5
ГОСТ 15150-69	3.I.IO
ГОСТ I6442-80	4.1.5
ГОСТ 19294-84	4.I.5
FOCT 26887-86	2.2.5
РД34.21.122-87	4.2.3
TY I6-705.456-87	4.1.5

СОДЕРЖАНИЕ

Ι.	Общие требования к опорам	
2.	Требования к лестницам и площадкам опор	2
3.	Требования к ПУ	5
4.	Требования электробезопасности к антенным опорам	7
ΠP	ИЛОЖЕНИЕ. Термины и пояснения	IC
Ино	формационные данные	IJ