Министерство вилищно-комунального хозяйства РСССР Ордена Трудсього Красного Знамена Академия коммунального хозяйства им. К.Д.Пэлфилова

>) твержеено приказом Манистерства жилишнокоммунального козміства РСССР 23 маста 1987 г. № 122

METORNAEHUO PACNOROS CYOTHON EMEROCTI B ESENIANOPENIX TPYEONPOBORA:

Отдел ниучно-т нической информации ARZ
М с с к в а 1 9 8 7

Настоящие указания устанавливают порядок проведения измерений раскодов сточной жидкости в безнапорных трубопроводам, требования к участкам трубопроводов, на котории долгни проводиться измерения,

и и средствен исмерения уровня и скорости.

Методические указания разработани НИИ КВОВ АКУ им. К.Д.Паміндова (мангилати техн. наук Т.М. Колискор и Б.А. Казарли. инш. М.В.Миртчян) при участии треста мосочисться (инпенери В.В. Иванов и Л.Ф. Скрябин) и ВНИИ ВОЛТЕЗ (канд. техн. наук П.В. Носачев) и согласовени с Казанский филиалом ВНИИ СТРИ. Предназначеней для организаций, занимающихся эксплуатацией и напалной систем нанализации.

Земечания и предложения по указаниям просъба напремлять по апресу: 123371. Москва, Волоколамское шоссе, 67. ЕНУ коммунального водоснабжения и очист-

ки воды АКХ им. К.Д. Памфилова.

В настоящее время основным устройстьом, применяемым для измерения расходов сточной жидкости, являются лотки Вентура и Паршаля. Значительные размеры этих устройств не позволяют применять их в стеснених условиях. Чаще всего они но-пользуются на очистных станциях, а эдинственным методом, применяемым на сетях, является метод "площаль - скорость", для осуществления которого требуется произвести не менее 15 измерений местных скоростей.

Определение расхода этим методом требует значительних затрат труда и времени. Кроме того, в процесса измерений в натурных условиях возможно изменение расхода, что сникает точность метода. Метод, изложений в настоящих указаниях, заключается в определении расхода путем измерения наполнения и скорости в одной точке. Эн обладает достаточной точностью, доступен для применения в условиях эксплуатация. Метод апробирован в тресте Мосочиствод и в Водокциалах Новосибирска и Еревана.

I. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- I. Метод предназначен для определения расхода сточно жидкости в безнацорных тр проводах круглей формы цутем измерения нацолнения и ско сти движения жидкости в одной точке.
- 2. Метод позволяет произвести градупровку измерительного сечения (сечения, где у анавлаваются измерательные приборы), т.е. установить висимость расхода от уровня жидкоста.

- 3. Измерения могут проводиться при соблюдении следущих условий: наполнение труби не доляно быть более 0,75 и в период измерений доляно оставаться постоянным; минимальный дламетр трубопровода 0,3 м. что связано с размерами стандартных гидрометрических вертушек, минимальный диаметр которых равен 0,02 м; средияя скорость движения води не менее 0,7 м/с; дно трубопровода доляно быть чистым.
- 4. Требования настояних указаний изложены в соответствии с утвержденных Госстандартом СССР "Правилами измерения расхода андкости при помощи стандартных водосливов в лот-ков" (РШ-99-77).

H. OCHOBU METODA OTPENEMENUM PACKODA ZUKOCTU TO MREEPENIKE EE YPOBHR N CKOPOCTU B OJHON TOUKE EUBOTO CEMENUR

- 5. Метод определения расхода сточной жидкости по измерению скорости в одной точке основан на установленной зависимости распределения скоростей в живом сечении от основных параметров потока (диаметра трубопровода, его наполнения в комфициента шероховатости стенок).
- 6. Іля трубопроводов, транспортирующих сточную жидкость, козффициент шероховатести / принимается постоянным и равным 0.014. Указания по определению диаметра и наполнения приведени в п. 16 и 17.
- 7. Расход жидкости Q может быть определен двуми способами:

по величине средней скорости потока \mathbf{U}_{cp}^{\prime} по формуле

$$Q = V_{cp} \omega, \qquad (I)$$

где ω - пловаль вивого сечения потока; по величине максимальной скорости \mathcal{V}_{max} по формуле

$$Q = V_{max} \omega N, \qquad (2)$$

где \mathcal{N} - безразмерний коэффициент, определяемий по таслице прил.

Бторой способ позволяет достичь большей точности, та как при измерении максыкальной спорости, находященся на сольшем расстоянии от дна лотки чем средня существует меньшая вероятность налипания загрязнений на вертушку. По-

Первий спосоо должен использоваться лишь в тех случаях, когда расстояние максимальной скорости от поверхности води меньше. Чем I,5 диаметра гидрометрической вертушки.

- 8. Для исключений трудоемких вичислений составлени таблици (прил. I и 2), позволяющие определять необходимие параметри по результатам измерения диаметра трубопровода и наполнения
- 9. Погрещность определения расхода кидкости настоящим методом при измерении максимальной скорости не превищет 5%, при измерении средней окорости 7%. Для более точного определения погрещности можно пользоваться методикой, изложенной в прил. 3.

ш. ТРЕБОРАНИЯ К УЧАСТКУ ТРУБОПРОВОДА НА КОТОРОМ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ

10. Для обеспечения гарантируемой точности измерительный участок труоспровода должен бить примолинейным с постоянным учлоном и дляметром без боковых присоединений.

Дляна участка перед намерительным сечением должна бит пе менее 40 Н (Н - глубина наполнения трубопровода), а после него 10 Н.

II. Сечение, в котором установливается прибори для измерения скорости и уровня, должно бить расположено в середине дотка смотрового колодиа. В этом сечении и вблизи него не должно бить виступов, закладних деталей и других предметов, визивикимх искажение уровня в результате местних возмущений потока.

ІУ. ТРЕБОВАНИЯ К ПРИБОРАН ШЯ ИЗДЕРЕНЫЯ СКОРОСТИ И УРОВНЯ

12. Для измерения уровил допускается применять простейшие орелства из ерения: мерние иглы, крычковые рейки, пьезометрические трубки, водомерные рейки и т.д.

мерние ренки являются занболее груоным ородствами измерения. Более точно позволяют измерить уровень мерние игли. Основной деталью мерной игли является шток с нанесеннымя из нем отметивым. На штоке укреплена зубчатая планка, соещиенный с премальорой и нониусом. Отсчет по нониусу произполят в мочент клодния иглой, дрикрепленной к штоку, позерхности жидкости или в момент ограва иглы от этой новерхности. Плоскостью отсчета является дно мотка.

Волее подробное описание средств измерения уровня идсти содержится в иниге П.В.Лобачева и О.А.Шевелева Измерение расхода мишкостей и газов в системах водоснабжеини и канализации Т.М.: Строинзцат, 1985).

- 13. При постоянних наблюдениях за расходеми следует непользовать уроднемеры с самонишущими устройствами тина СУВ-М ("Валими").
- 14. Для измерения скоростей рекомендуется применять следукцие гидрометрические вертушки: для потоков глуоиной менее 0.3м типа λ -6. IP-96. для потоков глуоиной более 0.3м IP-2I M. IP-99, IP-55 (IOCT I5126-80).

Tun	нертушки								Диаметр лопастного винта м м									
	X-6.		•		•	•	•	•	•	•	•					_	20	72454
	TP-96 TP-55 TP-99	•	•	•	•	٠	•	•		•	•	•	٠	•	•		70	
	TP-2I															•	120	

15. Гидромотрические вертушки должни быть в хорошем состоянии, которое поддерживется чисткой после каждого использования и своевременной заменой всех изношенных или поврежленных деталем.

У. ПОРЯДОК ВЫПОЛНЕТВИ ИЗМЕРЕНИИ

- 16. В смотровом колодие на участке трубопровода, вибранном в соответствии с требонаныями, изложенным в разд. W, измерять отметку лотка W, и отметку поверхности видкости W_п. По разности (W_R W_p) определить глубину наполнения W
- 17. Мерной штангой или стальной рулеткой измерить горизонтальный диаметр лотка не менее чем в трех сечениях. По соеднеарифметическому из этих значений принимается диаметр тругопровода Л
 - 16. Спределять относительное нелолионие тругопровода М/А.
- 19. По таблице (см. прил. I) найти расстояние по ртикали от лотка до местоположения миксимальной скорости соответствующее мактическим величинам II и H/I.
 - 20. Определить величину (Е г.
- 21. При $(R-n_i) < 1.5$ дивметра гидрометрической вертуши расход в соочветствии с в. 7 определжется во соедие скотости.

Дия этого

с помощью таблици (см. прял. 2) экплючить площадь понеречного сечения потока (г)— в гиправический радиус К

-опотом он вятон то шемитдев от винотород атмивредноекумдой он кторомо йендер кинеков

па штанго с мерники делонивым упредить зертущку на оксоте Уср

измерить среднюю скорость $V_{\rm cp}$ на висоте $\psi_{\rm cp}$ от лот-

вичнолить Q по формуле (I).

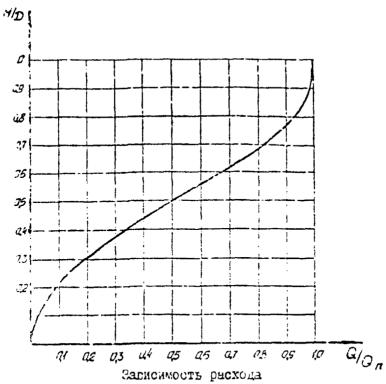
22. При (H - h) > 1.5 диаметра гидрометрической вертушки расход определять по максимальной скорости.

LIA STOTO:

на итанге с мерними делениями укрепить рертушку на вы-

измерить максимальную скорость U_{max} на висоте h от лотка:

до таолице (см. прил. 1) наити значение N: с помощью таблицы (см. прил. 2) внумолить значение ω ; внумолить Q до формуме (2).


- 23. Гипрометрическая вертушка должна находиться в кахдой выбранной точке измерения не менее 40 с. Измерения скоростей в наидой из указавиях точек следует виполнять не менее трех раз. Значение окорости принять как среднеарифметическое этих измерений. При расхождении результатов измерений окорости золее чем на 5% измерения повторить.
- 24. Отаоминесть расхода в пропессе измерений контролигуетоя дензионностью ваполнения, которое дополнительно измеэлется после измерения экоростей.

VI. MOPALON MPCEERHUA UPALGUPOPER MEGERIALISMONO CERENEN TRECUPOBOLA

- 25. Градунровка соуществляется с целью носледующего онределения расхода по исмерению уровки милкости в трубопровода. При этом используется известная зависимость Q/Q_q (где Q_q — расход при полном наполнении) от отчеситемьного наполнения R/A рисунок, оправединдая для всех используеких в комелисации диаметров труб.
- или вдохода проведения по вто зависимости расхода при метом наполнении следует предварительно установния интимину $Q_{\rm m}$, что модисствияется проведением определения расхода $Q_{\rm m}$ на каком-лиос фиксированием наполнении по методике, изловенной в разд. $V_{\rm m}$

Далее опелует по трафику (см. рисунок) установить коэффициент A ($A=Q/Q_{\perp}$), соответствующий измеренному явлолненном, и определяющей от формуле $Q_{\perp}=Q/A_{\bullet}$

При установленной для денного трубопровода величине Q_п по графику (см. эмсунок) можно определять расхед при любом наполнения.

жилкости от ее уровня в канале круглого сечения

Значение $\theta_{\rm H}$ опредолять как среднеарифизтическое при двух-тоєх измеревиях расхода и наполнения.

27. Грациировку измерительного свчения рексмендуется просслить не реже I раза в год. Внеочоредная грациировка проводится при изменении условий расоты трубопровода.

УП. ТЕХНИКА БЕЗОПАСНО

- 26. Производство работ по определению расходов сточной мидкости в системах канализации должно осуществляться в состветствии с действующими "Правилами техники безопасности при эксплуктации систем водоснабжения и водостведения населенных мест" (М.: Стройиздат. 1979. Разд. 4.2-4.3).
- 29. Перед спуском льдей в колодец, где проводятся измеренил, необходимо проверить его загазованность лампой ЛБВК.

	$I_{i,j}$ 134											
R/I	200	300		7	(00)	500						
	N	h_195	Λ'	h	N	h No	<i>N</i>	h MM				
0,1	0.8537	18	0,896?	19	0,8563	36	0,8513	45				
0.15	0.848	25	0,8571	39	0,6545	52	0,8609	65				
9,2	0,8501	35	0,8549	49	0,8608	66	0,8658	84				
0.25	0,8632	39	0,8671	59	0,8658	80	0,8672	IOI				
0,3	0,8575	45	0,8632	68	0,8675	92	0,8698	IIô				
0,35	0,6673	50	0,8658	77	0,87	104	0,6718	131				
0.4	0,8603	57	0,6709	84	0,8721	II4	0,8739	144				
0.45	0,868	59	5,872	91	0,8741	123	0,874	156				
0,5	0,8721	63	0.8715	97	0,6742	132	0,8749	167				
0,55	0,8701	66	0.8737	103	0,8743	140	0,8757	178				
0,6	0,874	63	0,874	ICS	0,9753	147	0,8756	187				
0,65	0,8742	72	0,8738	1.12	0,8755	153	0,8756	195				
0,7	0,8727	75	0,8742	116	0,8749	159	0,8726	202				
6,75	0.8742	76	0,8739	120	0,8743	164	0.8747	209				
8,0	0.6733	73	0,6726	192	0.572	158	0,8729	215				

продолжение прим. 1

					<u> </u>	<u> </u>				
H/江	6C4.)	7	00	800)	900		100	00
	۸′	h.	N	h is	N	D , E2.1	N	h,MM	N	h, MM
0,1	0,8571	54	0,855	54	0,86	73	0,8608	82	0,861	91
0,15	0,8609	79	0,8646	92	0,8351	105	0,8556	II9	0,8663	132
0,2	0,8671	101	0.8668	119	0,8679	135	0,869	T53	0,873	I70
0,25	0,8698	121	0,8703	7.42	0,8718	I63	0,8723	184	0,8703	206
0,3	0,8717	141	0,8723	I 65	0,873	189	0,8741	2[4	0,8749	238
0,35	0,873	158	0,8742	186	Ů,875	213	0,8761	241	0,8767	269
0,4	0,8722	179	0.8754	205	0,8764	236	0,875I	266	0,8776	297
0,45	0.3752	189	0,8762	223	0.8774	256	0,8779	290	0.8786	323
0,5	0,8762	203	0.8773	233	0,8778	275	0,8733	311	0,879	348
0, 55	0,877	216	0,8773	254	0,878	292	0,8787	331	0,8791	370
0,6	0,8769	227	0,8773	267	0,8787	308	0,8778	352	0,8791	390
0,65	0,8766	237	0,8773	280	0 8777	323	0,8782	366	0,8787	409
0,7	0,8761	246	0,8756	291	0,8771	335	0,2776	380	0,8779	425
0,75	0,8752	255	0.8756	202	0,875I	347	0,8765	394	0,8769	441
0,8	0,8734	262	0,8739	308	0,6761	257	0,8748	405	0,6753	454

Продолжение прил. І

	L.,				Д. ы	1				
A/A	HAT ISOG		I400)	X5 0	Q	16'	\mathcal{N}	20:00	
	Ν		N	h.m	N	halin	il	n	N	h
0,1	0,8629	115	0,8350	129	0,856	138	0.8663	147	0,8685	761
0,15	0,8685	159	0,8702	186	0,6706	200	0,8715	213	0,8732	258
0,2	0,872	275	5.87301	240	C.674	255	0,8746	275	0,8763	346
0,25	0,8743	248	0,8758	230	0,8762	312	0,3767	333	0,8784	419
0,3	0,8763	288	0,8774	337	0,378	362	0,8784	206	0,8801	487
0,35	0,8778	325	6,6777	381	0,8794	409	0,8798	437	0,8812	550
C,4	0,8738	359	0,8798	422	0,6803	453	0,8806	484	0,832	610
0,45	0,679	391	0,8805	459	0,8909	494	0,881	529	0,8825	666
0,5	0,8799	42I	0,3809	494	0,8812	53I	6138,0	568	0,8827	717
0,55	1033.0	448	0,8809	527	0,8812	566	0,8816	606	0,8827	765
0,6	0.8729	473	0,3506	557	C,86I	593	0,8813	640	0,8824	809
0,65	0 8797	494	s083,6 i	584	0,8805	628	0,8808	672	0,8818	850
0,7	0,8787	517	0,8793	609	0,8799	655	0.8799	70I	0,8809	887
0,75	0,8776	535	2015,0	183	0,8784	679	0,8787	727	0,8796	52I
0,8	10,8759	552	0,8755	651	0,8767	707	0,877	751	0 9779	059

Приложение 2

Относительные значения $\bar{\omega}$ и \bar{R} или трубопроводы круглого сечения $(\omega = \bar{\omega} \, \mathbb{I}^2; \quad R = \bar{R} \, \mathbb{I})$

a/I	$\bar{\omega}$	Ř
1.0	0,04088	0,0635
0,15	0,07388	0,0929
0.2	0,1118	0,1206
0,25	0,1536	0,1466
0,3	0,1982	0,1709
0,35	0,245	0,1965
0,4	0,2934	0,2142
0.45	0,3428	0,2331
0,5	0,3927	0,25
0,55	0,4426	0,2649
0,6	0,492	0,2776
0,65	0,5404	0,288I
0,7	0,5872	0,2962
0.75	0,6319	0,3017
0,8	0,7636	0,3042
0,85	0,7115	0,3039
0,9	0,7445	0,298
0,95	0,7707	0,2865
I	0 7854	0, 25

Нахождение погрешности определения расхода

 Средняя квадратическая погрешность определения расхода вичисляется по формуле

$$\frac{\delta_c}{Q} = \sqrt{\left(\frac{\delta_w}{w}\right)^2 + \left(\frac{\delta_w}{u}\right)^2 + \left(\frac{\delta_w}{y}\right)^2 + \left(\frac{\delta_w}{dy}\delta_{y_2}\right)^2 + \left(\frac{\delta_w}{dx}\delta_{x_1}\right)^2},$$

гле $\delta_{\mathbf{W}}$, $\delta_{\mathbf{H}}$, $\delta_{\mathbf{q}_1}$, $\delta_{\mathbf{q}_2}$, $\delta_{\mathbf{x}}$ - средняя квелратическая погречность соответственно определения плошали вивого сечения, измерений скорости, определения точки измерения, установки измерителя скорости, установления местоположения центральной вертикальной оси; $\frac{du}{dv}$, $\frac{du}{dx}$ - безразмерный градиент скорости соответственно по вертикалы и по горязонтали.

Учитивая, что $\omega = f(H/\Lambda, \Lambda)$, можно записать:

$$\frac{6\omega}{\omega} = \sqrt{\left(\frac{6H}{H}\right)^2 + 3\left(\frac{6a}{\Omega}\right)^2}.$$

где $G_{\rm H}$, $G_{\rm A}$ - средняя квадратическая погрешность измереявя соответственно наполнения и диаметра труби.

2. При спрецелении расхода по измерению *Umax* средняя квадратическая относительная погрешность определения расхода энчисляется по формуле

$$\frac{\delta_0}{\Omega} = \sqrt{\left(\frac{\delta_V}{V}\right)^2 + 2\left(\frac{\delta_H}{H}\right)^2 + 5\left(\frac{\delta_R}{\Omega}\right)^2 + \frac{10.5}{R} \left(\frac{\delta_{y_2}}{V}\right)^2},$$

где і - гадравляческий уклон трубопровода.

3. При определении расхода по измерению $v_{\rm cp}$ средняя кладратическая относительная погрешность измерений расхода вычисляется по формуле

4. Если для измерения скорости использурт гедрометрическую вертушку с погрешностью $G_{\rm N}=0.02$, а для измерения наполнения — мерную иглу с погрешностью $G_{\rm H}=0.015-0.02$, го я зависимости от расхода относительная погрешность онределения расхода в трубопроводах дламетром от 200 до 2000 мм при измерения средней скорости составляет 0.04-0.07, а при измерении максимальной скорости 0.03-0.005.