МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННАЯ СЛУЖБА ДОРОЖНОГО ХОЗЯЙСТВА (РОСАВТОДОР)

Введены в действие распоряжением Минтранса России от 10.10.2003 № ОС-888-р

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО КОНТРОЛЮ КАЧЕСТВА ПОЛИМЕРАСФАЛЬТОБЕТОННЫХ ПОКРЫТИЙ С ПРИМЕНЕНИЕМ ПОЛИМЕРНО-БИТУМНЫХ ВЯЖУЩИХ (ПБВ) НА ОСНОВЕ СБС

Издание официальное

ПРЕДИСЛОВИЕ

Применение полимерно-битумных вяжущих (ПБВ) на основе блоксополимеров типа СБС по ОСТ 218.010-98 приводит к удорожанию стоимости строительства, поэтому контроль качества покрытий с их применением имеет важнейшее значение. Возможные несоответствия в качестве ПБВ, полимерасфальтобетонных смесей на их основе, в технологии приготовления самих ПБВ и в устройстве покрытий с их применением может свести на нет все преимущества, которыми обладают ПБВ по сравнению с битумом.

Контроль качества полимерасфальтобетонных покрытий должен включать в себя, как и для асфальтобетонных покрытий, все испытания, предусмотренные действующими нормативными документами СНиП 3.06.03-85 «Автомобильные дороги». В отличие от этого для полимерасфальтобетонных покрытий нормируется соотношение величин водонасыщения кернов и переформованных из них образцов, а также для переформованных образцов весь комплекс стандартных показателей, включающий, кроме принятого в ГОСТ 9128-97, показатели, характеризующие сдвигоустойчивость и эластичность полимерасфальтобетона, глубину вдавливания штампа и число циклов нагружения до разрушения при 50°С соответственно.

ОДМ разработали сотрудники Союздорнии: канд.техн.наук Л.М.Гохман, канд.техн.наук А.Р.Давыдова, канд.техн.наук Е.М.Гурарий, инж. К.И.Давыдова, инж. О.В.Гавриленко.

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Предлагаемый комплекс испытаний позволяет оценить качество работ по устройству полимерасфальтобетонного покрытия с применением ПБВ на основе СБС и качество самого полимерасфальтобетона.
- 1.2. Отличие и новизна предлагаемого комплекса испытаний заключаются в новых испытаниях, специфических для полимерасфальтобетона и позволяющих оценить его качество, а, кроме того, в случае возникновения сомнений в качестве полимерасфальтобетона, определить его состав, наличие в нем ПБВ и содержание блоксополимера типа СБС в ПБВ.

2. КОНТРОЛЬ КАЧЕСТВА ПОЛИМЕРАСФАЛЬТО-БЕТОННЫХ ПОКРЫТИЙ

- 2.1. Контроль качества готового полимерасфальтобетонного покрытия осуществляют в соответствии со СНиП 3.06.03-85 «Автомобильные дороги» (п.10.40 и глава 14) оценивая его толщину, ровность и сцепление шины автомобиля с покрытием.
- 2.2 Коэффициент уплотнения полимерасфальтобетонного покрытия должен быть не менее 0,99.
- 2.3. Водонасыщение высокоплотных полимерасфальтобетонных смесей, кернов и вырубок должно находиться в пределах 0,5-1,5%. Водонасыщение плотных полимерасфальтобетонных смесей типов A, Б, В, Г, Д должно находиться в пределах 1-2,5%, кернов и вырубок из покрытия — не более 2,5%; образцов, переформованных из кернов и вырубок на смесях типа A — не более 3,0%, на остальных типах смесей — не более 2,5%.

Таблица 1 Требования к показателям физико-механических свойств полимерасфальтобетонов

N₂	Наименование показателя	Значение показателя для полимерасфальто-					
nn		бетонов марок:					
			l il				
		Для дорожно-климатических зо		Н			
<u> </u>		I	II, III	IV, V	I	II, III	IV, V
1	2	3	4	5	6	7	8
1.	Предел прочности при сжатии при температуре 50°C, МПа,						
ļ	не менее, для полимерасфальтобетонов:						
	высокоплотных	0,9	1,0	1,1	İ		
	плотных типов						
	A	0,8	0,9	1,0	0,7	0.8	0,9
	Б	0,9	1.0	1,1	0.8	0,9	1,1
	В	-	-	-	1.0	1,1	1,2
	Γ	1.0	1,2	1,4	0.9	1,1	1,3
	Д	-	-		1.0	1.2	_ 1,4
2.	Предел прочности при сжатии, при температуре 20°C, МПа,						
Ì	для полимерасфальтобетонов всех типов, не менее	1.9	2,0	2,0	1,8	1,8	1,8
3.	Предел прочности при сжатии, при температуре 0°C, МПа,						
	для полимерасфальтобетонов всех типов, не более	6,0	8,0	11,0	6.0	8,0	11,0
4.	Водостойкость плотных полимерасфальтобетонов, не менее	0,9	0,90	0,85	0,9	0,85	0.80
}		5	1		0		
5.	Водостойкость высокоплотных полимерасфальтобетонов,						
	не менее	0,9	0,95	0,90			
1		5					
6.	Водостойкость плотных полимерасфальтобетонов при дли-						
	тельном водонасыщении, не менес	0.9	0,85	0,75	8,0	0.75	0,70
		0			5		

- 2.4. Показатели физико-механических свойств полимерасфальтобетонов, переформованных из кернов и вырубок, должны соответствовать требованиям, указанным в табл. 1, 2, 3.
- 2.5. Эластичность полимерасфальтобетона (см. п.3.3 данного ОДМ) должна удовлетворять требованиям, представленным в табл. 2, независимо от дорожно-климатической зоны и марки смеси.

Статистический материал, необходимый для уточнения норм по этому показателю, будет подготовлен в процессе выполнения нормативных требований к полимерасфальтобетонным смесям с применением ПБВ на основе СБС после заключения соответствующего контракта с Росавтодором и на основе результатов обследования полимерасфальтобетонных покрытий.

Таблица 2 Требования к эластичности полимерасфальтобетона

	Число циклов до разрушения, не менее Тип смеси						
Марка ПБВ							
	Α	Б	В	Γ			
ПБВ 40	13	13	12	13	12		
ПБВ 60	11	11	9	11	9		
ПБВ 90	10	10	8	10	8		
ПБВ 130	9	9	6	8	6		
ПБВ 200	7	7	4	7	4		
ПБВ 300	6	6	3	5	3		

2.6. Глубина вдавливания штампа (см.п.3.2 данного ОДМ) для полимерасфальтобетона должна удовлетворять требованиям, представленным в табл. 3, независимо от дорожно-климатической зоны и марки смеси.

Марка ПБВ	Глубина вдавливания штампа, мм, не более Тип смеси			
Mapka 1100				
	А, Б, Г	В, Д		
ПБВ 40, ПБВ 60	2,5	3,0		
ПБВ 90, ПБВ 130,	3,5	4,0		
ПБВ 200, ПБВ 300				

3. МЕТОДЫ ИСПЫТАНИЙ

3.1. Полимерасфальтобетонные смеси испытывают по ГОСТ 12801-98

3.2. Метод определения глубины вдавливания штампа

Сущность метода заключается в определении максимального погружения металлического штампа площадью 5 см² в образец полимерасфальтобетона при нагрузке на штамп 52,5 кгс.

3.2.1. Annapamypa:

пресс с механическим приводом, способный обеспечить нагрузку 52,5 кгс;

штамп металлический диаметром 2,52 см (площадь 5 см²);

металлическая форма диаметром и высотой 7 см для изготовления образцов полимерасфальтобетона;

сосуд вместимостью 3-5 л для термостатирования образца полимерасфальтобетона;

термометр стеклянный с ценой деления 1°C по ГОСТ 400-80; стойка гибкая типа МС-29 по ТУ 2-034-668-83;

индикатор часового типа с ценой деления 0,01 мм для измерения деформаций до 10 мм;

резиновая груша.

3.2.2. Подготовка к испытанию

Изготовленный по ГОСТ 12801 образец полимерасфальтобетона извлекают из формы, охлаждают не менее 3 ч.

В сосуд для термостатирования образца заливают воду при 50°C выше уровня поверхности образца и выдерживают в нем при температуре воды 50±2°C в течение 1 ч.

3.2.3. Проведение испытания

Сосуд для термостатирования с образцом помещают в центре нижней плиты пресса. В течение всего испытания температура воды в сосуде поддерживается 50±2°C.

На поверхность образца устанавливают металлический штамп, затем опускают верхнюю плиту и останавливают не доходя до уровня поверхности штампа на 1,5-2 мм.

Для измерения деформации индикатор, прикрепленный к стойке, размещают таким образом, чтобы подвижная часть его ножки касалась верхней плиты пресса. После этого включают электродвигатель и начинают нагружать образец через штамп (рис.1).

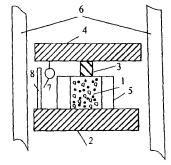


Рис. 1. Схема испытания на глубину вдавливания штампа: 1 – образец; 2, 4 – нижняя и верхняя плиты пресса; 3 – штамп круглый; 5 – емкость для термостатирования; 6 – штанги; 7 – индикатор; 8 - стойка

Когда стрелка силоизмерителя пресса отклонится от нулевой точки, электродвигатель отключают, устанавливают стрелку индикатора на ноль и продолжают нагружение на штамп.

Нагрузку на штамп задают постоянную (52,5 кгс) и выдерживают в течение 30 мин.

По истечении времени испытания фиксируют показания индикатора. Температуру образца 50±2°С поддерживают во время испытания добавлением воды, избыток которой отбирают резиновой грушей.

3.2.4. Обработка результатов

За окончательный результат принимают среднее арифметическое значение показателя индикатора (мм) после испытания трех параллельных образцов.

3.3. Метод определения эластичности полимерасфальтобетона

Сущность метода определения эластичности полимерасфальтобетона заключается в определении количества циклов нагружений образца до его разрушения.

3.3.1. *Annapamypa*:

пресс механический или гидравлический по ГОСТ 28840 с нагрузкой от 50 до 100 кН (5-10 тс) с силоизмерителями, обеспечивающими погрешность не более 2% измеряемой нагрузки;

термометр химический ртутный, стеклянный, с ценой деления 1°C по ГОСТ 400;

сосуд для термостатирования образцов вместимостью 3-8 л (в зависимости от размера и количества образцов).

3.3.2. Подготовка к испытанию

Для испытания готовят 6 образцов полимерасфальтобетона в соответствии с ГОСТ 12801. Затем для трех образцов определяют

предел прочности при сжатии при (50±2)°С в соответствии с ГОСТ 12801.

3.3.3. Проведение испытания

Эластичность образцов определяют на прессах с механическим приводом при скорости движения плиты 3,0±0,5 мм/мин.

При использовании гидравлических прессов эту скорость перед проведением испытания следует установить при холостом ходе поршня.

Образец, извлеченный из сосуда для термостатирования, устанавливают в центре нижней плиты пресса, затем опускают верхнюю плиту и останавливают ее выше уровня поверхности образца на 1,5-2 мм. Это может быть достигнуто также соответствующим подъемом нижней плиты пресса. После этого включают электродвигатель пресса и задают нагрузку, равную 50% от разрушающей. Время нагружения – 1 минута.

Через 1 минуту нагрузку снимают, а образец помещают в водяную баню с температурой (50±2)°С. Через 5 минут образец опять ставят на пресс и нагружают, и так далее до полного разрушения образца.

Число циклов, которое выдерживает образец до разрушения; характеризует эластичность полимерасфальтобетона.

3.3.4. Обработка результатов

За результат определения принимают округленное до первого десятичного знака среднеарифметическое значение испытаний трех образцов.

4. КОНТРОЛЬ СОСТАВА ПОЛИМЕРАСФАЛЬТОБЕТОНА

4.1. Контроль состава полимерасфальтобетона не входит в рекомендуемый комплекс испытаний готового покрытия и

проводится только по решению заказчика строительства данного объекта или вышестоящей организации.

4.2. Состав полимерасфальтобетона, наличие в нем ПБВ, содержание ПБВ и содержание блоксополимера типа СБС в ПБВ определяют в соответствии с ОДМ «Методы контроля состава полимерно-битумных вяжущих на основе СБС, полимерасфальтобетонных смесей и полимерасфальтобетона», введенным в действие распоряжением Минтранса России за № ОС-476-р от 26.05.2003 г.