линзы очковые солнцезащитные

Технические требования. Методы испытаний

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Государственным Унитарным предприятием «Центр нормативно-информационных систем» («ТКС-оптика ГОИ») с участием рабочеи группы Технического комитета по стандартизации ТК 296 «Оптика и оптические приборы»
- 2 ПРИНЯТ и ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 25 декабря 2001 г. № 589-ст
- 3 Настоящии стандарт в части 3.3—3.6, 4.2 и 5.1.1 соответствует Европеискому стандарту ЕН 1836—97 «Индивидуальная защита глаз. Противосолнечные очки и фильтры общего назначения»
 - 4 ВВЕДЕН ВПЕРВЫЕ

ГОСТ Р 51854—2001

Содержание

1 Область прим	енения	1
2 Нормативные	ессылки	1
3 Определения		1
4 Технические	требования	3
5 Методы испы	таний	4
Приложение А	Спектральные функции для расчета светового коэффициента пропускания τ_{v}	5
Приложение Б	Спектральные функции для расчета коэффициента пропускания в ультрафиолетовой области спектра солнечного излучения τ_{SUV}	6
Приложение В	Спектральные функции для расчета коэффициента пропускания в инфракрасной области спектра солнечного излучения τ_{SIR}	6

к ГОСТ Р 51854—2001 Линзы очковые солицезащитные. Технические требования. Методы испытаний

В каком месте	Напечатано	Должно быть
Вводная часть	в видимой, ультразвуковой и инфракрасной областях спектра,	в видимой, ультрафио- летовой и инфракрас- ной областих спектра,

(ИУС № 10 2002 г.)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

линзы очковые солнцезащитные

Технические требования. Методы испытаний

Sun-protective spectacle lenses Technical requirements
Test methods

Дата введения 2003—01—01

1 Область применения

Настоящии стандарт распространяется на солнцезащитные очковые линзы (далее — линзы), изготовленные из органического и неорганического цветного оптического стекла, применяемые для коррекции зрения и защиты глаз от солнечного излучения в видимои, ультразвуковои и инфракраснои областях спектра, и устанавливает требования к основным параметрам и методам испытании линз.

Стандарт не распространяется на линзы, изготавливаемые по индивидуальным заказам, а также на линзы, предназначенные для лечения болезнеи органов зрения.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.332—78 Государственная система измерении. Световые измерения. Значения относительнои спектральнои световои эффективности монохроматического излучения для дневного зрения

ГОСТ 24052—80 Оптика очковая. Термины и определения

ГОСТ 26148—84 Фотометрия. Термины и определения

ГОСТ Р 10993.1—99 Изделия медицинские. Оценка биологического деиствия медицинских изделии. Часть 1. Оценка и исследования

ГОСТ Р 51044—97 Линзы очковые. Общие технические условия

ГОСТ Р 51193—98 Очки корригирующие. Общие технические условия

3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

- 3.1 спектральный коэффициент пропускания т (д): По ГОСТ 26148.
- 3.2 относительная спектральная световая эффективность монохроматического излучения для дневного зрения $V(\lambda)$: Отношение двух потоков излучения с длинами волн λ_m и λ , вызывающих в точно определенных фотометрических условиях зрительные ощущения одинаковои силы; при этом длину волны λ_m выбирают таким образом, чтобы максимальное значение такого отношения было равно единице.

П р и м е ч а н и е — Значения $V(\lambda)$ в диапазоне длин волн от 380 до 780 нм должны соответствовать указанным в таблице 1 ГОСТ 8 332

Издание официальное

3.3 **световой коэффициент пропускания \tau_v:** Значение τ_v , определяемое по формуле

$$\tau_{v} = \frac{\int_{380}^{780} \Phi_{\lambda}^{D_{65}}(\lambda) \, \tau(\lambda) \, V(\lambda) \, d\lambda}{\int_{380}^{780} \Phi_{\lambda}^{D_{65}}(\lambda) \, V(\lambda) \, d\lambda}, \tag{1}$$

где $\Phi_{\lambda}^{D_{65}}(\lambda)$ — относительное спектральное распределение потока излучения стандартного источника излучения D65.

Примечание — Значения произведения относительного спектрального распределения потока излучения стандартного источника излучения D₆₅ на относительную спектральную световую эффективность монохроматического излучения для дневного зрения приведены в приложении А.

3.4 коэффициент пропускания в ультрафиолетовой области спектра солнечного излучения т_{упу}: Значения т_{SUV} в диапазоне длин волн от 280 до 380 нм определяют по формуле

$$\tau_{\text{SUV}} = \frac{\int_{280}^{380} \tau(\lambda) E_{S\lambda}(\lambda) W(\lambda) d\lambda}{\int_{280}^{380} E_{S\lambda}(\lambda) W(\lambda) d\lambda},$$
(2)

где $E_{S\lambda}(\lambda)$ — спектральная плотность энергетической облученности солнечного излучения на уровне моря, Вт · м $^{-3}$; $W(\lambda)$ — спектральная эффективность воздействия ультрафиолетового излучения на глаз.

Примечание — Значения произведения спектральной плотности энергетической облученности солнечного излучения $E_{S\lambda}\left(\lambda\right)$ на спектральную эффективность воздействия ультрафиолетового излучения $W(\lambda)$ (весовая функция) приведены в приложении Б.

3.5~ коэффициенты пропускания $au_{
m SUV\,B}~$ и $au_{
m SUV\,A}~$ в ультрафиолетовой области спектра солнечного излучения в диапазонах длин волн от 280 до 315 нм и от 315 до 380 нм соответственно: Значения τ_{SUVB} и τ_{SUVA} определяют по формулам:

$$\tau_{\text{SUV B}} = \frac{\int_{280}^{315} \tau(\lambda) E_{S\lambda}(\lambda) W(\lambda) d\lambda}{\int_{280}^{315} E_{S\lambda}(\lambda) W(\lambda) d\lambda},$$
(3)

$$\tau_{\text{SUVA}} = \frac{\int_{315}^{380} \tau(\lambda) E_{S\lambda}(\lambda) W(\lambda) d\lambda}{\int_{315}^{380} E_{S\lambda}(\lambda) W(\lambda) d\lambda}.$$
(4)

3.6 коэффициент пропускания в инфракрасной области спектра солнечного излучения т_{SIR} в диапазоне длин волн от 780 до 2000 нм: Значение τ_{SIR} определяют по формуле

$$\tau_{\rm SIR} = \frac{\int_{780}^{2000} \tau(\lambda) E_{S\lambda}(\lambda) d\lambda}{\int_{780}^{2000} E_{S\lambda}(\lambda) d\lambda}.$$
 (5)

Примечание — Значения спектральной плотности энергетической облученности солнечного излучения $E_{S\lambda}$ в инфракрасной области приведены в приложении В.

3.7 очковая оптика — по ГОСТ 24052.

4 Технические требования

4.1 Классификация

- 4.1.1 Классификация линз по ГОСТ Р 51044.
- 4.2 Требования к коэффициенту пропускания
- 4.2.1 В зависимости от значении свстового коэффициента пропускания линзы разделяют на 5 категории. Категории линз, соответствующие им диапазоны свстовых коэффициентов пропускания, а также допускаемые для этих категории линз коэффициенты пропускания в ультрафиолетовои и инфракрасных областях спектра солнечного излучения приведены в таблице 1.

Таблица 1

	Диапазон значении светового коэффициента пропускания т _v , отн ед , для диапазона длины волны от 380 до 780 нм	Значение коэффициента пропускания, отн ед , для диапазона длины волны, нм			
Категория чинз		учьтрафиолетовои области спектра солнечного излучения			инфракраснои области спектра солнечного
		τ _{SUV B}	τ _{SUV A}	τ _{SUV}	излучения т _{SIR}
		от 280 до 315	от 315 до 380	от 280 до 380	от 780 до 2000
0	Св 0,8				
1	Св 0,4 до 0,8 включ	0.1	τι	τι	
2	Св 0,18 до 0,43 включ	0,1 τ,			τι
3	Св 0,08 до 0,18 включ		0,5 τι	0,5 τ,	
4	Св 0,03 до 0,08 включ		0,5 1(0,5 (

- 4.2.2. Требования, установленные в таблице 1 для категории 0, относятся также к фотохромным линзам с коэффициентом пропускания в просветленном состоянии более 80 % и градиентным линзам с коэффициентом пропускания в оптическом центре более 80 %.
- 4.2.3 Требования к коэффициенту пропускания в инфракраснои области спектра относятся только к линзам, предназначенным для защиты органа зрения от инфракрасного излучения.
- 4.2.4 Допускается взаимное наложение значении светового коэффициента пропускания линз категории 0, 1, 2 и 3 не более чем на ± 2 % абсолютного значения.
- 4.2.5 Если помимо категории линзы производитель указывает номинальное значение светового коэффициента пропускания, то оно не должно отличаться от реального значения более чем на \pm 3 % для линз категории 0, 1, 2, 3 и более чем на \pm 30 % для линз категории 4.
- 4.2.6 Для линз, вставленных в очковую оправу, разность значении светового коэффициента пропускания не должна в оптических центрах превышать 20 % большего из двух значении, если рефракции линз отличаются не более чем на 1,0 дптр.
- 4.2.7 Для фотохромных линз отношение значении светового коэффициента пропускания в просветленном и затемненном состояниях после экспозиции (50000 ± 3000) лк в течение 15 мин должно быть не менее 1,5.

4.3 Требования к основным параметрам и размерам линз

- 4.3.1 Основные параметры и размеры линз должны соответствовать требованиям ГОСТ Р 51044 с дополнениями и уточнениями, изложенными в настоящем пункте.
- 4.3.1.1 Линзы должны быть изготовлены из органических и неорганических материалов, которые обеспечивают выполнение требовании ГОСТ Р 10993.1, ГОСТ Р 51044, ГОСТ Р 51193 и настоящего стандарта.
- 4.3.1.2 Относительное изменение светового коэффициента пропускания после экспозиции 50000 лк в течение 15 мин не должно превышать.
 - \pm 5 % для линз категории 0;
 - $\pm 10 \%$ для линз категории 1;
 - \pm 20 % для линз категории 2—4.

4.4 Требования к маркировке и упаковке

- 4.4.1 Маркировка и упаковка линз должна соответствовать требованиям ГОСТ Р 51044 с дополнениями и уточнениями, изложенными в настоящем пункте.
- 4.4.1.1 Каждая линза должна быть упакована в бумажный или картонный упаковочный конверт с мягкой бумажной или полиэтиленовой прокладкой.

Упаковочный конверт должен быть изготовлен по рабочим чертежам предприятия-изготовителя, утвержденным в установленном порядке.

- 4.4.1.2 На упаковочном конверте каждой линзы должны быть указаны:
- товарный знак изготовителя;
- надпись «Линза очковая солнцезащитная» или «Линза очковая фотохромная»;
- категория;
- пвет:
- обозначение «П», если линза изготовлена из органического материала;
- номинальное значение диаметра линзы;
- номинальные значения оптических параметров;
- обозначение настоящего стандарта;
- месяц и год изготовления.

5 Методы испытаний

5.1 Методы определения коэффициентов пропускания

- 5.1.1 Общие требования
- 5.1.1.1 Методы испытаний светового коэффициента пропускания $\tau_{\rm v}$, коэффициента пропускания в инфракрасной области спектра солнечного излучения $\tau_{\rm SIR}$, коэффициента пропускания в ультрафиолетовой области солнечного излучения $\tau_{\rm SUV}$ основаны на измерении спектрального коэффициента пропускания $\tau(\lambda)$ с последующим вычислением значений соответствующих коэффициентов пропускания по формулам (1) (5).
- 5.1.1.2 Допускается применение любых методов измерения спектральных коэффициентов пропускания $\tau(\lambda)$, если относительная погрешность измерений при доверительной вероятности 95 % не превышает значений, приведенных в таблице 2.

Таблица 2

Спектральный коэффициент пропускания τ(λ)	Относительная погрешность
От 100 до 17,8	± 5
От 17,8 до 0,44	± 10
От 0,44 до 0,023 включ.	± 15

- 5.1.1.3 Для измерения коэффициента $\tau(\lambda)$ используют любые типы спектрофотометров и фотометров, прошедших поверку и аттестованных в установленном порядке. Измерения следует проводить в соответствии с требованиями инструкции по эксплуатации конкретного типа прибора. Допускается проводить измерения спектрального коэффициента пропускания методом, установленным в технических условиях на конкретный прибор.
- 5.1.1.4 Для определения коэффициента $\tau_{\rm v}$ рекомендуется использовать спектральное распределение излучения источника света D_{65} и значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения.

Весовая функция (произведение этих величин) приведена в приложении А.

Допускается интерполяция указанных значений в интервале 10 нм.

- 5.1.1.5 При определении τ_{SIR} используют значения спектральной плотности энергетической освещенности солнечного излучения в диапазоне длин волн от 780 до 2000 нм, приведенные в приложении В.
 - 5.1.1.6 Для определения коэффициентов пропускания в ультрафиолетовой области спектра

солнечного излучения τ_{SUV} рекомендуется использовать значения спектральной плотности энергетической освещенности солнечного излучения и спектральной эффективности воздействия ультрафиолетового излучения в диапазоне длин волн от 280 до 380 нм либо их произведения согласно приложению В. Интервалы длин волн должны быть не более 5 нм.

- 5.1.17 Однородность свстового коэффициента пропускания проверяют с помощью свстового пучка диаметром 5 мм, параллельного оптической оси.
- 5.1.1.8 Перед проверкой фотохромные линзы для достижения просветления выдерживают в темноте при температуре (65 \pm 5) °C в течение 2 ч, а затем в темноте при температуре (23 \pm 5) °C в течение 12 ч.

Для измерений коэффициентов пропускания и проведения затемняющей экспозиции рекомендуется использовать кесноновую лампу либо другой источник света, имитирующий дневной свет.

- 5.1.1.9 Для измерения коэффициентов пропускания градиентных линз как вдоль направления градиента пропускания, так и в перпендикулярном направлении следует использовать параллельный световой пучок диаметром не более 5 мм.
 - 5.2 Методы проверки основных параметров и размеров линз
- 5.2.1 Методы проверки линз на соответствие требованиям 4.2 по ГОСТ Р 51044 с дополнениями и уточнениями, приведенными в настоящем пункте.
- 5.2.1.1 При проверке светостойкости линзы подвергают экспозиции в течение 25 ч при освещенности 50000 лк. создаваемой ксеноновой лампой.
 - 5.2.1.2 Методы испытаний линз, вставленных в оправу, по ГОСТ Р 51193.

ПРИЛОЖЕНИЕ А (обязательное)

Спектральные функции для расчета светового коэффициента пропускания ту

Таблица А.1

Длина волны λ, нм	$\Phi_{\lambda}^{D_{65}}(\lambda) V(\lambda)$	Длина волны λ, нм	$\Phi_{\lambda}^{D_{65}}(\lambda) V(\lambda)$
380	0	590	6,3540
390	0,0005	600	5,3740
400	0,0031	610	4,2648
410	0,0104	620	3,1619
420	0,0354	630	2,0889
430	0,0952	640	1,3861
440	0,2283	650	0,8100
450	0,4207	660	0,4629
460	0,6688	670	0,2492
470	0,9894	680	0,1260
480	1,5245	690	0,0541
490	2,1415	700	0,0278
500	3,3438	710	0,0148
510	5,1311	720	0,0058
520	7,0412	730	0,0033
530	8,7851	740	0,0014
540	9,4248	750	0,0006
550	9,7922	760	0,0004
560	9,4156	770	0
570	8,6754	780	0
580	7,8870	Сумма	100

ПРИЛОЖЕНИЕ Б (обязательное)

Спектральные функции для расчета коэффициента пропускания в ультрафиолетовой области спектра солнечного излучения τ_{SUV}

Таблица Б.1

Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda}$, 10^6 Вт м $^{-3}$	Спектральная эффективность воздействия ультрафиолетового излучения $W(\lambda)$	Весовая функция $E_{S\lambda}$ $W(\lambda)$
280	0	0,88	0
285	0	0,77	0
290	0	0,64	0
295	$2,09 \times 10^{-4}$	0,54	0,00011
300	$8,10 \times 10^{-2}$	0,30	0,0243
305	1,91	0,060	0,115
310	11,0	0,015	0,165
315	30,0	0,003	0,090
320	54,0	0,0010	0,054
325	79,2	0,00050	0,040
330	101	0,00041	0,041
335	128	0,00034	0,044
340	151	0,00028	0,042
345	170	0,00024	0,041
350	188	0,00020	0,038
355	210	0,00016	0,034
360	233	0,00013	0,030
365	253	0,00011	0,028
370	279	0,000093	0,026
375	306	0,000077	0,024
380	336	0,000064	0,022

ПРИЛОЖЕНИЕ **В** (обязательное)

Спектральные функции для расчета коэффициента пропускания в инфракрасной области спектра солнечного излучения $\tau_{\rm SIR}$

Таблица В.1

Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda}$, 10^6 Bt м $^{-3}$	Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda},\ 10^6\ {\rm Bt}\ {\rm m}^{-3}$
780	907	860	813
790	923	870	798
800	857	880	614
810	698	890	517
820	801	900	480
830	863	910	375
840	858	920	258
850	839	930	169

Окончание таблицы В.1

Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda}$, $10^6~{ m Bt\cdot m}^{-3}$	Длина волны λ, нм	Спектральная плотность энергетической облученности солнечного излучения на уровне моря $E_{S\lambda}$, $10^6~{ m Bt\cdot m}^{-3}$
940	278	1480	83,7
950	487	1490	128
960	584	1500	157
970	633	1510	187
980	645	1520	209
990	643	1530	217
1000	630	1540	226
1010	620	1550	221
1020	610	1560	217
1030	601	1570	213
1040	592	1580	209
1050	551	1590	205
1060	526	1600	202
1070	519	1610	198
1080	512	1620	194
1090	514	1630	189
1100	252	1640	184
1110	126	1650	173
1120	69,9	1660	163
1130	98,3	1670	159
1140	164	1680	145
1150 1160	216 271	1690	139 132
1170	328	1700 1710	132
1180	346	1710	115
1190	344	1730	105
1200	373	1740	97,1
1210	402	1750	80,2
1220	431	1760	58,9
1230	420	1770	38,8
1240	387	1780	18,4
1250	328	1790	5,7
1260	311	1800	0,92
1270	381	1810	0
1280	382	1820	0
1290	346	1830	0
1300	264	1840	0
1310	208	1850	0
1320	168	1860	0
1330	115	1870	0
1340	58,1	1880	0
1350	18,1	1890	0
1360	0,66	1900	0
1370	0	1910	0,705
1380 1390	0 0	1920 1930	2,34
1400	0	1930	3,68
1410	1,91	1940	5,30 17,7
1410	3,72	1960	31,7
1430	7,53	1970	37,7
1440	13,7	1980	22,6
1450	23,8	1990	1,58
1460	30,5	2000	2,66
1470	45,1		_,-,-

ГОСТ Р 51854-2001

УДК 681.73.006: 006.354 ОКС 11.040.70 П46 ОКП 94 8000

Ключевые слова: линзы очковые солнцезащитные, технические требования, коэффициент пропускания, методы испытаний

Редактор *Т.А. Леонова*Технический редактор *Л.А. Гусева*Корректор *В.Е. Пестерова*Компьютерная верстка *Е.Н. Мартемьяновой*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 15.01.2002. Подписано в печать 06.02.2002. Усл. печ. л. 1,40. Уч.-изд. л. 0,95. Тираж 000 экз. С 3820. Зак. 120.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Hабрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062 Москва, Лялин пер., 6. Плр № 080102