## СОВМЕСТИМОСТЬ ЭЛЕКТРОМАГНИТНАЯ ЭЛЕКТРООБОРУДОВАНИЯ АВТОМОБИЛЯ И АВТОМОБИЛЬНОЙ БЫТОВОЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

нормы и методы измерений

Издание официальное

УДК 629.114.066:006.354 Группа Э02

### МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

# СОВМЕСТИМОСТЬ ЭЛЕКТРОМАГНИТНАЯ ЭЛЕКТРООБОРУДОВАНИЯ АВТОМОБИЛЯ И АВТОМОБИЛЬНОЙ БЫТОВОЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ

### Нормы и методы измерений

**ΓΟCT** 28279—89

Electromagnetic compatibility of on—board radio equipment and electrical networh in a vehicle. Limits and test methods

MKC 33.100 ΟΚΠ 45 7300

Дата введения 01.01.91

Настоящий стандарт распространяется на автомобили, автомобильные радиовещательные приемники (далее — приемники) и антенны, в том числе входящие в состав магнитол.

Стандарт не распространяется на автомобили, в технических заданиях на разработку которых указано, что они не предназначены для оборудования указанной аппаратурой.

Стандарт устанавливает нормы и методы измерений параметров индустриальных радиопомех (далее — радиопомех), создаваемых электрооборудованием автомобиля, и параметров помехозащищенности приемников от индустриальных радиопомех (далее — помехозащищенности) в полосе частот от 0.15 до  $110~\mathrm{MFu}$ .

Выполнение требований стандарта обеспечивает защиту приема сигналов радиовещания в автомобиле от радиопомех, создаваемых системой электрооборудования автомобиля.

Термины и определения — по ГОСТ 14777, ГОСТ 9783 и приложению 1 настоящего стандарта. Нормы на напряженность поля радиопомех в салоне автомобиля и на помехозащищенность приемника по отношению к электромагнитному полю вводятся в действие с 01.01.93.

### 1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Испытаниям на соответствие требованиям настоящего стандарта подлежат серийно выпускаемые устройства и опытные образцы.

Примечание. Под устройством в данном разделе понимают автомобиль или приемник.

1.2. Испытания опытных образцов устройств проводят при предварительных и приемочных испытаниях.

Серийный выпуск устройств может быть начат только при положительных результатах испытаний опытных образцов.

1.3. Испытания серийно выпускаемых устройств проводят периодически (при периодических испытаниях), а также после внесения изменений в конструкцию или технологию изготовления устройства, влияющих на уровень радиопомех или помехозащищенность (при типовых испытаниях).

Периодичность проведения испытаний — один раз в год, если в нормативно-технической документации (НТД) на устройства конкретных видов не указана другая периодичность.

Испытания серийно выпускаемых устройств проводят службы технического контроля предприятия-изготовителя или отраслевые организации министерств и ведомств.

1.4. При испытаниях серийно выпускаемых устройств проводят случайную выборку из партии продукции.

Выбирают не менее пяти устройств, если применяют оценку по п. 5.2.1, и не менее семи устройств, если применяют оценку по п. 5.2.2.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1989 © ИПК Издательство стандартов, 2004

- 1.5. Уровень посторонних радиопомех на каждой частоте измерения должен быть не менее чем на 10 дБ ниже значения норм.
  - 1.6. Испытания проводят при нормальных климатических условиях по ГОСТ 15150.

### 2. НОРМЫ

### 2.1. Нормы на радиопомехи от электрооборудования автомобиля

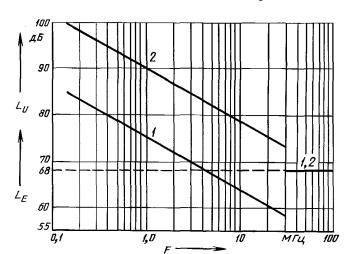
- 2.1.1. Нормы установлены в квазипиковых значениях напряжения и напряженности поля радиопомех.
- 2.1.2. Нормы на напряжение радиопомех в сети электрооборудования автомобиля ( $L_{\rm U}$ ) в децибелах относительно 1 мкВ приведены на черт. 1 (кривая I).

В полосе частот от 0,15 до 30,00 МГц нормы ( $L_{\rm U}$ ) на частоте F рассчитывают по формуле

$$L_{\rm U} = 85 - 11.5 \lg \frac{F}{0.15}$$
, (1)

где F — частота измерений, М $\Gamma$ ц.

В полосе частот от 30 до 110 М $\Gamma$ ц норма — 68 д $\overline{\mathbf{b}}$ .


2.1.3. Нормы на напряженность поля радиопомех, создаваемых электрооборудованием автомобиля внутри салона ( $L_{\rm E}$ ), в децибелах относительно 1 мкВ/м представлены на черт. 1 (кривая 2).

В полосе частот от 0.15 до 30.00 МГц нормы ( $L_{\rm E}$ ) на частоте F рассчитывают по формуле

$$L_{\rm E} = 100 - 11.5 \, \log \, \frac{F}{0.15},$$
 (2)

где F — частота измерений, М $\Gamma$ ц.

В полосе частот от 30 до 110 М $\Gamma$ ц нормы — 68 д $\overline{\text{B}}$ .



F— частота измерений; I— нормы на напряжение радиопомех в сети электрооборудования автомобиля ( $L_{\rm U}$ ); 2— нормы на напряженность поля радиопомех, создаваемых электрооборудованием автомобиля внутри салона ( $L_{\rm E}$ )

Черт. 1

- 2.1.4. Нормы на напряжение радиопомех на выходе антенного кабеля ( $L_{\rm A}$ ) в децибелах относительно 1 мкВ составляют:
  - 9 д**Б** в диапазоне ДВ;
  - 6 д**Б** » » **СВ**;
  - 13 дБ » **ж КВ**:
  - 25 дБ » **УКВ**.

Примечания:

- 1. Для автомобилей, технические задания на разработку которых утверждают после 01.01.92, устанавливают нормы на напряжение радиопомех на выходе антенного кабеля в диапазоне УКВ 15 дБ.
- 2. Ответственность за соблюдение норм по п. 2.1.4 возлагается на производителя автомобиля. Если автомобиль не комплектуется приемником с антенной, то место установки и рекомендуемый тип антенны должны быть указаны в руководстве по эксплуатации автомобиля, а при типовых и приемочных испытаниях представляют образцы автомобилей с установленной антенной.
  - 3. Диапазоны принимаемых радиоприемником частот по ГОСТ 17692.

### 2.2. Нормы на помехозащищенность приемника

- 2.2.1. Нормы на помехозащищенность установлены для частоты настройки приемника и для побочных каналов приема в эффективных значениях напряжения и напряженности поля испытательного воздействия.
- 2.2.2. Нормы на помехозащищенность по отношению к радиопомехам в проводах питания  $(N_{11})$  в децибелах относительно 1 мкВ приведены в табл. 1.

|                                | _                                             | Таблица 1                  |
|--------------------------------|-----------------------------------------------|----------------------------|
| Диапазон<br>принимаемых частот | Полоса частот испытательного воздействия, МГц | <i>N</i> <sub>U</sub> , дБ |
| ДВ                             |                                               | 75                         |
| CB                             | 0,15—30,00                                    | 70                         |
| KB                             |                                               | 60                         |
| УКВ                            | 10,00—100,00                                  | 53                         |

2.2.3. Нормы на помехозащищенность по отношению к электромагнитному полю  $(N_{\rm F})$  в децибелах относительно 1 мкВ/м приведены в табл. 2.

|                             |                                               | Таблица 2      |
|-----------------------------|-----------------------------------------------|----------------|
| Диапазон принимаемых частот | Полоса частот испытательного воздействия, МГц | <i>N</i> E, дБ |
| ДВ                          |                                               | 90             |
| СВ                          | 0,15—30,00                                    | 85             |
| KB                          |                                               | 75             |
| УКВ                         | 10,00—100,00                                  | 53             |

### 3. МЕТОДЫ ИЗМЕРЕНИЯ РАДИОПОМЕХ

3.1. Испытания на радиопомехи проводят в соответствии с требованиями ГОСТ 16842\* и настоящего стандарта.

### 3.2. Аппаратура и оборудование

- 3.2.1. Измеритель индустриальных радиопомех (измеритель радиопомех) по ГОСТ 11001\*\*.

| 3.2.2. Прооник напряжения                                                    |                              |
|------------------------------------------------------------------------------|------------------------------|
| Полоса рабочих частот                                                        | от 0,15 до 110,00 МГц        |
| 0,15—30,00 МГц                                                               | $150\pm20$                   |
| 30—110 МГц                                                                   | $150 \pm 30$                 |
| Фазовый угол в полосах частот:                                               |                              |
| 0,15—30,00 МГц                                                               | от —30° до +30°              |
| 30—110 МГц                                                                   | от —40° до +10°              |
| Погрешность коэффициента калибровки                                          | не более 1 дБ                |
| 3.2.3 Антенна малогабаритная — симметричный диполь Длина                     | от 0,15 до 110,00 МГц        |
| Коэффициент калибровки в полосе частот от 0,15 до 110,00 МГц                 |                              |
| Степень симметрии                                                            |                              |
| Рекомендуемый тип антенны приведен в приложении 2. 3.2.4. Пробник напряжения |                              |
| Полоса рабочих частот                                                        | не более 10 <sup>-6</sup> См |

<sup>\*</sup> На территории Российской Федерации действует ГОСТ Р 51320—99.

<sup>\*\*</sup> На территории Российской Федерации действует ГОСТ Р 51319—99.

| Номинальное выходное сопротивление     | 50 Ом         |
|----------------------------------------|---------------|
| Коэффициент стоячей волны (КСВ) выхода | не более 1,5  |
| Коэффициент передачи                   | не менее 1    |
| Погрешность коэффициента калибровки    | не более 2 дБ |

Электрическая схема пробника напряжения приведена в приложении 3.

3.2.5. Прибор для измерения частоты вращения коленчатого вала двигателя автомобиля, имеющий погрешность не более 5 %.

#### 3.3. Подготовка к измерениям радиопомех, создаваемых электрооборудованием автомобиля

- 3.3.1. Открывающиеся детали кузова автомобиля (например двери, капот, крышка багажника и др.) должны быть закрыты.
- 3.3.2. Измерения проводят в неподвижном автомобиле при работающем двигателе. Электрооборудование кратковременного действия (например сигнал, реле указателей поворота и др.) должно быть выключено. Электрооборудование с длительным режимом работы (например двигатель стеклоочистителя, отопитель и т. п.) должно быть включено. Частота вращения вала двигателя должна быть  $(1500 \pm 220)$  мин $^{-1}$ .
- 3.3.3. Измеритель радиопомех располагают у борта автомобиля на изолированной подставке высотой 1 м. Высокочастотный кабель, соединяющий измеритель радиопомех с антенной или пробником напряжения, пропускают в окно двери автомобиля.

Оператор занимает место водителя.

- 3.4. Проведение измерений радиопомех, создаваемых электрооборудованием автомобиля
- 3.4.1. Измерения проводят на частотах 0,16; 0,55; 1,40; 3,50; 10,00; 22,00 МГц с отклонением  $\pm$  10 % и на частотах 65, 90 МГц с отклонением  $\pm$  5 МГц.

На каждой частоте измерений фиксируют максимальное показание измерителя радиопомех за время не менее 15 с.

3.4.2. Измерение напряжения радиопомех в сети электрооборудования автомобиля

При измерении используют пробник напряжения по п. 3.2.2. Пробник подключают к клемме замка зажигания (INT). Допускается подключать пробник к гнездам ПРИКУРИВАТЕЛЬ и ПЕРЕНОСНАЯ ЛАМПА.

3.4.3. Измерение напряженности поля радиопомех, создаваемых электрооборудованием автомобиля

При измерении используют антенну по п. 3.2.3. Антенну располагают в салоне автомобиля параллельно приборной панели таким образом, чтобы центр симметрии ее находился напротив центра места установки приемника на расстоянии 0,20—0,25 м.

Антенну вращают в вертикальной плоскости до получения максимального показания измерителя радиопомех.

3.4.4. Измерение напряжения радиопомех на выходе антенного кабеля Автомобильную антенну приводят в рабочее положение.

При измерении в полосе частот от 0,15 до 30,00 МГц используют пробник напряжения по п. 3.2.4. Пробник подключают к выходу антенного кабеля. При измерении в полосе частот от 30 до 110 МГц выход антенного кабеля соединяют непосредственно со входом измерителя радиопомех.

Во время измерений положение антенного кабеля не должно отличаться от его положения в эксплуатации.

### 4. МЕТОДЫ ИЗМЕРЕНИЯ ПОМЕХОЗАЩИЩЕННОСТИ

4.1. Необходимость контроля помехозащищенности побочных каналов приема при периодических испытаниях устанавливают по результатам испытаний опытных образцов (приемочных испытаний) в соответствии с приложением 4.

### 4.2. Аппаратура и оборудование

### 4.2.1. Генератор сигналов (ГС)

| Полоса частот, МГц                                             | 0,15-30,00          |
|----------------------------------------------------------------|---------------------|
| Относительная нестабильность частоты, не более                 | $2,5 \cdot 10^{-4}$ |
| Погрешность установки выходного напряжения, дБ, не более       | 2                   |
| Коэффициент стоячей волны (КСВ) выхода, не более               | 1,2                 |
| Погрешность частоты амплитудной модуляции (при частоте 1000 Гц |                     |
| и глубине амплитудной модуляции 30 %), %, не более             | 10                  |

| 4.2              | .2. Генератор сигналов (ГС)                                                                                                                                     |                             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Оті<br>По        | лоса частот, МГц                                                                                                                                                | 2,5 · 10 <sup>-4</sup><br>2 |
| с погрег         | лжна обеспечиваться частотная модуляция частотой 1000 Гц с деви<br>шностью частоты модуляции не более 10 %.<br>3. Генератор испытательных сигналов (ГИС)        | ацией частоты 15 кГц и      |
| От               | лоса частот, МГц                                                                                                                                                | $2,5 \cdot 10^{-4}$         |
| Вы               | ходная мощность на нагрузке 50 Ом:                                                                                                                              |                             |
| - в<br>КС        | полосе частот от 0,15 до 30,00 МГц, Вт, не менее                                                                                                                | 1,0<br>1,5                  |
| с погрег         | лжна обеспечиваться амплитудная модуляция частотой $1000~\Gamma$ ц с глу шностью частоты модуляции не более $10~\%$ . 4. Вольтметр переменного тока (вольтметр) | убиной модуляции 80 %,      |
| Ди               | лоса частот, к $\Gamma$ ц                                                                                                                                       | 10—1000                     |
|                  | 5. Полосовой третьоктавный фильтр 1-го класса (фильтр) со с й полосы пропускания 1000 Гц по ГОСТ 17168.                                                         | редней геометрической       |
|                  | о имечание. Вместо вольтметра с фильтром (пп. 4.2.4 и 4.2.5) допускает<br>ътметр с эффективной шириной полосы пропускания от 70 до 140 Гц.                      | гся использовать селектив-  |
| 4.2              | .6. Установка равномерного испытательного электромагнитного по                                                                                                  | оля (УРП)                   |
| Ко:<br>не<br>Раб | лоса частот, МГц                                                                                                                                                | минус 5<br>0,7 × 0,7 × 1,5  |
|                  | равномерность напряженности поля в рабочем объеме, дБ, не более                                                                                                 | 3                           |
|                  | комендуемый тип УРП приведен в приложении 2.                                                                                                                    |                             |
|                  | .7. У стройство ввода испытательного сигнала (устройство) (ввода)                                                                                               |                             |
| Мо<br>апт        | лоса частот, МГц                                                                                                                                                | $150 \pm 20$                |
|                  | комендуемый тип устройства ввода приведен в приложении 2.                                                                                                       |                             |
| 4.2              | 2.8. Эквиваленты антенны по ГОСТ 9783.<br>2.9. Источник питания                                                                                                 |                             |
| Но               | минальное напряжение, В                                                                                                                                         |                             |
| значени          | овень радиопомех на выходе источника питания должен быть не м<br>я нормы.                                                                                       |                             |

4.2.10. Ферритовый дроссель, состоящий из отрезка коаксиального кабеля длиной  $(1,0\pm0,1)$  м с волновым сопротивлением 75 Ом, с надетыми на него ферритовыми кольцами, плотно прилегающими друг к другу.

### С. 6 ГОСТ 28279-89

Длина набора ферритовых колец  $(0.25 \pm 0.05)$  м. Ферритовые кольца должны быть изготовлены из материала с относительной магнитной проницаемостью от 400 до 100.

Набор ферритовых колец располагают вблизи разъема, подключаемого к испытуемому приемнику.

### 4.2.11. Металлический лист

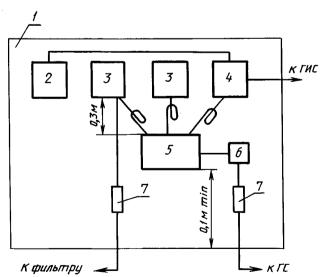
| Размеры листа, м, не менее |  |  |  |  |  |  |  |  |  |  |  |  | $1 \times 2$ |
|----------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--------------|
| Толщина листа, м, не менее |  |  |  |  |  |  |  |  |  |  |  |  | 0,001        |

Лист должен иметь зажим заземления.

Рекомендуемые материалы листа — латунь, медь, сталь.

### 4.3. Подготовка к измерениям помехозащищенности приемника

- 4.3.1. Измерительное оборудование располагают на расстоянии не менее 1,5 м от посторонних отражающих предметов и объектов (например стен).
- 4.3.2. Измерения уровня помехозащищенности стереофонических приемников проводят для каждого из стереоканалов. Регулятор стереобаланса устанавливают в положение, обеспечивающее равные выходные мощности левого и правого каналов. Выходные зажимы неизмеряемого канала нагружают на эквивалент нагрузки или громкоговоритель.


В технически обоснованных случаях допускается проведение измерений только для одного из стереоканалов.

- 4.3.3. Регуляторы тембра устанавливают в положение, соответствующее наиболее линейной частотной характеристике по выходному напряжению приемника, в соответствии с методом, установленным в технических условиях на приемник.
- 4.3.4. При измерении уровня помехозащищенности по отношению к радиопомехам в проводах питания измерительное оборудование и приемник располагают в соответствии с черт. 2. Металлический лист соединяют с шиной заземления проводником, имеющим сечение не менее  $10 \text{ мм}^2$  и длину не более 1 м.

Источник питания располагают на металлическом листе или вне его.

Приемник и измерительное оборудование (в том числе соединительные кабели) располагают на изоляционной подставке на расстоянии 0.1 м над металлическим листом. Клемму заземления устройства ввода и корпус приемника соединяют с металлическим листом проводником, имеющим сечение не менее  $5 \text{ мм}^2$  и длину не более 0.2 м.

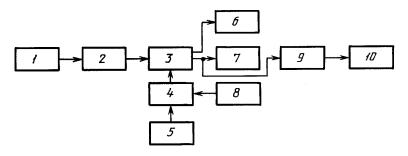
### Расположение аппаратуры при измерениях помехозащищенности приемника



1 — металлический лист; 2 — источник питания; 3 — громкоговорители или эквивалент нагрузки; 4 — устройство ввода; 5 — испытуемый приемник; 6 — эквивалент антенны; 7 — ферритовые дроссели

4.3.5. Измерение уровня помехозащищенности по отношению к электромагнитному полю проводят в УРП. Измерительное оборудование и приемник располагают в соответствии с черт. 2 (без металлического листа).

Приемник устанавливают в центре рабочего объема УРП на изоляционной подставке.


4.3.6. При измерениях провода, соединяющие приемник с устройством ввода и громкоговорителями, длина которых превышает 0,3—0,4 м, должны быть свернуты в виде плоских петель.

### 4.4. Проведение измерений помехозащищенности приемника

4.4.1. Измерение уровня помехозащищенности по отношению к помехам в проводах питания

Структурная схема измерений представлена на черт. 3.

### Структурная схема измерений уровня помехозащищенности приемника по отношению к помехам в проводах питания



 $I-\Gamma C$ ; 2- эквивалент антенны; 3- испытуемый приемник; 4- устройство ввода; 5- источник питания;  $6,\ 7-$  громкоговорители или эквиваленты нагрузки;  $8-\Gamma U C$ ; 9- фильтр; 10- вольтметр

Черт. 3

- 4.4.1.1. Для АМ-приемника измерения проводят в полосе частот от 0,15 до 30,00 МГц в следующем порядке:
- 1) приемник настраивают на середину ДВ, СВ или КВ диапазона, в котором проводят испытания.

На вход приемника через эквивалент антенны от ГС подают амплитудно-модулированный сигнал с частотой модуляции 1000 Гц и глубиной модуляции 30 %;

- 2) уровень входного сигнала устанавливают равным номинальной чувствительности приемника, указанной в НТД. Настраивают ГС на частоту настройки приемника. Регулятором громкости устанавливают на выходе приемника уровень мощности 50 мВт. Выключают модуляцию сигнала;
- 3) на ГИС устанавливают выходной немодулированный сигнал от 0,5 до 5,0 В и проводят поиск дополнительных каналов приема, перестраивая ГИС в полосе частот от 0,15 до 30,00 МГц.

Точную настройку ГИС на частоту настройки приемника и на побочные каналы приема проводят, добиваясь нулевых биений на выходе приемника. Контроль настройки осуществляют по показаниям вольтметра и на слух;

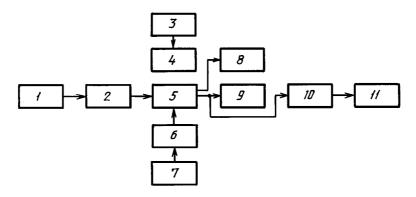
- 4) включают модуляцию испытательного сигнала (частота модуляции 1000  $\Gamma$ ц, глубина модуляции 80 %);
- 5) напряжение на выходе ГИС регулируют таким образом, чтобы показание вольтметра на выходе испытуемого приемника было на 40 дБ ниже уровня, установленного в подпункте 4.4.1.1, перечисление 2;
  - 6) уровень помехозащищенности (U) в децибелах определяют по формуле

$$U = U_1 + 6, (3)$$

где  $U_1$  — значение выходного напряжения ГИС, дБ.

П р и м е ч а н и е. Если уровень шумов приемника не позволяет выполнить требование подпункта 4.4.1.1, перечисление 5, то вместо вольтметра с фильтром используют селективный вольтметр по примечанию к п. 4.2.5.

4.4.1.2. Для ЧМ-приемников измерения проводят в полосе частот от 10 до 100 МГц в следующем порядке:


- 1) приемник настраивают на середину УКВ диапазона. На вход приемника через эквивалент антенны от ГС подают частотно-модулированный сигнал с частотой модуляции 1000 Гц и девиацией частоты 15 кГц;
  - 2) по подпункту 4.4.1.1, перечисление 2;
- 3) на ГИС устанавливают выходной немодулированный сигнал от 0,5 до 5,0 В и проводят поиск побочных каналов приема, перестраивая ГИС в полосе частот от 10 до 100 МГц.

Точную настройку ГИС на частоту настройки приемника и на побочные каналы приема проводят следующим образом. Включают модуляцию испытательного сигнала (частота модуляции 1000 Гц, глубина модуляции 80 %). Перестраивая ГИС и одновременно уменьшая его выходной уровень, добиваются прослушивания в громкоговорителе испытуемого приемника тона модулирующей частоты (1000 Гц);

- 4) по подпункту 4.4.1.1, перечисление 5;
- 5) по подпункту 4.4.1.1, перечисление 6.
- 4.4.2. Измерение уровня помехозащищенности по отношению к электромагнитному полю

Структурная схема измерений представлена на черт. 4.

## Структурная схема измерений уровня помехозащищенности приемника по отношению к электромагнитному полю



 $1-\Gamma$ С; 2- эквивалент антенны;  $3-\Gamma$ ИС; 4-УРП; 5- испытуемый приемник; 6- устройство ввода; 7- источник питания; 8,9- громкоговорители или эквивалентны нагрузки; 10- фильтр; 11- вольтметр

#### Черт. 4

4.4.2.1. Измерения проводят раздельно для вертикальной и горизонтальной поляризации вектора испытательного поля. Изменение поляризации проводят путем изменения ориентации излучателей УРП в соответствии с НТД на УРП.

Допускается изменять поляризацию вектора испытательного поля относительно испытуемого приемника путем изменения его ориентации в УРП.

За результат измерения на каждой частоте принимают меньшее из полученных значений при различных поляризациях вектора испытательного поля.

4.4.2.2. Для AM-приемников процедура измерений — в соответствии с подпунктом 4.4.1.1, перечисления 1-5 и примечания.

Уровень помехозащищенности (Е) в децибелах определяют по формуле

$$E = U + K_{\rm m},\tag{4}$$

где U— выходное напряжение ГИС, дБ;

 $K_{\Pi}$  — коэффициент передачи УРП, определяемый по НТД на установку, дБ.

4.4.2.3. Для ЧМ-приемников процедура измерений — в соответствии с подпунктом 4.4.1.2, перечисления 1-4.

Уровень помехозащищенности определяют по формуле (4).

### 5. ОБРАБОТКА И ОЦЕНКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

- 5.1. Обработку и оценку результатов испытаний проводят раздельно на каждой частоте измерений.
- 5.2. В случае, когда на испытания представляют семь и более серийно выпускаемых устройств или опытных образцов, требования настоящего стандарта считают выполненными, если выполняются требования п. 5.2.1 или 5.2.2.

Примечание. Под устройством в данном разделе понимают автомобиль или приемник.

5.2.1. Статистическое значение радиопомех (A) в децибелах не должно превышать нормируемого значения радиопомех. Значение A определяют по формуле

$$A = \overline{X} + KS. \tag{5}$$

Статистическое значение уровня помехозащищенности ( $A_1$ ) в децибелах должно быть не менее нормируемого значения помехозащищенности. Значение  $A_1$  определяют по формуле

$$A_1 = \overline{X} - KS, \tag{6}$$

где  $\overline{X}$ — выборочное среднее значение результатов измерений, дБ, равное  $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ ;

S — выборочное среднее квадратическое отклонение результатов измерений, дБ, равное

$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}};$$

 $X_1$  — результат измерений от *i*-го устройства на частоте измерений, дБ;

n — число испытанных устройств;

К — коэффициент, приведенный в табл. 3, зависящий от числа испытанных устройств.

Таблица 3

| Число испытанных устройств <i>n</i> | Коэффициент <i>К</i> | Число испытанных устройств <i>n</i> | Коэффициент <i>К</i> |
|-------------------------------------|----------------------|-------------------------------------|----------------------|
| 5                                   | 1,52                 | 12                                  | 1,20                 |
| 6                                   | 1,42                 | 15                                  | 1,17                 |
| 7                                   | 1,34                 | 20                                  | 1,12                 |
| 8                                   | 1,30                 | 25                                  | 1,09                 |
| 9                                   | 1,27                 | 30                                  | 1,07                 |
| 10                                  | 1,24                 | 35                                  | 1,06                 |

5.2.2. Допускаемое число испытанных устройств  $N_{\rm доп}$ , у которых измеренное значение радиопомех превышает нормируемое или измеренное значение помехозащищенности ниже нормируемого, приведено в табл. 4.

Таблица 4

| Число испытанных устройств <i>n</i> | <i>N</i> доп | Число испытанных устройств <i>п</i> | <i>N</i> доп |
|-------------------------------------|--------------|-------------------------------------|--------------|
| 7                                   | 0            | 26                                  | 3            |
| 14                                  | 1            | 32                                  | 4            |
| 20                                  | 2            | 38                                  | 5            |

### 6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1. Все работы по подготовке и проведению измерений должны проводиться с соблюдением требований безопасности ГОСТ 12.1.019, ГОСТ 12.3.019.
- 6.2. К проведению измерений должны быть допущены лица, прошедшие обучение и инструктаж в соответствии с требованиями ГОСТ 12.0.004.
- 6.3. Рабочее место оператора при измерениях должно иметь изолирующее основание или быть снабжено изолирующей подставкой (диэлектрическим ковриком).
  - 6.4. Заземление следует проводить в соответствии с требованиями ГОСТ 12.1.030.

### ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

Таблица 5

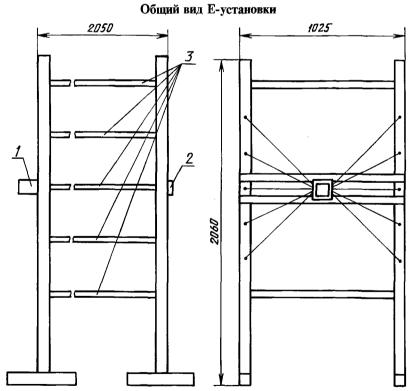
| Термин                                                                         | Пояснение                                                                                                                                                     |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Уровень помехозащищенности по отношению к радио-<br>помехам в проводах питания | Минимальный уровень ЭДС испытательного сигнала, вводимого в провода питания, при котором отношение сигнал/помеха на выходе приемника равно заданному значению |
| Уровень помехозащищенности по отношению к электромагнитному полю               | Минимальный уровень напряженности испытательного электромагнитного поля, при котором отношение сигнал/помеха на выходе приемника равно заданному значению     |

ПРИЛОЖЕНИЕ 2 Рекомендуемое

### РЕКОМЕНДУЕМОЕ ИЗМЕРИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Таблица 6

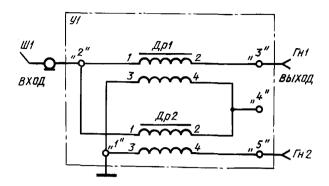
| Наименование оборудования                                    | Рекомендуемый тип                                             | Обозначение |
|--------------------------------------------------------------|---------------------------------------------------------------|-------------|
| Антенна малогабаритная                                       | Антенна дипольная активная (черт. 5)                          | 3д2.090.020 |
| Установка равномерного испытательного электромагнитного поля | Е-установка (черт. 6, черт. 7)                                | 3д2.700.004 |
| Устройство ввода испытательного сигнала                      | Устройство ввода кондуктивных помех типа М (черт. 8, черт. 9) | 3д2.064.028 |


Примечание. На оборудование указанных видов ЛОНИИР разработана рабочая конструкторская документация с литерой И. В состав конструкторской документации каждого изделия входит паспорт, включающий в себя методы метрологической аттестации оборудования.

#### +88 R21 8,2 R16 *V18* 2 V29 "ВЫХОД2**"** V20 *"Выход1"* R9 120 R29 R5 820 820 Γſ V30 R7 RID R26 V26 本 v2 V6 **杰** R13 10 51 100 100 51 R30 R18 10 V10 V25 15 M V15 15M R15 R20 10 R8 RH **太** V3/ 100 51 R25 R27 R23 V7**太** 820 10 L C2 A V3 V27 V23 **⊼** ∨32 R2 V8 7 R12 V28**女** R28 *R1*7 R22 120 91 10 20

### Схема электрическая принципиальная активной дипольной антенны

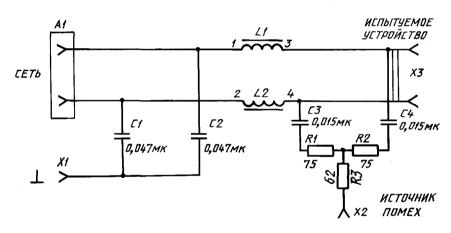
VI—КТ815Б; V2, V3—КС468А; V4—КТ814Б; V5—V8, V29—V32—КД512А; V9, V18, V19, V28—КС113А; V10, V26—КП307Г; V11, V12, V15, V17, V22, V23, V25, V27—КТ368БМ; V13, V14, V16, V20, V21, V24—КТ326БМ


Черт. 5



I — согласующее устройство; 2 — резисторы нагрузки; 3 — излучающие проводники Е-установки

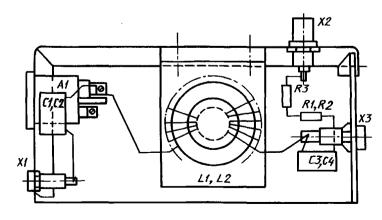
Черт. 6


### Схема электрическая принципиальная согласующего устройства Е-установки



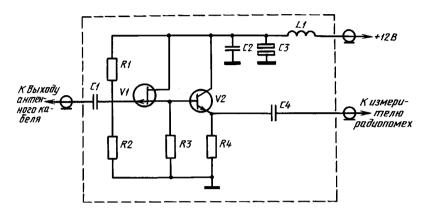
Дроссели Др1, Др2 намотаны на кольцевых магнитопроводах типа М 2000 НМ-АК  $32 \times 20 \times 9$ . Обмотка из двух проводов типа ПМВО-0,5 с шагом скрутки ( $10 \pm 1$ ) мм, число витков — 20

Черт. 7


### Схема электрическая принципиальная устройства ввода кондуктивных помех типа М



 $L_1$  =  $L_2$  = 60 мкГ (22 витка провода HB-0,75 11 500 на магнитопроводе из двух склеенных колец типа М 100 HM К38  $\times$  24  $\times$  7)


Черт. 8

### Схема расположения устройства ввода кондуктивных помех типа М



Черт. 9

### ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ СХЕМА ПРОБНИКА НАПРЯЖЕНИЯ



VI = KΠ 307Γ; V2 = KT 368; RI = R2 = 2,2 MOM; R3 = 2,0 κOM; R4 = 410 OM; C1 = 150 πΦ; C2 = 0,15 MκΦ; C3 = 47 MκΦ; C4 = 1,0 MκΦ; L1 = 40 MκΓ

Черт. 10

ПРИЛОЖЕНИЕ 4 Рекомендуемое

### ОЦЕНКА НЕОБХОДИМОСТИ КОНТРОЛЯ ПОМЕХОЗАЩИЩЕННОСТИ ПОБОЧНЫХ КАНАЛОВ ПРИЕМА ПРИ ПЕРИОДИЧЕСКИХ ИСПЫТАНИЯХ

- 1. Решение о необходимости контроля помехозащищенности для каждого из побочных каналов приема принимают по результатам испытаний опытных образцов.
  - 2. На испытания представляют не менее четырех опытных образцов.
- 3. Контроль помехозащищенности побочного канала приема при периодических испытаниях необязателен в случае, если статистическое значение уровня помехозащищенности  $A_1$  в децибелах превышает нормируемое значение помехозащищенности. Значение  $A_1$  определяют по формуле (6), но с другими значениями коэффициента K, представленными в табл. 7.

Таблица 7

| Число испытанных приемников п | Коэффициент <i>К</i> |
|-------------------------------|----------------------|
| 4                             | 5,15                 |
| 5                             | 4,22                 |
| 6                             | 3,72                 |
| 7                             | 3,41                 |
| 8                             | 3,19                 |
| 10                            | 2,91                 |
| 11                            | 2,82                 |
| 16                            | 2,53                 |

### С. 14 ГОСТ 28279-89

### ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством связи СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.09.89 № 3005
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

| Обозначение НТД, на который дана ссылка | Номер пункта         |
|-----------------------------------------|----------------------|
| FOCT 12.0.004—90                        | 6.2                  |
| FOCT 12.1.019—79                        | 6.1                  |
| FOCT 12.1.030—81                        | 6.4                  |
| FOCT 12.3.019—80                        | 6.1                  |
| FOCT 9783—88                            | Вводная часть, 4.2.8 |
| FOCT 11001—80                           | 3.2.1                |
| FOCT 14777—76                           | Вводная часть        |
| FOCT 15150—69                           | 1.6                  |
| FOCT 16842—82                           | 3.1                  |
| FOCT 17168—82                           | 4.2.5                |
| FOCT 17692—89                           | 2.1.4, 4.2.9         |

5. ПЕРЕИЗДАНИЕ. Апрель 2004 г.

Редактор В.П. Огурцов Технический редактор Л.А. Гусева Корректор В.И. Варенцова Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000.

000. Сдано в набор 21.04.2004. Уч.-изд. л. 1,50. Тираж 51 экз. Подписано в печать 12.05.2004.

Зак. 156.

C 2373.

Усл. печ. л. 1,86.