

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СОСУДЫ И АППАРАТЫ ВЫСОКОГО ДАВЛЕНИЯ

ШПИЛЬКИ

МЕТОДЫ РАСЧЕТА НА ПРОЧНОСТЬ

ГОСТ 26303-84 (СТ СЭВ 4350-83)

Издание официальное

РАЗРАБОТАН Министерством химического и нефтяного машиностроения

ИСПОЛНИТЕЛИ

В. И. Лившиц, канд. техн. наук (руководитель темы); В. К. Погодин, канд. техн. наук; А. К. Древин, канд. техн. наук; А. В. Тасевич

ВНЕСЕН Министерством химического и нефтяного машиностроения

Член Коллегии А. М. Васильев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19 октября 1984 г. № 3616

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Сосуды и аппараты высокого давления

ШПИЛЬКИ

Методы расчета на прочность

High-pressure vessels and apparatus. Threaded studs. Methods of strength calculation

ΓΟCT 26303—84 (CT CЭВ 4350—831

OKII 36 1510

Постановлением Государственного комитета СССР по стандартам от 19 октября 1984 г. № 3616 срок действия установлен с 01.07.85

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на шпильки стальных кованых, ковано-сварных сосудов, соответствующих требованиям ГОСТ 11879—81, а также однослойных сосудов и аппаратов, изготовленных из стального листового проката, применяемых в химической и нефтеперерабатывающей отраслях промышленности, работающих в условиях статических нагрузок под действием внутреннего давления свыше 10 МПа (100 кгс/см²) до 100 МПа (1000 кгс/см²), и устанавливает методы расчета на прочность шпилек в неподвижных уплотнительных узлах с плоской металлической прокладкой и металлическими кольцами двухконусного и треугольного сечений.

Настоящий стандарт должен применяться совместно с ГОСТ 25215—82.

Стандарт полностью соответствует СТ СЭВ 4350-83.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Значения расчетного и пробного давлений определяют по ГОСТ 14249—80 и ГОСТ 11879—81.

1.2. Границы применения уплотнений, в зависимости от диаметра, давления и температуры, приведены в справочном приложении 1.

1.3. Условные обозначения величин — по справочному приложению 3.

2. РАСЧЕТ УСИЛИЙ, ДЕЙСТВУЮЩИХ НА ШПИЛЬКИ

2.1. На черт. 1—4 приведены расчетные модели уплотнений и шпильки. Черт. 1—4 приведены для указания необходимых расчетных размеров.

2.2. Расчетное усилие, действующее на шпильки,

$$F_s = F_O + F_n. \tag{1}$$

2.3. Осевая нагрузка от действия давления среды на крышку

$$F_Q = \frac{\pi}{4} \cdot D_R^2 \cdot p. \tag{2}$$

2.4. Уплотнение с двухжонусным жольцом

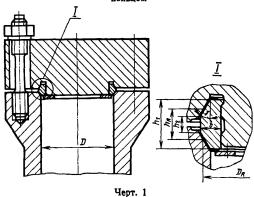
2.4.1. Осевая реакция уплотнительного кольца

$$F_p = \frac{\pi}{2} \cdot p_F \cdot D_R \cdot h_R \cdot \operatorname{tg}\gamma, \tag{3}$$

где

$$p_F = \max\{p; 40M\Pi a\}.$$

2.4.2. Расчетный диаметр уплотнительной поверхности


$$D_R = D + \frac{h_1 - h_2}{2} \operatorname{tg} \gamma. \tag{4}$$

2.4.3. Высота кольца по средней линии уплотнительной поверхности

$$h_R = \frac{h_1 + h_2}{2} \ . \tag{5}$$

Геометрические размеры уплотнительного кольца D, h_1 , h_2 , γ приведены на черт. 1 и в справочном приложении 2.

Расчетная модель уплотнения с двухконусным кольцом

- 2.5. Уплотнение с кольцом треугольного сечения
 - 2.5.1. Осевая реажция уплотнительного кольца

$$F_{p} = \frac{\pi}{2} \cdot D_{R} \cdot h_{0} \cdot p \cdot \operatorname{tg} \gamma. \tag{6}$$

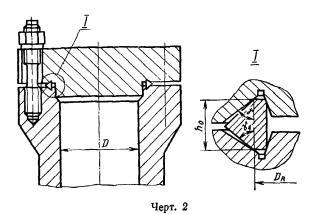
Геометрические размеры уплотнительного кольца D_R , h_0 , γ приведены на черт. 2 и в справочном приложении 2.

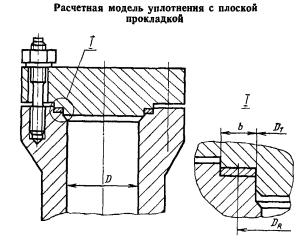
2.6. Уплотнение с плоской прокладкой

2.6.1. Осевая реакция прокладки

$$F_{p} = \pi \cdot D_{R} \cdot b \cdot \sigma_{n}, \tag{7}$$

rze


$$D_R = D_1 + b$$
.


2.6.2. Ширина прокладки должна удовлетворять условию

$$b \geqslant \frac{0.25 \cdot p \cdot D_1}{\left[\sigma\right]_{R} - \sigma_{R} - 0.25 \cdot p}, \tag{8}$$

где внутренний диаметр уплотнения D_1 принимают по конструктивным соображениям; расчетные размеры D_1 , b, D_R приведены на черт. 3.

Расчетная модель уплотнения с кольцом треугольного сечения

Черт. 3

2.6.3. За допускаемое контактное напряжение на уплотнительных поверхностях принимают меньшее значение предела текучести материалов уплотнительных поверхностей корпуса или крышки

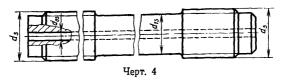
$$[\sigma]_{\kappa} = 0.35\sigma_{\tau,\kappa} + 180M\Pi a.$$
 (9)

Для пробного давления вместо $\sigma_{\text{т.к.}}$ подставляют $\sigma_{\text{т.к.}}^{20}$

2.6.4. Герметизирующее напряжение смятия прокладки для расчетного давления принимают:

σ_п= 70 МПа — для алюминия;

 $\sigma_{\pi} = 100 \ M\Pi a$ — для меди;


 $\sigma_{\rm m} = 180~{\rm M}\Pi{\rm a}$ — для стали с $\sigma_{\rm T,n}^{20} \leqslant 230~{\rm M}\Pi{\rm a}$.

При пробном давлении σ_n принимают равным половине герметизирующего напряжения смятия прокладки для расчетного давления.

3. РАСЧЕТ ПРОЧНОСТИ ШПИЛЕК

3.1. Расчет диаметра стержня шпильки (черт. 4).

Расчетная модель крепежной шпильки

3.1.1. Расчетный диаметр стержня шпильки

$$d_{1sR} \geqslant \sqrt{\frac{4 \cdot K_1 \cdot K_2 \cdot F_s}{\pi \cdot z \cdot [\sigma]_s} + d_{os}^2} . \tag{10}$$

Диаметр резьбы шпильки $d_{\rm s}$ принимают конструктивно, исходя из диаметра $d_{\rm IsB}$.

Исполнительный диаметр стержня d_{1s} принимают из условия

$$d_{1sR} \leq d_{1s} \leq 0.5(d_{2s} + d_{3s}).$$

3.1.2. Қоэффициент K_1 принимают равным 1, за исключением случаев затяжки шпилек уплотнения с плоской прокладкой приложением крутящего момента, когда $K_1 = 1,1$.

3.1.3. Коэффициент K_2 принимают равным 1,5. Если в процессе затяжки в шпильках измеряются фактические удлинения или

усилия, К2 принимают равным 1,3.

При обеспечении равномерной затяжки всех шпилек в пределах 10% и контроля удлинений или усилий во всех шпильках, K_2 принимают равным 1,1.

3.1.4. Допускаемое напряжение для материала шпильки

$$[\sigma]_s = \frac{\sigma_{\tau_s}}{n_{\tau}}, \qquad (11)$$

где $n_{\rm T} = 1.5$.

3.2. Расчет длины свинчивания резьбы

3.2.1. Расчет применим для резыбовых соединений при соблюдении следующих условий

$$\frac{d_s}{t_s} \leqslant 20$$
 для $3 \leqslant t_s < 6$ мм;

$$\frac{d_s}{t_s} \leqslant 33$$
 для $t_s = 6$ мм.

3.2.2. Расчетную длину свинчивания резьбы определяют исходя из соотношения механических характеристик резьбовой пары шпилька-гнездо корпуса:

при
$$\frac{\sigma_{\text{BS}}}{\sigma_{\text{B.K}}} \leqslant 1.5$$
 $l_R = 1.25 \cdot d_s$; (12)

при 1,5
$$< \frac{\sigma_{BS}}{\sigma_{B,K}} \le 2$$
,0 $l_R = 0$,5 $\cdot d_s \left(1 + \frac{\sigma_{BS}}{\sigma_{B,K}} \right)$. (13)

3.2.3. Исполнительная длина свинчивания резьбовой нары должна быть не менее расчетной l_R .

ПРИЛОЖЕНИЕ 1 Справочное

Таблица 1

Ориентировочные данные об условиях применения уплотнений в зависимости от диаметра, давления и температуры

Внут- ренний диа- метр сосуда D, мм	Уплотнение с двух- конусным кольцом при температуре не выше 420°C				Уплотнение с кольцом треугольного сечения при температуре не выше 420°C					Уплотнение с плоской про- кладкой при температуре не выше 200°С			
	Расчетное давление, МПа												
	10	12,5	16	20	25	32	40	50	64	70	80	90	100
200													
300													
400							! !						
500													
600													
800					<u> </u>								
1000					 								
1200					<u> </u>								·
1400													
1600						<u> </u>							
1800								<u> </u>					
2000													
2200													
2400													
2600													
2800													
3000													
3200						1							

Примечания: 1. Ограничнтельные линии проведены:

для уплотнения с двухконусным уплотнительным кольцом;

для уплотнения с уплотнительным кольцом треугольного сечения;

для уплотнения с плоской прокладкой.

2. Уплотнения применимы во всем диапазоне температур от минус 40°С и до верхнего

вредела.

ОРИЕНТИРОВОЧНЫЕ РАЗМЕРЫ УПЛОТНИТЕЛЬНЫХ КОЛЕЦ

Таблица 1 $\label{eq:2.1}$ Размеры уплотнений с двухконусным уплотнительным кольцом, выполненным из материала с пределом текучести $\sigma^{20}_{ au,\Pi} \!\!\!>\! 300$ МПа

Размеры в мм								
D	h ₁	h ₂	b	Υ				
200 300 400 500 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200	30 35 45 50 60 70 85 100 115 135 150 165 180 200 220 235 250 270	15 18 22 25 30 35 42 50 58 68 75 82 92 100 110 118 125 135	17 20 23 26 30 34 40 47 53 61 67 74 82 89 96 103 109 117	30°				

Таблица 2

Размеры уплотнений с кольцом треугольного сечения, выполненным из материалов с пределом текучести $\sigma_{T,\Pi}^{20}$ ≥200 МПа

P	а	3	M	е	p	Ы	В	MM	
---	---	---	---	---	---	---	---	----	--

D	D_R	h o	۲	T1
200 300 400 500 600 800 1000 1200	326 328 432 537 637 837 1048 1248	13 15 16 18 20 24 26 30	4 7°	45°

ПРИЛОЖЕНИЕ 3 Справочное

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

 $D \longrightarrow$ внутренний диаметр сосуда или горловины, мм (см);

 D_1 — внутренний диаметр уплотнения, мм (см);

 D_R — расчетный диаметр уплотнительной поверхности, мм (см);

 d_s — наружный диаметр резыбы шпильки, мм (см);

 d_{0s} — диаметр центрального отверстия в шпильке, мм (см); $d_{1 \circ R}$ — расчетный диаметр стержня шпильки, мм (см);

 d_{1s} — исполнительный диаметр стержня шпильки, мм (см);

 d_{2s} — средний диаметр резьбы шпильки, мм (см);

 d_{3*} — внутренний диаметр резьбы шпильки, мм (см);

F. — расчетное усилие, действующее на шпильки при расчетном давлении, Н;

 F_p — осевая реакция уплотнительного кольца или прокладки, H;

 F_{Q} — осевая нагрузка от действия давления на крышку, H:

 h_1 , h_2 , h_R , h_0 — основные размеры уплотнительных колец (черт. 1, 2), мм (см); b — исполнительная толщина уплотнительного кольца (черт. 1) или ширина прокладки (черт. 2), мм (см);

 K_1 — коэффициент, учитывающий тангенциальные напряжения в пшильке при затяжке:

 K_2 — коэффициент, учитывающий неравномерность распределения нагрузки между шпильками;

 l_R — расчетная длина резьбы, мм (см);

 $n_{\rm T}$ — коэффициент запаса прочности по пределу текучести; P — расчетное давление, МПа;

р - расчетное давление с учетом влияния предварительной затяжки при определении расчетного усилия, МПа:

- t_{\bullet} шаг резьбы, мм (см);
- **2** число шпилек;
- угол наклона уплотнительной поверхности корпуса или крышки сосуда или аппарата,...°;
- γ_1 угол наклона уплотнительной поверхности уплотнительного кольца,..., ;
- от. ж. минимальное значение предела текучести материала уплотнительной поверхности, корпуса или крышки при расчетной температуре, МПа;
- σ²⁰ минимальное значение предела текучести материала уплотнительной поверхности корпуса или крышки при температуре 20°C, МПа;
- $\sigma^{20}_{\tau,n}$ минимальное значение предела текучести материала прокладки при температуре 20°С, МПа;
- ова минимальное значение временного сопротивления материала.

 изпильки при расчетной температуре, МПа;
- овк минимальное значение временного сопротивления материала фланца или горловины корпуса сосуда или аппарата при расчетной температуре, МПа;
- минимальное значение предела текучести материала шпильки при расчетной температуре, МПа;
- σ_п герметизирующее напряжение смятия прокладки для расчетного давления при температуре 20°С, МПа;
- [о]. допускаемое напряжение для материала шпильки при расчетной температуре, МПа;
- $[\sigma]_{\kappa}$ допускаемое контактное напряжение при расчетной температуре, МПа.

Редактор Е. И. Глазкова Технический редактор Н. С. Гришанова Корректор Е. И. Морозова

Сдано в наб. 01.11.84 Подп. в печ. 07.01.85 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,49 уч.-изд. л. Тир. 20 000 Цена 3 коп.

Изменение № 1 ГОСТ 26303—84 Сосуды и апнараты высокого давления. Шпильки. Методы расчета на прочность

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 17.04.90 № 905

Дата введения 01.11.90

Вводную часть изложить в новой редакции: «Настоящий стандарт распространяется на шпильки сосудов и аппаратов, работающих под действием внутреннего избыточного давления свыше 10 до 100 МПа в химической, нефтеперерабатывающей и других отраслей промышленности, и устанавливает методы расчета прочности, а также усилий, действующих на шпильки, в неподвижных уплотнительных узлах с плоской металлической прокладкой и металлическими кольцами двухконусного и треугольного сечений.

Стандарт полностью соответствует СТ СЭВ 4350—83».

Раздел 1 изложить в новой редакции:

(Продолжение см. с. 70)

(Продолжение изменения к ГОСТ 26303-84)

«1. Общие положения

1.1. Расчетная температура, рабочее и расчетное избыточные давления — по ГОСТ 14249—89.

1,2. Значения пробного избыточного давления — по ГОСТ 25215-82.

1.3. Границы применения уплотнений в зависимости от диаметра, давления, температуры, в соответствии с приложением 1.

1.4. Условные обозначения величин в соответствии с приложением 3».

Пункт 2.2. Формулу (1) изложить в новой редакции:

$$F_s = F_O + F_P + F_t. \tag{1}$$

Раздел 2 дополнить пунктом — 2.7: «2.7. Осевую нагрузку F_t от неравномерности нагрева элементов уплотнения и разности значений коэффициентов линейного расширения сопрягаемых деталей, действующих на шпильки, определяют по специальным методикам и не учитывают, если расчетная температура не превышает:

100°С — для всех типов уплотнений с любым сочетанием сталей элементов уплотнений и скоростями подъема температуры стенки сосуда или аппарата не

более 30°С/ч;

(Продолжение см. с. 71)

(Продолжение изменения к ГОСТ 26303-84)

200 °C — для уплотнения с плоской прокладкой и 300 °C для других типов уплотнений, элементы которых изготовлены из сталей, имеющих разность коэффициентов линейного расширения меньше значения 2,5·10−6 1, °C и скорость подъема температуры стенки сосуда или аппарата при выводе на режим или во время технологического процесса не более 30 °C/ч».

Пункт 3.1.3 изложить в новой редакции: «3.1.3. Коэффициент K_2 , учитывающий неравномерность распределения нагрузки между шпильками, принимается

равным

1,1 — при сбеспечении равномерной затяжки всех шпилек (в пределах ±10 % номинального значения нагрузки), контроля удлинений и усилий непосредственно в шпильках после затяжки;

(Продолжение см. с. 72)

(Продолжение изменения к ГОСТ 26303—84)

1.3 — при затяжке шпилек по отработанным режимам, обеспечивающим герметичность разъемного соединения в рабочих условиях, с контролем усилий и удлинений, создаваемых специальными приспособлениями в процессе затяжки;

1,5 — в остальных случаях».

Приложение 2. Тлблица 1. Графа h_2 . Заменить значение: 50 на 52; таблица 2. Графа D_R . Заменить значение: 326 на 226.

Приложение 3 дополнить абзацем: « F_t — осевая нагрузка от неравномерности нагрева элементов уплотнения и разности значений коэффициентов линейного расширения сопрягаемых деталей».

(ИУС № 7 1990 г.)