Расчеты и испытания на прочность

МЕТОДЫ РАСЧЕТА ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ УСТАЛОСТИ

ГОСТ 25.504—82

Strength calculation and testing. Methods of fatigue strength behaviour calculation

МКС 19.060 ОКСТУ 0803

Дата введения 01.07.83

Настоящий стандарт устанавливает методы расчета следующих характеристик сопротивления усталости деталей машин и элементов конструкций, изготовленных из сталей, в много- и малоцикловой упругой и упругопластической области:

- медианных значений пределов выносливости на базе 10⁷ циклов;

- пределов выносливости для заданной вероятности разрушения на базе 107 циклов;

- коэффициента вариации пределов выносливости;

- показателя наклона левой ветви кривой усталости в двойных логарифмических координатах;

- абсциссы точки перелома кривой усталости;

- коэффициента чувствительности к асимметрии цикла напряжений;

- предельных амплитуд при асимметричных циклах нагружения;

- параметров уравнения кривой малоцикловой усталости (в пределах до 10⁵ циклов) при: растяжении — сжатии, изгибе и кручении,

симметричных и асимметричных циклах напряжений или деформаций, изменяющихся по простому периодическому закону с постоянными параметрами,

абсолютных размерах поперечного сечения детали до 300 мм,

наличии и отсутствии концентрации напряжений,

температуре от минус 40 °С до плюс 100 °С,

наличии и отсутствии агрессивной среды,

частоте нагружения в пределах 1-300 Гц.

Стандарт не распространяется на методы расчета характеристик сопротивления усталости сварных конструкций и их элементов.

Область применения стандарта ограничивается случаями, для которых в тексте стандарта и приложений имеются все исходные и справочные данные.

Выбор требуемой номенклатуры характеристик сопротивления много- и малоцикловой усталости определяется в каждом конкретном случае задачами и методом расчета по действующим в отраслях нормативно-техническим документам.

Термины, определения и обозначения, применяемые в стандарте, — по ГОСТ 23207.

Обозначения, применяемые в стандарте, приведены в приложении 1.

Размерность напряжений — МПа, геометрических размеров — мм.

Настоящий стандарт унифицирован со стандартами ГДР ТГЛ 19340/03 и ТГЛ 19340/04. (Измененная редакция, Изм. № 1).

1. ОПРЕДЕЛЕНИЕ ПРЕДЕЛОВ ВЫНОСЛИВОСТИ ДЕТАЛЕЙ МАШИН И ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

1.1. Определение медианных значений пределов выносливости

Медианные значения пределов выносливости деталей машины в номинальных напряжениях

 $\bar{\sigma}_{-1d}$ (соответствующие вероятности разрушения P = 50 %) определяют с учетом коэффициента снижения предела выносливости *K* по формулам:

- при растяжении — сжатии или изгибе

$$\bar{\bar{\sigma}}_{-1\pi} = \frac{\bar{\bar{\sigma}}_{-1}}{K}, \qquad (1)$$

$$K = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F\sigma}} - 1\right) \cdot \frac{1}{K_{\nu} \cdot K_{A}},$$
(2)

$$\bar{\bar{\sigma}}_{-1} = K_1 \cdot \bar{\bar{\sigma}}_{-1}' , \qquad (3)$$

- где $\overline{\sigma}_{-1}$ медианное значение предела выносливости на совокупности всех плавок металла данной марки гладких лабораторных образцов диаметром $d_0 = 7,5$ мм, изготовленных из заготовок диаметром d, равным абсолютному размеру рассчитываемой детали;
 - $\bar{\sigma}_{-1}$ медианное значение предела выносливости на совокупности всех плавок металла данной марки гладких лабораторных образцов диаметром $d_0 = 7,5$ мм, изготовленных из заготовок размерами 10—20 мм;
 - K₁ коэффициент, учитывающий снижение механических свойств металла (σ_B, σ_T, σ₋₁) с ростом размеров заготовок (п. 1.3);

- при кручении

$$\bar{\bar{\tau}}_{-1\pi} = \frac{\bar{\bar{\tau}}_{-1}}{K},$$
(4)

$$K = \left(\frac{K_{\tau}}{K_{d\tau}} + \frac{1}{K_{F\tau}} - 1\right) \cdot \frac{1}{K_{\nu} \cdot K_A},\tag{5}$$

$$\overline{\overline{\tau}}_{-1} = K_1 \cdot \overline{\overline{\tau}}_{-1}' . \tag{6}$$

Медианные значения пределов выносливости деталей $\overline{\overline{\sigma}}_{-1g}$, $\overline{\overline{\tau}}_{-1g}$, полученные по формулам (1) и (4) для P = 50 %, используют для оценки пределов выносливости деталей при любой заданной вероятности разрушения (разд. 2 и 3).

Примечания:

1. При наличии коррозионных воздействий в формулы (2) и (5) вместо K_F следует подставлять значения K_{кор}.

2. При отсутствии экспериментальных данных ориентировочно величины $\overline{\overline{\sigma}}_{-1}$, $\overline{\overline{\tau}}_{-1}$ допускается оценивать на основе соотношений:

$$\bar{\overline{\sigma}}_{-1} = (0,55 - 0,0001 \cdot \overline{\sigma}_{\rm B}) \cdot \overline{\sigma}_{\rm B}, \qquad (7)$$

где $\overline{\sigma}_{\rm B}$ — среднее значение предела прочности стали данной марки, определенное на образцах, изготовленных из заготовок диаметром *d*, равным абсолютному размеру рассчитываемой детали, МПа;

$$\overline{\overline{\tau}}_{-1} = 0.6 \cdot \overline{\overline{\sigma}}_{-1} . \tag{8}$$

1.2. Определение эффективных коэффициентов концентрации напряжений K_{σ} , K_{τ} и отношений $K_{\sigma}/K_{d\sigma}$, $K_{\tau}/K_{d\tau}$

1.2.1. Коэффициенты K_{σ} , K_{τ} и отношения $K_{\sigma}/K_{d\sigma}$, $K_{\tau}/K_{d\tau}$ определяют по экспериментальным данным или путем расчета.

1.2.2. Определение K_{σ} , K_{τ} , $K_{\sigma}/K_{d\sigma}$ и $K_{\tau}/K_{\sigma\tau}$ — по экспериментальным данным.

Коэффициенты K_{σ} , K_{τ} могут определяться экспериментально на геометрически подобных образцах диаметром d или толщиной h поперечного сечения не менее 40 мм, если d или h рассчитываемой детали превышают это значение. Если d или h рассчитываемой детали меньше 40 мм, то при экспериментальном определении K_{σ} , K_{τ} целесообразно вести испытания на натурных деталях или моделях тех же поперечных размеров.

С. 3 ГОСТ 25.504-82

Для ряда деталей экспериментально полученные значения K_{σ} , K_{τ} и $K_{\sigma}/K_{d\sigma}$, $K_{\tau}/K_{d\tau}$ приведены в приложении 2 (черт. 1—7, 13—16).

Значения ($K_{\sigma}/K_{d\sigma}$)₀ для валов с напрессованными деталями (при наличии коррозии трения) при изгибе представлены на черт. 1 приложения 2.

При $\sigma_{\rm B} > 500~{\rm M}\Pi$ а и $p < 30~{\rm M}\Pi$ а следует учитывать соответствующие поправочные коэффициенты ξ' и ξ'' (черт. 2, 3) и определять значения $K_{\sigma}/K_{d\sigma}$ по формуле

$$\frac{K_{\sigma}}{K_{d\sigma}} = \left(\frac{K_{\sigma}}{K_{d\sigma}}\right)_{0} \cdot \xi' \cdot \xi'', \quad \frac{K_{\tau}}{K_{d\tau}} = 0.6 \frac{K_{\sigma}}{K_{d\sigma}}.$$
(10)*

(Измененная редакция, Изм. № 1).

1.2.3. Определение K_{σ} , K_{τ} и $K_{\sigma}/K_{d\sigma}$, $K_{\tau}/K_{d\sigma}$ методом расчета

1.2.3.1. Коэффициенты K_{σ} , K_{τ} , $K_{d\tau}$, $K_{d\sigma}$ и отношение $\frac{K_{\sigma}}{K_{d\sigma}} = \frac{K_{\tau}}{K_{d\tau}}$ в случае отсутствия прямых экспериментальных данных могут быть вычислены по формулам (при известных значениях v_{σ} , v_{τ} , α и G):

$$K_{\sigma} = \frac{(1 + \Theta_{\Gamma \pi}^{-\nu})\alpha_{\sigma}}{1 + \Theta^{-\nu}\sigma}, \quad K_{\tau} = \frac{(1 + \Theta_{\Gamma \pi}^{-\nu}\tau)\alpha_{\tau}}{1 + \Theta^{-\nu}\tau}, \quad (11)$$

$$K_{d\sigma} = 0,5 (1 + \Theta_{\Gamma \pi}^{-\nu}\sigma) = \frac{1}{F(\Theta_{\Gamma \pi};\nu_{\sigma})}, \quad (12)$$

$$K_{d\tau} = 0,5 (1 + \Theta_{\Gamma \pi}^{-\nu}\tau) = \frac{1}{F(\Theta_{\Gamma \pi};\nu_{\tau})}, \quad (12)$$

$$\frac{K_{\sigma}}{K_{d\sigma}} = \frac{2\alpha_{\sigma}}{1 + \Theta^{-\nu}\sigma} = \alpha_{\sigma} \cdot F(\Theta_{\Gamma \pi};\nu_{\sigma}), \quad (12a)$$

$$\frac{K_{\tau}}{K_{d\tau}} = \frac{2\alpha_{\tau}}{1 + \Theta^{-\nu}\tau} = \alpha_{\tau} \cdot F(\Theta_{\Gamma \pi};\nu_{\tau}), \quad (12a)$$

/1 1

где $\Theta_{r\pi} = \left(\frac{d_{r\pi}}{7,5}\right)^2$ — значение относительного критерия подобия усталостного разрушения для гладкого (без концентрации напряжений) образца лиаметром d_{-1} , мм.

(без концентрации напряжений) образца диаметром d_{rn} , мм. Определение относительного критерия подобия усталостного разрушения Θ , величин v_{σ} , v_{τ} и функции $F(\Theta, v)$ приведено в пп. 1.5 и 1.8.

1.2.3.2. Если известны только величины α_{σ} , α_{τ} и G, то K_{σ} или K_{τ} вычисляют приближенно по формулам:

$$K_{\sigma} = \frac{\alpha_{\sigma}}{n}; \tag{13}$$

$$K_{\tau} = \frac{\alpha_{\tau}}{n} \,. \tag{14}$$

Коэффициент *п* вычисляют по формуле

$$n = 1 + \sqrt{\overline{G}} \cdot 10^{-(0,33 + \frac{\sigma_{\tau}}{712})}$$
(15)

или по черт. 14 приложения 2 в зависимости от значений относительного градиента напряжений \overline{G} (мм⁻¹), вычисленного по формулам, приведенным в табл. 1, и предела текучести σ_{T} (МПа).

^{*} Формула 9. (Исключена, Изм. № 1).

Та	бл	ица	1
----	----	-----	---

Летань		Формулы для вычисления \overline{G} , \overline{G}_{t}				
		Изгиб	Растяжение—сжатие	Кручение		
Mi Andrew Min	$\frac{H}{h} \ge 1,5$	$\overline{G} = \frac{2}{\rho} + \frac{2}{h}$	$\overline{G} = \frac{2}{\rho}$	_		
······································	$\frac{H}{h}$ < 1,5	$\overline{G} = \frac{2(1+\varphi)}{\rho} + \frac{2}{h}$	$\overline{G} = \frac{2(1+\varphi)}{\rho}$			
Mu <	$\frac{D}{d} \ge 1,5$	$\overline{G} = \frac{2}{\rho} + \frac{2}{d}$	$\overline{G} = \frac{2}{\rho}$	$\overline{G}_{\tau} = \frac{1}{\rho} + \frac{2}{d}$		
	$\frac{D}{d}$ < 1,5	$\overline{G} = \frac{2(1+\varphi)}{\rho} + \frac{2}{d}$	$\overline{G} = \frac{2(1+\varphi)}{\rho}$	$\overline{G}_{\tau} = \frac{1}{\rho} + \frac{2}{d}$		
MH MH	$\frac{H}{h} \ge 1,5$	$\overline{G} = \frac{2,3}{\rho} + \frac{2}{h}$	$\overline{G} = \frac{2,3}{\rho}$	_		
	$\frac{H}{h} < 1,5$	$\overline{G} = \frac{2,3(1+\varphi)}{\rho} + \frac{2}{h}$	$\overline{G}=\frac{2,3(1+\varphi)}{\rho}$			
	$\frac{D}{d} \ge 1,5$	$\overline{G} = \frac{2,3}{\rho} + \frac{2}{d}$	$\overline{G} = \frac{2,3}{\rho}$	$\overline{G}_{\tau} = \frac{1,15}{\rho} + \frac{2}{d}$		
	$\frac{D}{d}$ < 1,5	$\overline{G} = \frac{2,3(1+\varphi)}{\rho} + \frac{2}{d}$	$\overline{G}=\frac{2,3(1+\varphi)}{\rho}$	$\overline{G}_{\tau} = \frac{1,15}{\rho} + \frac{2}{d}$		
<		_	$\overline{G} = \frac{2,3}{p}$	_		

Примечание. $\varphi = \frac{1}{4\sqrt{\frac{t}{\rho}}+2}$.

1.2.3.3. В приближенных расчетах значения K_{σ} и K_{τ} вычисляют по формулам:

$$K_{\sigma} = 1 + q \left(\alpha_{\sigma} - 1\right), \tag{18}$$

$$K_{\tau} = 1 + q \,(\alpha_{\tau} - 1), \tag{19}$$

где значения коэффициентов чувствительности металла к концентрации напряжений *q* определяют по черт. 15 приложения 2.

 1.3. Определение коэффициентов K₁
 1.2.3.1—1.3. (Измененная редакция, Изм. № 1).
 1.3.1. Коэффициент K₁ для легированных сталей определяют по черт. 16 приложения 2 или по формуле

$$K_1 = 1 - 0.2 \lg \frac{d}{d_0}$$
для $d \le 150$ мм, (20)

где $d_0 = 7,5$ мм — диаметр гладкого лабораторного образца; $K_1 = 0,74$ для d > 150 мм. Для углеродистых сталей $K_1 = 1$. 1.3.2, 1.3.3. (Исключены, Изм. № 1).

^{*} Формулы 16 и 17. (Исключены, Изм. № 1).

1.4. Определение теоретических коэффициентов концентрации напряжений α_π, α_π

1.4.1. Коэффициенты α_σ, α_τ определяют по теоретическим решениям или на основе измерений с помощью поляризационно-оптического метода, тензометрирования и т.п. (приложение 3, черт. 1—47).

1.4.2. Для определения теоретических коэффициентов концентрации напряжений в деталях, изображенных в табл. 2, могут быть использованы также номограммы, приведенные на черт. 48 и 49 приложения 3.

Примечания:

1. Пример использования номограмм для элементов с двусторонней внешней выточкой при изгибе. Дано: $\rho = 2,5$ мм; t = 15 мм; a = 95 мм.

Находим
$$\sqrt{\frac{t}{\rho}} = 2,45; \sqrt{\frac{a}{\rho}} = 6,16$$

Как вытекает из табл. 2, для $\sqrt{\frac{t}{\rho}}$ нужно воспользоваться рядом чисел *b*, а для $\sqrt{\frac{a}{\rho}}$ — кривой 2. По черт. 48 от абсциссы $\sqrt{\frac{a}{\rho}}$ = 6,16 начинаем двигаться по вертикали вверх до пересечения с кривой 2. Затем налево проводим горизонтальную линию до пересечения с осью ординат. Точку пересечения соединяем с точкой $\sqrt{\frac{t}{\rho}}$ = 2,45, находящейся на горизонтальной оси, при этом отсчет производим по ряду чисел *b*. Прямая касается круга, указывающего коэффициент концентрации α_{α} = 4,28.

2. Пример использования номограммы для элементов с внешней выточкой и осевым отверстием при изгибе.

Дано: $\rho = 4$ мм; a = 13 мм; t = 36 мм; r = 25 мм.

Находим
$$\sqrt{\frac{t}{\rho}} = 3$$
, $\sqrt{\frac{a}{\rho}} = 1,80$, $\sqrt{\frac{r}{\rho}} = 2,50$.

Как указано в примере 1 при $\sqrt{\frac{t}{\rho}}$ (ряд чисел *b*) и $\sqrt{\frac{a}{\rho}}$ (кривая 5) на черт. 48 находим $\alpha'_{\sigma} = 3,60$. Это будет теоретический коэффициент концентрации напряжений при большом осевом отверстии $(\alpha'_{\sigma})_{r=\infty}$.

Теперь переходим к черт. 49 и смещаемся вверх по вертикали при значении $\sqrt{\frac{r}{\rho}} = 2,50$ до пересечения с кривой 2, затем налево по горизонтали до пересечения с осью. Точку пересечения соединяем с прямой $(\alpha'_{\sigma})_{r=\infty} = 3,60$, лежащей на другой оси. Круг, которого касается эта прямая, дает $\alpha_{\sigma} = 2,08$.

Таблица 2

Конструктивные случаи для определения теоретических коэффициентов концентрации α_σ и α_τ по номограмме (приложение 3, черт. 48, 49)

Вид выточки или надреза	Вид напряжения	Формула номинального напряжения	Ряд чисел для параметра $\sqrt{\frac{t}{p}}$	Кривая для параметра $\sqrt{\frac{a}{\rho}}$	Кривая для параметра $\sqrt{\frac{t}{\rho}}$
	Растяжение	$\frac{P}{2da}$	Ь	1	
	Изгиб	$\frac{3M_{\rm M}}{2da^2}$	Ь	2	_
	Растяжение	$\frac{P}{da}$	b	3	
A A A A A A A A A A A A A A A A A A A	Изгиб	$\frac{6M_{ m M}}{da^2}$	Ь	4	_
	Растяжение	$\frac{P}{2da}$	Ь	5	
	Изгиб	$\frac{3M_{\rm H}\cdot t}{2d(b^3-t^3)}$	а	5	—

ГОСТ 25.504-82 С. 6

Продолжение п	пабл.	2
---------------	-------	---

Вид выточки или надреза	Вид напряжения	Формула номинального напряжения	Ряд чисел для параметра $\sqrt{\frac{t}{\rho}}$	Кривая для параметра √ <u>а</u> р	Кривая для параметра $\sqrt{\frac{I}{\rho}}$
	Растяжение	$\frac{P}{\pi a^2}$	b	6	
	Изгиб	$\frac{4M_{\mu}}{\pi a^3}$	b	7	
1/m = 0,3	Кручение	$\frac{2M_{\rm K}}{\pi a^3}$	а	9	
	Растяжение	$\frac{P}{\pi(r^2-c^2)}$	Ь	5	1
	Изгиб	$\frac{4M_{\rm H}r}{\pi(r^4-c^4)}$	Ь	5	2
	Кручение	$\frac{2M_{\rm K}\cdot r}{\pi(r^4-c^4)}$	а	10	4
<u>р</u> <u>н</u> <u>н</u> <u>н</u> <u>н</u> <u>н</u> <u>н</u> <u>н</u> <u>н</u>	Растяжение	$\frac{P}{\pi(b^2-r^2)}$	Ь	5	5
	Изгиб	$\frac{4M_{\rm H}\cdot r}{\pi(b^2-r^2)}$	b	5	6
	Кручение	$\frac{2M_{\rm K}\cdot r}{\pi(b^4-r^4)}$	a	10	8

1.4.3. При обработке результатов на ЭВМ коэффициенты концентрации напряжений α_{σ} для деталей, указанных на черт. 20–22, 27 и 28 приложения 3, вычисляют по формуле

$$\alpha_{\sigma} = 1 + \frac{1}{\sqrt{\frac{A}{t/\rho} + B \frac{(1 + a/\rho)^2}{(a/\rho)^3} + \frac{C}{(t/\rho)^2} \cdot \frac{a/\rho}{a/\rho + t/\rho}}},$$
(25)*

где коэффициенты A, B, C и Z определяют по табл. 3 (a = d/2 или a = b/2), а в остальных случаях α_{σ} определяют по формулам, приведенным на черт. 1–3, 6–11, 14–19 приложения 3.

Примечание. Формула (25) является приближенной и дает отклонения до 10 %-20 % в запас прочности.

Значения коэффициентов для вычисления α_σ по формуле (25)

Таблица 3

- Коэффици-	онци- Форма Двусторонний надрез (выточка)		Ступенчатый переход по галтели				
енты (детали)	изгиб	растяжение	кручение	изгиб	растяжение	кручение	
	Круглый	0,20 0,22	0,20 0,22	0,7	0,62	0,62	3,4
<i>"</i>	Плоский			0,22	_	0,50	0,50
R	Круглый	2,75	1,37	10,3	5,80	3,50	19,0
Б	Плоский	2,10	0,85	_	6,00	2,50	_

* Формулы 21-24. (Исключены, Изм. № 1).

Продолжение табл. 3

Таблица 4

Коэффици-	Форма образиа	Двусторонний надрез (выточка)		Ступенчатый переход по галтели			
енты	енты (детали) изги	изгиб	растяжение	кручение	изгиб	растяжение	кручение
C					0,20		1,0
Z	☐ Круглый —				3,00		2,0

1.5. Определение значения относительного критерия подобия усталостного разрушения

1.5.1. Относительный критерий подобия Θ вычисляют по формуле

$$\Theta = \frac{\frac{L}{G}}{\left(\frac{L}{G}\right)_0} = \frac{1}{88,3} \cdot \frac{L}{G},$$
(26)

где $d_0 = 7,5$ мм; $\left(\frac{L}{G}\right)_0 = \frac{\pi d_0^2}{2} = 88,3$ мм²;

L выражается в мм,

 \overline{G} выражается в мм⁻¹. Значения функции $F(\Theta, v) = \frac{2}{1 + \Theta^{-v}}$ приведены в табл. 4 или черт. 1 приложения 4.

Θ	$F(\Theta, \mathbf{v}) = \frac{2}{1 + \Theta^{-\mathbf{v}}}$ при v						
		0,04	0,08	0,10	0,12	0,16	0,20
0,0032 0,0100 0,0316 0,1000 0,3162 1,0000 3,1620 10,0000 31,6200 100,0000 316,2000 1000,0000 3162,0000 10000,0000	$\begin{array}{c} -2,5\\ -2,0\\ -1,5\\ -1,0\\ 0,5\\ 1,0\\ 1,5\\ 2,0\\ 2,5\\ 3,0\\ 3,5\\ 4,0 \end{array}$	0,885 0,908 0,931 0,954 0,977 1,000 1,023 1,046 1,069 1,092 1,115 1,137 1,160 1,182	0,774 0,813 0,863 0,908 0,954 1,000 1,046 1,092 1,137 1,182 1,226 1,269 1,312 1,352	0,720 0,774 0,829 0,836 0,942 1,000 1,058 1,115 1,171 1,226 1,280 1,332 1,382 1,431	0,668 0,730 0,796 0,836 0,931 1,000 1,070 1,137 1,204 1,269 1,332 1,392 1,449 1,502	0,569 0,647 0,730 0,818 0,908 1,000 1,092 1,182 1,269 1,353 1,430 1,502 1,508 1,627	0,480 0,569 0,668 0,774 0,885 1,000 1,115 1,226 1,332 1,430 1,519 1,596 1,667 1,726

Значения функции $F(\Theta, v)$

В формуле для определения $F(\Theta, v)$ параметр v принимает значения v_{σ} при изгибе и растяжении—сжатии и v_{τ} — при кручении.

1.6. Определение параметра L

1.6.1. При круговом изгибе или растяжении—сжатии, а также при кручении круглых стержней с кольцевыми канавками, с переходом от одного сечения к другому по галтели, с резьбой или гладких $L = \pi d$. При изгибе в одной плоскости круглых стержней $L = 0,08 \pi d$.

Если при растяжении—сжатии или изгибе деталей только часть периметра рабочего сечения прилегает к зоне повышенной напряженности, то *L* вычисляют по формулам, приведенным на черт. 2 приложения 4.

_ _1.7. Определение относительного градиента первого главного или касательного напряжений G, G₇

Относительные градиенты напряжений $\overline{G}, \overline{G}_{\tau}$ определяют по формулам, приведенным в табл. 1.

1.8. Определение коэффициентов чувствительности металла к концентрации напряжений и масштабному фактору v_{σ} и v_{τ}

1.8.1. Значения ν_{σ} , ν_{τ} определяют по совокупности результатов испытаний на усталость образцов различных форм, размеров, уровней концентрации напряжений, изготовленных из металла одной плавки и испытанных при различных видах нагружения.

1.8.2. При отсутствии опытных данных для конструкционных сталей величину v_о приближенно вычисляют по формуле

При кручении для конструкционных сталей величину v_{τ} приближенно принимают равной

$$\mathbf{v}_{\tau} = 1,5 \cdot \mathbf{v}_{\sigma} \,. \tag{28}$$

(Измененная редакция, Изм. № 1).

ν

1.9. Определение коэффициентов влияния шероховатости поверхности К_{R5}, К_{Ft}

1.9.1. Значения коэффициента К_{го}, характеризующего снижение пределов выносливости при ухудшении качества обработки поверхности в зависимости от предела прочности и чистоты поверхности, для изгиба и растяжения - сжатия, определяют по черт. 3 приложения 4 или вычисляют по формуле

$$K_{F\sigma} = 1 - 0.22 \cdot 1g R_z (1g \frac{\sigma_B}{20} - 1) \quad (\sigma_B \ B \ M\Pi a).$$
 (29)

1.9.2. Значения коэффициента К_{Ft} вычисляют по формуле

$$K_{F\tau} = 0.575 \cdot K_{F\tau} + 0.425. \tag{30}$$

1.10. Определение коэффициента $K_{\text{кор}}$ 1.10.1. Коэффициент $K_{\text{кор}}$, характеризующий снижение предела выносливости от влияния коррозии до испытания на усталость, приведен в зависимости от предела прочности на черт. 4 приложения 4.

На кривых указано количество дней, в течение которых образец подвергался воздействию коррозионной среды (пресной воды) до испытания на усталость.

1.10.2. Влияние коррозии при одновременном действии коррозионной среды и переменных напряжений представлено в виде зависимости коэффициента Ккор от предела прочности стали на черт. 5 приложения 4.

1.10.3. Коэффициенты К_{кор} соответствуют определенной частоте испытания и числу циклов, указанных в подрисуночных подписях. При других частотах и базах испытания следует вводить поправки в соответствии с экспериментальными данными.

1.11. Определение коэффициента влияния поверхностного упрочнения К, и коэффициента ани-

зотропии *К_A* 1.11.1. Методика определения коэффициента влияния поверхностного упрочнения *К_v* приве-

1.11.2. Коэффициенты анизотропии, приведенные в табл. 5, учитывают, если первое главное напряжение при изгибе и растяжении-сжатии направлено перпендикулярно направлению прокатки материала.

При кручении анизотропию не учитывают.

Таблица 5

	v	σ MΠ2	V
	м _А	_B , willa	<u>к</u>
До 600 Св. 600 до 900	0,90 0,86	Св. 900 до 1200 » 1200	0,83 0,80

Значения коэффициентов анизотропии К

2. ОПРЕДЕЛЕНИЕ ПРЕДЕЛОВ ВЫНОСЛИВОСТИ ДЕТАЛЕЙ МАШИН И ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ДЛЯ ЗАДАННОЙ ВЕРОЯТНОСТИ РАЗРУШЕНИЯ [σ-1д]*р*

2.1. При наличии достаточного объема статистической информации для оценки коэффициента вариации пределов выносливости деталей машин ($v_{\sigma_{-1}}$ или $v_{\tau_{-1}}$), используя вычисленное для заданной базы по формуле (1) или (4) медианное значение предела выносливости детали ($\overline{\overline{\sigma}}_{-1}$ или

 $\bar{\bar{\tau}}_{-1\pi}$), определяют пределы выносливости детали на той же базе для любых заданных вероятностей

разрушения Р в предположении справедливости нормального закона распределения по формулам:

$$(\overline{\sigma}_{-1\pi})_P = \overline{\sigma}_{-1\pi} \cdot (1 + z_p \cdot v_{\sigma_{-1\pi}}), \tag{31}$$

$$(\tau_{-1\pi})_P = \overline{\overline{\tau}}_{-1\pi} \cdot (1 + z_p \cdot v_{\tau_{-1\pi}}),$$
 (32)

где z_P — квантиль нормального распределения, соответствующая заданной вероятности разрушения *P*.

3. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ВАРИАЦИИ ПРЕДЕЛОВ ВЫНОСЛИВОСТИ ДЕТАЛЕЙ МАШИН И ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

3.1. Коэффициент вариации предела выносливости детали вычисляют по формуле

$$\nu_{\sigma_{-l\pi}} = \frac{S_{\sigma_{-l\pi}}}{\overline{\sigma}_{-l\pi}},$$
(33)

где $S_{\sigma_{-1\pi}}$ и $\bar{\sigma}_{-1\pi}$ — среднее квадратическое отклонение и среднее (на совокупности всех плавок)

значение предела выносливости детали соответственно.

Результирующий коэффициент вариации предела выносливости детали при отсутствии сварки, поверхностного упрочнения и при стабильной технологии вычисляют по формуле

$$v_{\sigma_{-l_{\pi}}} = \sqrt{\nu_{\sigma_{\max}}^2 + \nu_{\overline{\sigma}_{-1}}^2 + \nu_{\alpha_{\sigma}}^2}, \qquad (34)$$

где v_{отах} — коэффициент вариации максимальных разрушающих напряжений в зоне концентрации,

соответствующий пределам выносливости деталей (при испытании идентичных деталей, изготовленных из металла одной плавки, связанный со структурой неоднородностью металла (наличием различных фаз, включений, искажений кристаллической решетки и т. д.);

 $v_{\overline{\sigma}_{-1}}$ — коэффициент вариации средних (в пределах одной плавки) значений пределов выносли-

вости гладких лабораторных образцов диаметром 7,5 мм, учитывающий межплавочное рассеяние механических свойств металла и вычисляемый по формуле

$$v_{\overline{\sigma}_{-1}} = \frac{S_{\overline{\sigma}_{-1}}}{\overline{\sigma}_{-1}}, \qquad (35)$$

$$S_{\overline{\sigma}_{-1}} = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (\overline{\sigma}_{-1i} - \overline{\overline{\sigma}}_{-1})^2}; \qquad (36)$$

$$\overline{\overline{\sigma}}_{-1} = \frac{1}{n} \sum_{i=1}^{n} \overline{\sigma}_{-1i} , \qquad (37)$$

где $\overline{\sigma}_{-1i}$ — значение $\overline{\sigma}_{-1}$ для *i*-й плавки;

n — число плавок;

ν_{α_σ} — коэффициент вариации теоретического коэффициента концентрации напряжений α_σ,
 учитывающий отклонения фактических размеров деталей (особенно в зонах концентра-

ции напряжений) от номинальных (в пределах допусков).

При нестабильной технологии, неоднородности свойств металла, наличии остаточных напряжений и технологических дефектов коэффициенты вариации предела выносливости деталей $v g_{1,d}$ определяют путем проведения усталостных испытаний деталей.

3.2. Определение коэффициентов вариации v_{отах}

3.2.1. При достаточно стабильной технологии, однородности свойств металла в объеме детали, отсутствии остаточных напряжений коэффициенты вариации максимальных разрушающих напряжений $v_{\sigma_{max}}$ вычисляют по формуле

$$v_{\sigma_{\text{max}}} = \frac{0,1}{1 + \Theta_{\sigma}^{\nu}}.$$
(38)

3.3. Определение коэффициентов вариации V_σ

Коэффициент $v_{\overline{\sigma}_{-1}}$ определяют по статистическим данным о межплавочном рассеянии пределов выносливости по формулам (35)—(37).

Если данных по межплавочному рассеянию величин $\overline{\sigma}_{-1}$ нет, то, учитывая практически линейную зависимость между пределами выносливости и пределами прочности, в первом приближении допускают

$$v_{\overline{\sigma}_{-1}} = v_{\sigma_{R}}$$

где $v_{\sigma_{\rm B}}$ — коэффициент вариации предела прочности металла на множестве всех плавок ($v_{\sigma_{\rm B}}$ = 0,04—0,10).

3.4. Определение коэффициентов вариации v_{а_}

3.4.1. Колебания радиусов кривизны в зоне концентрации напряжений ρ характеризуются коэффициентами вариации ν_{ρ} . Коэффициенты вариации находят по результатам измерения партии деталей (не менее 30—50 шт.) в условиях производства.

3.4.2. Среднее значение $\overline{\rho}$, среднее квадратическое отклонение s_{ρ} радиуса кривизны ρ и коэффициент вариации v_{ρ} вычисляют по формулам:

$$\overline{\rho} = \frac{1}{n} \sum_{i=1}^{n} \rho_i , \qquad (39)$$

$$s_{\rho} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\rho_i - \overline{\rho})^2},$$
 (40)

$$v_{\rho} = \frac{s_{\rho}}{\rho} . \tag{41}$$

Зависимость α_σ от ρ представляют функцией

$$\alpha_{\sigma} = \phi(\rho). \tag{42}$$

Коэффициент вариации $v_{\alpha_{\sigma}}$ вычисляют по формуле

$$v_{\alpha_{\sigma}} = \left| \frac{\partial \varphi}{\partial \rho} \right|_{0} \cdot \frac{\bar{\rho}}{\bar{\alpha}_{\sigma}} \cdot v_{\rho} , \qquad (43)$$

где $\overline{\alpha}_{\!\sigma}-$ среднее значение $\alpha_{\!\sigma},$ соответствующее ρ = $\overline{\rho};$

 $\left|\frac{\partial \phi}{\partial \rho}\right|_0$ — абсолютное значение производной, которое соответствует средним значениям определя-

ющих параметров.

3.4.3. Для нахождения производной в выражении (43) допускается осуществлять линейную аппроксимацию функции (42) в окрестности заданных значений параметров, используя уравнение прямой, проходящей через две точки

$$\frac{\alpha_{\sigma} - \alpha_{\sigma_1}}{\alpha_{\sigma_2} - \alpha_{\sigma_1}} = \frac{\frac{\rho}{d} - \left(\frac{\rho}{d}\right)_1}{\left(\frac{\rho}{d}\right)_2 - \left(\frac{\rho}{d}\right)_1},\tag{44}$$

где $\frac{\rho}{d}$ — заданное значение отношения параметров ρ и d (вместо ρ/d может быть ρ/t и т. п.);

С. 11 ГОСТ 25.504-82

 $\begin{pmatrix} \rho \\ d \end{pmatrix}_2 > \frac{\rho}{d}$ и $\begin{pmatrix} \rho \\ d \end{pmatrix}_1 < \frac{\rho}{d}$ — отношения $\frac{\rho}{d}$, близкие к заданному значению; α_{σ_2} и α_{σ_1} — значения α_{σ} , соответствующие (ρ/d)₂ и (ρ/d)₁.

4. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КРИВЫХ УСТАЛОСТИ *т* и N_G и коэффициентов чувствительности к асимметрии цикла напряжений Ψ_σ и Ψ_τ

4.1. Для расчета на прочность левую наклонную часть кривой усталости представляют в виде

$$\sigma^m \cdot N = \sigma^m_{-1\pi} \cdot N_G \,, \tag{45}$$

где *m* — показатель наклона кривой усталости в двойных логарифмических координатах; N_G — абсцисса точки перелома кривой усталости.

4.2. Величина N_G в большинстве случаев колеблется в пределах $N_G = 10^6 - 3 \cdot 10^6$ циклов. В расчетах на прочность при переменных напряжениях, когда отсутствуют данные натурных усталостных испытаний, принимают в среднем $N_G = 2 \cdot 10^6$ циклов.

4.3. Величины *m* для деталей изменяются в пределах 3—20, при этом с ростом коэффициента снижения предела выносливости *K* уменьшается *m*. Зависимость между *K* и *m* принимают приближенно в виде

$$m = \frac{C}{K}, \tag{46}$$

(47)

где

 $C = 5 + \frac{\sigma_{\rm B}}{80} (\sigma_{\rm B} \text{ B M}\Pi a).$

4.4. Значения Ψ_{σ} и Ψ_{τ} вычисляют по формулам:

$$\Psi_{\sigma} = 0.02 + 2 \cdot 10^{-4} \cdot \sigma_{\rm B},\tag{48}$$

$$\Psi_{\rm T} = 0.01 + 10^{-4} \cdot \sigma_{\rm B}^{\,\prime} \tag{49}$$

где $\sigma_{\rm B}$ в МПа.

Для деталей с концентрацией напряжений коэффициенты влияния асимметрии цикла $\Psi_{\sigma_{\pi}}$ и

 $\Psi_{\tau_{\pi}}$ вычисляют по формулам:

$$\Psi_{\sigma_{\pi}} = \frac{\Psi_{\sigma}}{K} , \quad \Psi_{\tau_{\pi}} = \frac{\Psi_{\tau}}{K} , \qquad (50)$$

где К – коэффициент, определяемый по формулам (2), (5).

Для легированных сталей допускается вычислять коэффициенты $\Psi_{\sigma_{\pi}}$ и $\Psi_{\tau_{\pi}}$ по формулам:

$$\Psi_{\sigma_{\mu}} = \frac{\sigma_{-l\mu}}{2\sigma_{\rm B} - \sigma_{-l\mu}}, \qquad (51)$$

$$\Psi_{\tau_{\pi}} = \frac{\tau_{-1\pi}}{2\sigma_{\rm B} - \tau_{-1\pi}} \,. \tag{52}$$

4.5. Предельные амплитуды для деталей при асимметричном цикле нагружения вычисляют по формулам:

$$\sigma_{a\mu} = \sigma_{-1\mu} - \Psi_{\sigma_{\mu}} \cdot \sigma_{m} , \qquad (53)$$

$$\tau_{aa} = \tau_{-1a} - \Psi_{\tau_n} \cdot \tau_m . \tag{54}$$

5. ОПРЕДЕЛЕНИЕ РАСЧЕТНЫХ ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ МАЛОЦИКЛОВОЙ УСТАЛОСТИ

5.1. Расчет малоцикловой долговечности выполняется на основе анализа местных деформаций. К малоцикловой относят область чисел циклов до разрушения $< 5 \cdot 10^4 - 10^5$, когда становится выраженным упругопластический характер деформированного состояния конструкции. Рассматривают условия нагружения, при которых максимальные деформации достигают 0,5 %—1,0 %. 5.2. При определении малоцикловой долговечности и оценке накопления повреждений должны быть следующие данные:

- циклические упругопластические и односторонне накопленные деформации в максимально напряженных зонах конструкции:

- располагаемая пластичность материала ε_f ;

- кривая малоцикловой усталости конструкционного материала ($N = f(\varepsilon)^{(k)}$).

5.3. Определение напряжений и деформаций

5.3.1. Напряженно-деформированное состояние и его поцикловое изменение в максимально напряженных зонах конструкции определяют расчетным или экспериментальным методами, в том числе по данным тензометрических измерений на моделях и натурных конструкциях для заданных или эквивалентных нагрузок.

5.3.2. Расчетное определение напряженно-деформированного состояния элементов конструкций выполняется решением соответствующих задач малоциклового нагружения в циклической упруго-пластической постановке либо в замкнутой форме, либо численными методами.

5.3.3. Для приближенных оценок малоцикловой прочности элементов конструкций, работающих при нагрузках, вызывающих в зонах концентрации напряжений выход материала за пределы упругости, деформации и напряжения приближенно определяют с использованием интерполяционных зависимостей типа

$$K_{\sigma}^{(0)} \cdot K_{e}^{(0)} = \alpha_{\sigma}^{2}, \qquad (k=0),$$
 (55)

$$K_{S}^{(k)} \cdot K_{\varepsilon}^{(k)} = \alpha_{\sigma}^{2}, \qquad (k = 1 \dots), \tag{56}$$

где $K_{\sigma}^{(0)} = \frac{\sigma_{\max}^{(0)}}{\sigma_{H}}$ — упругопластический коэффициент концентрации напряжений; $K_{e}^{(0)} = \frac{e_{\max}^{(0)}}{e_{H}}$ — упругопластический коэффициент концентрации деформаций; $K_{S}^{(k)} = \frac{S_{\max}^{(k)}}{S_{H}}$ — циклический упругопластический коэффициент концентрации напряжений; $K_{\varepsilon}^{(k)} = \frac{\varepsilon_{\max}^{(k)}}{S_{H}}$ — циклический упругопластический коэффициент концентрации деформаций.

Зависимость используется для α_σ ≤ 3,5. При бо́льших значениях α_σ применение формулы дает результаты, идущие в запас прочности.

Для вычисления значения циклических упругопластических коэффициентов концентрации $K_{S}^{(k)}$ и $K_{\varepsilon}^{(k)}$, кроме известных значений теоретического коэффициента концентрации α_{σ} , необходимо знать зависимость напряжения от деформации при циклическом упругопластическом деформировании.

5.4. Определение диаграмм статического и циклического деформирования

5.4.1. Диаграмма статического и циклического деформирования характеризует зависимость напряжения от деформации при статическом или циклическом нагружении. Диаграммы деформирования определяют по данным испытаний при статическом или циклическом нагружении, проводимых по ГОСТ 25.502 и ГОСТ 1497.

5.4.2. Аналитически диаграммы циклического деформирования интерпретируют в форме обобщенной диаграммы циклического деформирования. Обобщенная диаграмма циклического деформирования отражает зависимость напряжения от деформации по параметру числа полуциклов нагружения. Диаграмму рассматривают в координатах $S - \varepsilon$ (черт. 1). Основное свойство обобщенной диаграммы заключается в том, что для мягкого, жесткого и промежуточных между мягким и жестким нагружениями все конечные и текущие точки диаграмм деформирования k-го полуцикла нагружения, полученные при различных уровнях исходных деформаций, укладываются на одну и ту же для данного полуцикла нагружения кривую. Схема обобщенной диаграммы деформирования приведена на черт. 1. Схема обобщенной диаграммы циклического деформирования

Исходное нагружение происходит в соответствии с диаграммой статического деформирования *O*, *A*, *B*, *C*, рассматриваемой в координатах σ —*e* с началом в точке *O*. Процесс исходного нагружения доводят до определенного значения напряжений и деформаций, например до состояний *A*, *B*, *C*. Таким образом напряжения исходного нагружения составят $\sigma_1^{(0)}$, $\sigma_2^{(0)}$ и $\sigma_3^{(0)}$, а деформации — $e_1^{(0)}$, $e_2^{(0)}$ и $e_3^{(0)}$ соответственно. После разгрузки, происходящей в соответствии с модулем упругости материала, остаются величины пластических деформаций $e_{p1}^{(0)}$, $e_{p2}^{(0)}$ и $e_{p3}^{(0)}$. Исходное нагружение и разгрузка образуют нулевой (k = 0) полуцикл нагружения.

Реверс нагружения происходит по своей для каждой степени исходного нагружения диаграмме деформирования, достигая, например, состояний *D*, *K*, *N*, соответствующих напряжениям $-\sigma_1^{(1)}$, $-\sigma_2^{(1)}$ и $-\sigma_3^{(1)}$, причем для симметричного цикла мягкого нагружения $|-\sigma_1^{(1)}| = |\sigma_1^{(0)}|$, $|-\sigma_2^{(1)}| = |-\sigma_2^{(0)}|$ и $|-\sigma_3^{(1)}| = |\sigma_3^{(0)}|$. Реверсивное нагружение и последующая разгрузка образуют первый (k = 1) полуцикл нагружения, а совокупность нулевого и первого полуциклов — первый (N = 1) цикл нагружения.

Обобщенная диаграмма циклического деформирования строится для каждого отдельного полуцикла нагружения в координатах S— ε с началом в точке разгрузки и для каждого рассматриваемого состояния нагружения. Для первого (k = 1) полуцикла нагружения (при исходных уровнях напряжений $\sigma_1^{(0)}$, $\sigma_2^{(0)}$ и $\sigma_3^{(0)}$) начало координат S— ε помещают в точки A, B, C. При этом кривая деформирования рассматриваемого полуцикла включает в себя участок нагружения этого полуцикла и участок разгрузки предыдущего.

Для построения обобщенной диаграммы циклического деформирования точки начала разгрузки для данного полуцикла нагружения совмещают. На правой части черт. 1 для k = 1 точки A, B, Cсовмещены и образована единая зависимость между напряжениями и деформациями A, B, C, D, K, N.

Аналогичные построения делают и для последующих полуциклов нагружения. В общем случае, в связи с процессами циклического упрочнения или разупрочнения материала, обобщенные диаграммы деформирования для различных полуциклов нагружения отличаются друг от друга. Обобщенная диаграмма циклического деформирования оказывается неизменной (начиная с k = 1) только для циклически стабильных материалов.

5.4.3. Для приближенных расчетов допускается использовать диаграммы циклического деформирования, образуемые удвоением статической диаграммы деформирования материала.

5.4.4. Аппроксимация диаграмм деформирования выполняется для расчетных приложений степенными функциями:

ГОСТ 25.504—82 С. 14

$$\frac{\sigma^{(0)}}{\sigma_{\text{пц}}^{(0)}} = \left(\frac{e^{(0)}}{e_{\text{пц}}^{(0)}}\right)^{m(0)} \mathbf{u} \frac{S^{(k)}}{\sigma_{\text{пц}}^{(0)}} = \left(\frac{\varepsilon^{(k)}}{e_{\text{пц}}^{(0)}}\right)^{m(k)}$$
(при $\sigma^{(0)} > \sigma_{\text{пц}}^{(0)}$ $\mathbf{u} S^{(k)} > 2\sigma_{\text{пц}}^{(0)}$), (57)

- где $\sigma_{nu}^{(0)}$ и $e_{nu}^{(0)}$ напряжение и деформация предела пропорциональности материала при статическом нагружении:
 - *m*⁽⁰⁾ и *m*^(k) показатели упрочнения материала в упругопластической области, определяемые по диаграммам статического и циклического деформирования при степенной аппроксимации.

При этом циклический модуль упрочнения имеет вид:

$$m^{(k)} = \lg \left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}}\right)^{n} {}^{(0)} {}^{/}\lg \left[\left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}}\right)^{n} + \frac{\overline{A}}{2}\left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}} - 1\right)\frac{1}{K^{\alpha}}\right] - (58)$$

для циклически упрочняющихся материалов, для которых $m^{(k-1)} < m^{(k)}$;

$$m^{(k)} = \lg \left(\frac{e^{(0)}}{e^{(0)}_{\text{mu}}}\right)^{n} {}^{(0)} / \lg \left[\left(\frac{e^{(0)}}{e^{(0)}_{\text{mu}}}\right)^{n} + \frac{\overline{A}}{2} \left(\frac{e^{(0)}}{e^{(0)}_{\text{mu}}} - 1\right) e^{\beta (k-1)} \right] -$$
(59)

для циклически разупрочняющихся материалов, для которых $m^{(k-1)} > m^{(k)}$;

$$m^{(k)} = \lg \left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}}\right)^{n} {}^{(0)} / \lg \left[\left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}}\right)^{n} {}^{(0)} + \frac{\bar{A}}{2} \left(\frac{e^{(0)}}{e^{(0)}_{\text{IIII}}} - 1\right) \right] -$$
(60)

для циклически стабилизирующихся материалов, у которых $m^{(k-1)} = m^{(k)}$.

При линейной аппроксимации диаграммы статического и циклического деформирования имеют вид:

$$\frac{\sigma^{(0)}}{\sigma^{(0)}_{\rm mu}} = (1 - E_{\rm T}^{(0)}) + E_{\rm T}^{(0)} \frac{e^{(0)}}{e^{(0)}_{\rm mu}}, \quad \frac{S^{(k)}}{\sigma^{(0)}_{\rm mu}} = 2(1 - E_{\rm T}^{(k)}) + E_{\rm T}^{(k)} \frac{\varepsilon^{(k)}}{e^{(0)}_{\rm mu}}$$
(61)

(при
$$\sigma^{(0)} > \sigma^{(0)}_{\Pi \downarrow}$$
 и $S^{(k)} > 2\sigma^{(0)}_{\Pi \downarrow}$),

где
$$E_{T}^{(0)}$$
 и $E_{T}^{(k)}$ — показатели упрочнения материала в упругопластической области,
определяемые по диаграмме статического и циклического деформиро-
вания при линейной аппроксимации:

$$E_{T}^{(k)} = 1/(1 + \frac{A}{2E_{T}^{(0)}} \cdot \frac{1}{K^{\alpha}}) -$$
для циклически упрочняющихся материалов;

$$E_{T}^{(k)} = 1/(1 + \frac{A}{2E_{T}^{(0)}} \cdot e^{\beta(k-1)})$$
 — для циклически разупрочняющихся материалов;

$$E_{\rm T}^{(k)} = 1/(1 + \frac{A}{2E_{\rm T}^{(0)}})$$
 — для циклически разупрочняющихся материалов.

5.4.5. По статическим диаграммам деформирования определяют пределы пропорциональности, текучести и прочности, равномерное и общее удлинение (ГОСТ 1497), по диаграммам циклического деформирования — пределы пропорциональности и текучести по параметру числа циклов или полуциклов нагружения, коэффициенты \overline{A} , α , β , характеризующие сопротивление циклическому деформированию, циклическое упрочнение, разупрочнение, стабилизацию.

5.4.6. Коэффициент A характеризует связь между деформацией исходного нагружения $e^{(0)}$ и шириной петли гистерезиса $\delta^{(1)}$ в первом полуцикле при мягком нагружении. Определяют из выражения

$$A = \delta^{(1)} / (e^{(0)} - e^{(0)}_{\text{mu}}).$$
(62)

Полученную совокупность экспериментальных величин \overline{A} (по результатам испытания серии порядка 5—10 образцов при различных значениях исходной деформации $e^{(0)}$) обрабатывают с использованием метода наименьших квадратов или другим способом осреднения.

С. 15 ГОСТ 25.504-82

5.4.7. Коэффициенты а и в определяют по полученным при мягком нагружении экспериментальным данным 1g $\delta^{(k)}$ – lgk (для случая циклического упрочнения) и 1g $\delta^{(k)}$ – k (для циклического разупрочнения). Величины α или β для рассматриваемого образца вычисляют по формулам (черт. 2):

$$\alpha = \frac{\lg \,\delta_1^{(k)} - \lg \,\delta_2^{(k)}}{\lg \,k_2 - \lg \,k_1} \,, \quad \beta = \frac{\lg \,\delta_2^{(k)} - \lg \,\delta_1^{(k)}}{k_2 - k_1} \cdot \frac{1}{\lg \,e} \,, \tag{63}$$

где $\delta^{(k)}$ — ширина петли гистерезиса в *k*-м полуцикле нагружения.

....

Зависимость ширины петли гистерезиса от числа полуциклов нагружения

а — циклическое упрочнение; б — циклическое разупрочнение

Черт. 2

Для расчетов в заданном диапазоне максимальных деформаций рекомендуется применять средние коэффициенты α и β, полученные при различных значениях исходных деформаций в заданном диапазоне.

5.5. Определение располагаемой пластичности материала

5.5.1. Располагаемую пластичность материала (с.) определяют как

$$\varepsilon_f = \ln \frac{1}{1 - \Psi_B}$$
 или $\varepsilon_f = \ln \frac{1}{1 - \Psi}$, (64)

где Ч_в и Ψ — коэффициенты уменьшения поперечного сечения, соответствующие достижению предела прочности или разрыву образца. Определяют по ГОСТ 1497.

5.6. Определение кривой малоцикловой усталости

5.6.1. Кривую малоцикловой усталости определяют экспериментально по результатам испытаний серии образцов при жестком нагружении по ГОСТ 25.502. Результаты представляют в виде зависимости долговечности от циклической упругопластической или пластической деформации.

5.6.2. Аналитически кривую малоцикловой усталости выражают уравнениями:

$$\varepsilon_p^{(k)} = C \cdot N^{-\mu},\tag{65}$$

$$\varepsilon^{(k)} = \overline{C} \cdot N^{-\mu} + \frac{2\sigma_{-1}}{E} , \qquad (66)$$

$$\varepsilon^{(k)} = \varepsilon_e^{(k)} + \varepsilon_p^{(k)} = \overline{B} \cdot N^{-0,12} + D^{0,6} \cdot N^{-0,6}.$$
(67)

При этом зависимость долговечности от циклической пластической деформации ($\varepsilon_p^{(k)}$) используют в диапазоне чисел циклов < $10^3 - 5 \cdot 10^3$.

Зависимость долговечности от циклических упругопластических деформаций ($\varepsilon^{(k)}$) применяют во всем малоцикловом диапазоне чисел циклов нагружения (< 5 · 10⁴—10⁵).

Коэффициенты в уравнениях определяют по экспериментальным данным о долговечности при малоцикловом нагружении с симметричным циклом деформаций.

5.6.3. Для приближенных расчетов кривой малоцикловой усталости используют корреляционные зависимости, устанавливающие связь характеристик сопротивления малоцикловой усталости с прочностью и пластичностью материала при статическом разрыве образца. При этом принимают следующие значения коэффициентов уравнений кривой малоцикловой усталости:

$$C = \frac{1}{2} \ln \frac{1}{1 - \Psi_{\rm B}}$$
или $C = \frac{1}{2} \ln \frac{1}{1 - \Psi};$
 $\overline{B} = \frac{3.5\sigma_{\rm B}}{E}; \ \overline{D} = \ln \frac{1}{1 - \Psi_{\rm B}}$ или $\overline{D} = \ln \frac{1}{1 - \Psi}.$

.

Показатель µ для широкого круга конструкционных сталей и сплавов, в первом приближении, равен 0,5—0,6.

Графики, соответствующие уравнениям (65) — (67) с учетом величин коэффициентов, приведены на черт. 3. Там же даны линии, характеризующие первое и второе слагаемые уравнений (66), (67).

Зависимость долговечности от величины пластической (*a*) и упругопластической деформации (*б*, *в*) в цикле при $\varepsilon(k) = \text{const}$

Черт. 3

С. 17 ГОСТ 25.504-82

5.6.4. Для получения расчетных кривых используют, с целью обеспечения запасов прочности, минимально гарантированные по техническим условиям на материал величины Ψ, σ_в, σ₋₁. При наличии статистических данных в расчет вводят характеристики, соответствующие средним за вычетом трех стандартных отклонений.

5.6.5. В области числа циклов нагружения до разрушения 10⁴ циклов асимметрию деформаций при определении расчетных кривых малоцикловой усталости не учитывают, если emax < 0,25 г.

При $e_{\max} > 0,25\varepsilon_f$, в уравнениях кривых малоцикловой усталости используют коэффициенты,

равные $C - e_{\max}$ и $D - e_{\max}$.

При числе циклов нагружения в диапазоне 10⁴—10⁵ асимметрию цикла нагружения учитывают способом, аналогичным применяемому в многоцикловой области.

5.6.6. Масштабный эффект, влияние чистоты поверхности, коррозии и т. п. следует оценивать постановкой соответствующих экспериментов.

> ПРИЛОЖЕНИЕ 1 Обязательное

ОБОЗНАЧЕНИЯ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ

σ₋₁ — предел выносливости при симметричном цикле гладких лабораторных образцов диаметром $d_0 = 7,5$ мм при изгибе с вращением, изготовленных по ГОСТ 25.502, МПа.

σ₋₁ — медианное значение σ₋₁ для образцов из металла одной плавки, МПа.

- ⁼ медианное значение предела выносливости на совокупности всех плавок металла данной σ₋₁ марки гладких веборотории области. марки гладких лабораторных образцов диаметром do = 7,5 мм, изготовленных из заготовок диаметром d, равным абсолютному размеру рассчитываемой детали, МПа.
 - К- коэффициент снижения предела выносливости.
- $\sigma_{-1\pi}$ предел выносливости детали при симметричном цикле, выраженный в номинальных напряжениях, МПа.
- $\bar{\sigma}_{-1\pi}$ медианное значение $\sigma_{-1\pi}$, МПа.
- = медианное значение предела выносливости детали на совокупности всех плавок металла σ_{-1π} ланной марки МПа данной марки, МПа.
- $(\sigma_{-1})_P$ значение σ_{-1} , соответствующее вероятности разрушения *P*%, например $(\sigma_{-1})_{10}$ при *P* = = 10 %, MΠa.
- (σ_{-1л})_Р предел выносливости детали, соответствующий вероятности разрушения Р %, МПа.
 - σ медианное значение предела выносливости гладких лабораторных образцов диаметром $d_0 = -1$ = 7.5 мм изруговлении из разрование и сладких лабораторных образцов диаметром $d_0 = -1$
 - = 7,5 мм, изготовленных из заготовок металла данной марки размерами 10-20 мм, МПа. K_1- коэффициент, учитывающий снижение механических свойств металла ($\sigma_{\rm B}$, $\sigma_{\rm T}$, σ_{-1}) с ростом размеров заготовок.
 - σ_в временное сопротивление (предел прочности) стали данной марки при растяжении, МПа.
 - $\bar{\sigma}_{\rm B}$ медианное значение предела прочности стали данной марки, определенное на образцах, изготовленных из заготовок диаметром d, равным абсолютному размеру рассчитываемой детали, МПа. эффективный коэффициент концентрации напряжений.

$$K_{\sigma} = \sigma_{-1d} / \sigma_{-1d} - s$$

- $K_{d\sigma} = \sigma_{-1d}/\sigma_{-1}$ коэффициент влияния абсолютных размеров поперечного сечения.
 - σ_{-1d} предел выносливости образца без концентрации напряжений диаметром d, MПа.
 - $K_F = \frac{\sigma_{-1F}}{\sigma_{-1}}$ коэффициент влияния шероховатости поверхности, равный отношению предела выносливости вости образца с данным качеством поверхности σ_{-1F} к пределу выносливости гладкого лабораторного образца.

$$K_{\nu} = \frac{\sigma_{-la \text{ упр}}}{\sigma_{-la}} - \frac{\kappa_{0.2}}{\kappa_{0.2}} \kappa_{0.2}$$
коэффициент влияния поверхностного упрочнения, равный отношению предела выносли-
вости упрочненной детали $\sigma_{-la \text{ упр}}$ к пределу выносливости неупрочненной детали σ_{-la} .

 K_A — коэффициент анизотропии.

 $K_{\rm kop} = \frac{\sigma_{-1 \, \rm kop}}{\sigma_{-1}}$ — коэффициент влияния коррозии, равный отношению предела выносливости гладкого образца в условиях коррозии о-1 кор к пределу выносливости образца при испытаниях в воздухе.

- ξ', ξ" поправочные коэффициенты.
 - v_{σ} постоянная для данного металла величина (при определенной температуре и частоте испытания), определяющая чувствительность к концентрации напряжений и влиянию абсолютных размеров поперечного сечения при изгибе или растяжении — сжатии.
 - L параметр рабочего сечения образца или детали или его часть, прилегающая к местам повышенной напряженности, мм.
 - G-относительный градиент первого главного напряжения в зоне концентрации напряжений, MM^{-1} .
 - G_{r} относительный градиент касательного напряжения, мм⁻¹.
 - L/\overline{G} критерий подобия усталостного разрушения детали, мм².

 $(L/\overline{G})_0$ – критерий подобия усталостного разрушения образца диаметром $d_0 = 7,5$ мм, мм².

$$\Theta = \frac{L/\overline{G}}{(L/\overline{G})_0}$$
 — относительный критерий подобия усталостного разрушения.

 $\alpha_{\sigma} = \sigma_{max} / \sigma_{H}$ — теоретический коэффициент концентрации напряжений, равный отношению максимального напряжения в зоне концентрации от к номинальному напряжению он, вычисленному по формулам сопротивления материалов (в предположении упругого распределения напряжений).

- n = f(G, o_T) коэффициент, зависящий от значений относительного градиента напряжений и предела текучести.
 - σ_т предел текучести стали данной марки при растяжении, МПа.
 - q коэффициент чувствительности металла к концентрации напряжений.
 - $\sigma_{1}^{(p)}$ предел выносливости образцов при растяжении—сжатии, МПа.
 - *А*, *В*, *С*, *Z* постоянные коэффициенты.
 - v_{σ_1д} коэффициент вариации пределов выносливости деталей.
 - *z*_p квантиль нормального распределения, соответствующая заданной вероятности разрушения
 - $s_{\sigma_{1n}}$ среднее квадратическое отклонение предела выносливости детали, МПа.
 - v_{о пах} коэффициент вариации максимальных разрушающих напряжений в зоне концентрации.
 - - коэффициент вариации теоретического коэффициента концентрации напряжений $lpha_{\sigma}$.
 - *т* показатель наклона левой встви кривой усталости в двойных логарифмических координатах.
 - N_G абсцисса точки перелома кривой усталости. Ψ_{σ} коэффициент чувствительности к асимметри
 - коэффициент чувствительности к асимметрии цикла напряжений.
 - Ψ_{σ} коэффициент чувствительности к асимметрии цикла напряжений для детали.
 - σ_{ал} предельная амплитуда для детали при асимметричном цикле нагружения.

do, d, dp, D, p, t, a, h, H – размеры рабочего сечения образцов (деталей), мм.

- ε_г располагаемая пластичность материала, %.
- N число циклов нагружения.
- k число полуциклов нагружения ($k = 0, 1, 2, 3 \dots$).
- σ⁽⁰⁾ действительное максимальное напряжение в исходном нагружении (нулевой полуцикл), МПа.
 - σ_н номинаљное напряжение, МПа.
- σ⁽⁰⁾ — коэффициент концентрации напряжений в упругопластической области в исходном нагру- $K_{-}^{(0)} =$ $\overline{\sigma}_{H}$ жении (нулевой полуцикл).
 - e⁽⁰⁾ действительная максимальная упругопластическая деформация в исходном нагружении (нулевой полуцикл), %.
 - номинальная деформация в исходном нагружении (нулевой полуцикл), %. **е**_н

 $\frac{e_{\max}^{(0)}}{2}$ — коэффициент концентрации деформаций в упругопластической области в исходном нагружении (нулевой полуцикл).

С. 19 ГОСТ 25.504-82

- $S_{\max}^{(k)}$ действительное максимальное напряжение в k-м полуцикле нагружения, МПа.
 - S_н номинальное напряжение в *k*-м полуцикле нагружения, МПа.
- $S_{\max}^{(k)}$ — коэффициент концентрации напряжений в упругопластической области в k-м полуцикле нагружения.
 - $\varepsilon_{\max}^{(k)}$ действительная максимальная упругопластическая деформация в k-м полуцикле нагружения, %.
 - ε_{u} номинальная деформация в *k*-м полуцикле нагружения, %.
- $\epsilon_{\max}^{(k)}$ $K_{n}^{(k)} =$
 - коэффициент концентрации деформаций в упругопластической области в к-м полуцикле нагружения.
 - e⁽⁰⁾ уровень деформации в исходном нагружении гладких образцов, %.
 - $\sigma^{(0)}$ уровень напряжений в исходном нагружении гладких образцов, МПа.
 - предел пропорциональности в исходном нагружении, определенный при допуске на плас- $\sigma_{\rm mi}^{(0)}$ тическую деформацию 0,02 % в координатах $\sigma - e$, МПа.
 - $e_{\rm mi}^{(0)}$ деформация, соответствующая пределу пропорциональности в исходном нагружении в координатах $\sigma - e$, %.
 - $S_{\mathrm{IIII}}^{(k)}$ - предел пропорциональности в k-м полуцикле нагружения в координатах $S - \varepsilon$, МПа.
 - деформация, соответствующая пределу пропорциональности в k-м полуцикле нагружения в ε^(k) координатах $S - \varepsilon$, %.
 - E⁽⁰⁾ показатель упрочнения в упругопластической области при линейной аппроксимации диаграммы статического деформирования.
 - $E^{(k)}$ показатель упрочнения в упругопластической области при линейной аппроксимации диаграммы циклического деформирования в k-м полуцикле нагружения.
 - $m^{(0)}$ показатель упрочнения в упругопластической области при степенной аппроксимации диаграммы статического деформирования.
 - m^(k) показатель упрочнения в упругопластической области при степенной аппроксимации диаграммы циклического деформирования в k-м полуцикле нагружения.
 - δ⁽¹⁾ ширина петли гистерезиса в 1-м полуцикле нагружения, %.
 - $\delta^{(k)}$ ширина петли гистерезиса в *k*-м полуцикле нагружения, %.
 - $e^{(k)}$ упругопластическая деформация, накопленная после k-го полуцикла нагружения, %.
 - $e_n^{(k)}$ пластическая деформация, накопленная после k-го полуцикла нагружения, %.
 - $e_{\max}^{(k)}$ — максимальная упругопластическая деформация, накопленная за k полуциклов нагружения, %.

 $\varepsilon^{(k)} = \varepsilon_{n}^{(k)} + \varepsilon_{e}^{(k)}$ — размах упругопластической деформации в k-м полуцикле нагружения, %.

- $\varepsilon_p^{(k)}$ размах пластической деформации в *k*-м полуцикле нагружения, равный $\sigma^{(k)}$. $\varepsilon_e^{(k)}$ упругая деформация в *k*-м полуцикле нагружения, %, равная $S^{(k)}/E$.
- относительное сужение площади поперечного сечения образца при статическом растяжении, %.
- $\Psi_{\rm B}$ относительное сужение площади поперечного сечения образца, соответствующее $\sigma_{\rm B}$, %.
- <u>Е</u> модуль упругости материала, МПа.
- *С*, *В*, *D* коэффициенты уравнений кривой малоцикловой усталости.
- Примечание. При кручении обозначения аналогичны с заменой о на τ , например τ_{-1} , $\tau_{-1\pi}$ и т. д.

ГОСТ 25.504-82 С. 20

ПРИЛОЖЕНИЕ 2 Обязательное

ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНЫХ КОЭФФИЦИЕНТОВ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ K_{σ} , K_{τ} , ОТНОШЕНИЙ $\frac{K_{\sigma}}{K_{d\sigma}}$, $\frac{K_{\tau}}{K_{d\tau}}$, КОЭФФИЦИЕНТОВ *n*, *q*, K_1 И K_3

Валы с напрессованными деталями при изгибе

σ_в = 500 МПа; *P* ≥ 30 МПа; *1* — через напрессованную деталь передается сила или момент; *2* — через напрессованную деталь не передается усилий

Черт. 1

Поправочный коэффициент ξ' на предел прочности $\sigma_{\!_B}$ (к черт. 1)

Черт. 2

Поправочный коэффициент 5["] на давление напрессовки Р (к черт. 1)

Черт. 3

Валы с поперечным отверстием при кручении

Черт. 5

Валы с поперечным отверстием при изгибе

Валы с поперечным отверстием при растяжении—сжатии

Черт. 6

прямобочные и эвольвентные шлицы;
 прямобочные шлицы;
 эвольвентные шлицы

Валы с V-образной кольцевой выточкой Коэффициенты K_{σ}, K_{τ} для валов со шпоночными пазами типов A и B

Черт. 14

Коэффициенты q

Черт. 15

* Черт. 8—12. (Исключены, Изм. № 1)

ПРИЛОЖЕНИЕ 3 Обязательное

ОПРЕДЕЛЕНИЕ ТЕОРЕТИЧЕСКИХ КОЭФФИЦИЕНТОВ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ α_{σ} , α_{τ}

Пластины с двухсторонним надрезом при растяжении (черт. 1-3)

Формулы к черт. 1—3 $\alpha_{\sigma} = 1 + \frac{(\alpha_{f\sigma} - 1) (\alpha_{t\sigma} - 1)}{\sqrt{(\alpha_{f\sigma} - 1)^2 + (\alpha_{t\sigma} - 1)^2}},$

где $\alpha_{f\sigma} = 1 + 2\sqrt{\frac{t}{\rho}};$

Пластины типов а и в при растяжении

1—5 — пластины типа *a* (1 — однократный надрез; 2 — двухкратный надрез; 3 — трехкратный надрез; 4 — четырехкратный надрез; 5 — пятикратный надрез); 6 — пластины типа *в*

Черт. 5

Примечание. Коэффициент γ для многократного надреза находят по диаграммам для однократного надреза при глубине $t' = \gamma \cdot t$, где t — глубина многократного надреза, t' — глубина эквивалентного однократного надреза.

Черт. 6

 $0,001 \leq \rho/D \leq 0,050$

Черт. 7

Черт. 8

Формулы к черт. 6—8

$$\begin{aligned} \alpha_{\sigma} &= 1 + \frac{(\alpha_{f\sigma} - 1) (\alpha_{t\sigma} - 1)}{\sqrt{(\alpha_{f\sigma} - 1)^2 + (\alpha_{t\sigma} - 1)^2}} ,\\ \alpha_{t\sigma} &= \frac{1}{2N} \Big(\sqrt{\frac{a}{\rho} + 1} + 1 \Big) \Big[2 \left(\frac{a}{\rho} + 1 \right) - \Big(1 - \frac{2}{m} \Big) \sqrt{\frac{a}{\rho} + 1} + 1 \Big] ,\\ N &= \frac{a}{\rho} + \frac{2}{m} \sqrt{\frac{a}{\rho} + 1} + 2 ,\\ a &= \frac{d}{2} , \frac{1}{m} = 0,3 . \end{aligned}$$

Пластины с двусторонним надрезом при изгибе (черт. 9-11)

Черт. 9

Черт. 10

 $0,05 \leq \rho/D \leq 1,00$

Черт. 11

Формулы к черт. 9-11

 $\alpha_{\sigma} = 1 + \frac{(\alpha_{f\sigma} - 1) (\alpha_{t\sigma} - 1)}{\sqrt{(\alpha_{f\sigma} - 1)^2 + (\alpha_{t\sigma} - 1)^2}} ,$ $\alpha_{t\sigma} = \frac{4\frac{a}{\rho}\sqrt{\frac{a}{\rho}}}{3\left[\sqrt{\frac{a}{\rho}} + \left(\frac{a}{\rho} - 1\right) \arctan\sqrt{\frac{a}{\rho}}\right]}.$

где $\alpha_{f\sigma} = 1 + 2 \sqrt{\frac{t}{\rho}}$,

Влияние угла надреза на коэффициент концентрации напряжений при изгибе пластины с односторонним надрезом

 α_{σ} — коэффициент концентрации напряжений для надреза с углом $\omega = 0$ (пунктир на схеме пластины); $\alpha_{\sigma_{\omega}}$ — коэфффициент концентрации напряжений для надреза с углом ω при тех же размерах

Черт. 12

Тонкий лист с двухсторонним надрезом при изгибе в плоскости, перпендикулярной плоскости листа (1/h значительно)

Черт. 13

Валы с выточкой при изгибе (черт. 14-16)

Черт. 14

 $0,001 \leq \rho / D \leq 0,050$

Черт. 15

Черт. 16

Формулы к черт. 14-16

$$\begin{aligned} \alpha_{\sigma} &= 1 + \frac{(\alpha_{f\sigma} - 1) (\alpha_{t\sigma} - 1)}{\sqrt{(\alpha_{f\sigma} - 1)^2 + (\alpha_{t\sigma} - 1)^2}} \,, \\ \alpha_{t\sigma} &= \frac{3}{4N} \Big(\sqrt{\frac{a}{\rho} + 1} + 1 \Big) \Big[3 \, \frac{a}{\rho} - \Big(1 - \frac{2}{m} \Big) \sqrt{\frac{a}{\rho} + 1} + 4 + \frac{1}{m} \Big] \,, \\ N &= 3 \, \Big(\frac{a}{\rho} + 1 \Big) + \Big(1 + \frac{4}{m} \Big) \sqrt{\frac{a}{\rho} + 1} + \frac{1 + \frac{1}{m}}{1 + \sqrt{\frac{a}{\rho} + 1}} \,. \end{aligned}$$

Валы с выточкой при кручении (черт. 17-19)

 $\rho/d = 0,02-0,30$

Черт. 17

Черт. 18

 $0,05 \leq \rho/D \leq 1,00$

Черт. 19

Формулы к черт. 17-19

$$\alpha_{\tau} = 1 + \frac{(\alpha_{f\tau} - 1) (\alpha_{t\tau} - 1)}{\sqrt{(\alpha_{f\tau} - 1)^2 + (\alpha_{t\tau} - 1)^2}},$$

где
$$\alpha_{f\tau} = 1 + \sqrt{\frac{t}{\rho}}$$
,
 $3 \left(1 + \sqrt{\frac{a}{\rho} + 1}\right)^2$
 $\alpha_{t\tau} = \frac{3 \left(1 + \sqrt{\frac{a}{\rho} + 1}\right)^2}{4 \left(1 + 2\sqrt{\frac{a}{\rho} + 1}\right)}$.

Симметричная ступенчатая пластина с галтелями при растяжении (по данным поляризационно-оптических измерений)

$$α_{σ} = 1 + \frac{1}{\sqrt{\frac{0,5}{t/ρ} + 2,5 \frac{(1 + a/ρ)^2}{(a/ρ)^3}}}$$
 при t/ρ >1

Ступенчатый вал с галтелью при растяжении (сжатии)

$$α_{σ} = 1 + \frac{1}{\sqrt{\frac{0,5}{t/ρ} + 6,0} \frac{(1 + a/ρ)^{2}}{(a/ρ)^{3}}}$$
 πρμ t/ρ >1

Черт. 22

Влияние длины выступа пластины на коэффициент концентрации напряжений для ступенчатой пластины с галтелями при изгибе (черт. 23-25)

Черт. 23

Черт. 24

Черт. 25

Черт. 26

Mu

1,01

0,28 p/d

α۵

D/d= 6

Ступенчатый вал с галтелью при кручении (измерения по методу электрических аналогий)

Черт. 28

Черт. 30

Тонкая пластина ограниченной ширины с поперечным отверстием при изгибе

Вал с поперечным отверстием при изгибе

(измерения с помощью тензометров)

Пластины с Т-образной головкой

р/d =0,050 (измерения с помощью поляризационнооптического метода)

Черт. 33

ę, ¥¥¥ L pl p/2 D 0,95 m/d=0,65 1,00 1,20 0,85 0,90 0,70 <u>0,75</u> 0,80 3,00 1,50 2,9 D/d 2,1 2,3 2,5 2,7 $\rho / d = 0,2$

Черт. 36

Примечание. Координата точки приложения сосредоточенной силы Р/2 по оси Х-переменная

Черт. 37

Пластина с поперечной прорезью при изгибе

118

Пластина с поперечной прорезью при растяжении

Пластина с односторонним надрезом при изгибе

Черт. 39

Пластина с эксцентрично расположенным отверстием толщиной *h* при растяжении

$$\sigma_{\rm H\infty} = \frac{P}{h(B+b)}$$
.

$$\sigma_{\rm H,A-C} = \sigma_{\rm H,\infty} \frac{\sqrt{1 - (\rho/b)^2}}{(1 - \frac{\rho}{b}) \left[1 - \frac{b}{B} (1 - \sqrt{1 - (\rho/b)^2}\right]}.$$

С. 43 ГОСТ 25.504-82

Вал с поперечным отверстием при растяжении (1) и изгибе (2)

Черт. 42

Вал с пазом для призматической шпонки при кручении

Черт. 43

Кольцо с наружной единичной нагрузкой Р

Уголок с равными по толщине полками при изгибающем моменте $P \cdot e$

Черт. 45

Уголок с неравными по толщине полками при изгибе от единичной нагрузки Р

Уголок с приблизительно равными по толщине полками при изгибе от единичной нагрузки Р

Черт. 46

Черт. 47

Номограмма для определения теоретического коэффициента концентрации

Черт. 48

Номограмма для кольцевых выточек с осевым отверстием

ПРИЛОЖЕНИЕ 4 Обязательное

ОПРЕДЕЛЕНИЕ ЗНАЧЕНИЙ ФУНКЦИИ F (O, v), ПАРАМЕТРА L, КОЭФФИЦИЕНТА ВЛИЯНИЯ ШЕРОХОВАТОСТИ ПОВЕРХНОСТИ K_F и коэффициента K_{кор}

Значения функции $F(\Theta, v)$

Черт. 1

Схемы к определению параметра L

Значения коэффициентов К_F

Черт. 2

Примечание. При наличии окалины используют нижнюю прямую ($R_z = 200$ мкм).

С. 47 ГОСТ 25.504-82

Влияние коррозии до испытания на усталость на предел выносливости стальных образцов (при изгибе с вращением на базе 10⁷ циклов при частоте нагружения 30-50 Гц)

Влияние коррозии в процессе испытания на предел выносливости стальных образцов при изгибе с вращением (осредненные кривые) на базе 107 циклов при частоте нагружения 30-50 Гц

1 — пресная вода (наличие концентрации напряжений); 2 — пресная вода (отсутствие концентрации напряжений); 3 — морская вода (отсутствие концентрации напряжений)

Черт. 5

ПРИЛОЖЕНИЕ 5 Рекомендуемое

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ВЛИЯНИЯ ПОВЕРХНОСТНОГО УПРОЧНЕНИЯ К

1. Коэффициенты влияния поверхностного упрочнения на предел выносливости вычисляют по формуле

$$K_{V} = \frac{\sigma_{-1\pi \text{ ymp}}}{\sigma_{-1\pi}}, \qquad (1)$$

где о-1д упр — предел выносливости упрочненных деталей;

σ_{-1д} — предел выносливости неупрочненных деталей.

Средние значения K_V для различных методов поверхностного упрочнения образцов из углеродистых и легированных конструкционных сталей приведены в табл. 1—3.

Таблица 1

(изгиб с вращением, глубина закаленного слоя 0,9—1,5 мм)					
Вид образца	К _V для образца	диаметром			
_	7—20 мм	30—40 мм			
Без концентрации напряжений	1,3–1,6	1,2—1,5			
С концентрацией напряжений	1,6-2,8	1,5—2,5			

Влияние поверхностной закалки токами высокой частоты

ГОСТ 25.504-82 С. 48

Влияние химико-термической обработки

Таблица 2

Характеристика	Вил образиа	<i>К_V</i> для образцов диаметром			
обработки	ынд образца	8—15 мм	10 мм	30—40 мм	
Азотирование при глу-	Без концентрации напряжений	1,15-1,25		1,10—1,15	
бине слоя 0,1-0,4 мм твер- дости слоя 730970 НВ	С концентрацией напряжений (поперечное, отверстие, надрез)	1,90—3,00		1,30—2,00	
Цементация при глу-	Без концентрации напряжений	1,20—2,10		1,10-1,50	
бине слоя 0,2—0,6 мм	С концентрацией напряжений	1,50-2,50		1,20—2,00	
Цианирование при глу- бине слоя 0,2 мм	Без концентрации напряжений	—	1,80	_	

Таблица 3

Влияние поверхностного наклепа

Способ обработки	Вид образца	K_{V} для образца диаметром		
		7—20 мм	30—40 мм	
Обкатка роликом	Без концентрации напряжений	1,20—1,40	1,10—1,25	
	С концентрацией напряжений	1,50—2,20	1,30—1,80	
Обдувка дробью	Без концентрации напряжений	1,10—1,30	1,10—1,20	
	С концентрацией напряжений	1,40—2,50	1,10—1,50	

2. Приведенные в п. 1 значения K_V соответствуют оптимальной технологии упрочнения и отсутствию технологических дефектов. При неправильной технологии упрочнения или наличии дефектов (обрыв поверхностного закаленного слоя в зоне концентрации напряжений, обезуглероживание поверхностного слоя, шлифовочные прижоги и другие дефекты) может получиться не повышение, а даже снижение пределов выносливости.

Поэтому введение в формулу (2) (см. п. 1.1) коэффициентов K_V возможно только при проведении исследований для обоснования технологических режимов упрочнения применительно к конкретной детали и при получении стабильного эффекта упрочнения (в смысле повышения предела выносливости) в условиях производства.

ПРИЛОЖЕНИЕ 6 Справочное

ПРИМЕРЫ РАСЧЕТА ХАРАКТЕРИСТИК СОПРОТИВЛЕНИЯ УСТАЛОСТИ ДЕТАЛЕЙ МАШИН

Пример 1.

Определить среднее значение и коэффициент вариации предела выносливости вала при изгибе с вращением в месте перехода одного сечения к другому по галтели, показанного на черт. 1. Вал изготовлен из стали 45, $\sigma_{\rm B} = 650$ МПа.

Дано: $\overline{\sigma}'_{-1} = 300 \text{ МПа}; v_{\sigma_{\mathbf{B}}} = 0,07$; поверхностному упрочнению вал не подвергается. Вал изготовлен тонкой обточкой ($Rz \simeq 26,3$ мкм).

Находим значение α_α по черт. 27 приложения 3.

Для
$$\frac{D}{\overline{d}} = \frac{120}{100} = 1,20$$
 и $\frac{\rho}{\overline{d}} = \frac{10}{100} = 0,1$ $\overline{\alpha}_{\sigma} = 1,62.$

С. 49 ГОСТ 25.504-82

2. Определяем значение G по формуле табл. 1 настоящего стандарта

$$t = \frac{D-d}{2} = 10$$
 mm; $\frac{t}{\overline{\rho}} = \frac{10}{10} = 1$;
 $\varphi = \frac{1}{4\sqrt{t/\rho} + 2} = \frac{1}{4, 1+2} = 0,167;$

$$\overline{G} = \frac{2,3 (1 + \varphi)}{\varphi} + \frac{2}{d} = \frac{2,3(1 + 0,167)}{10} + \frac{2}{100} = 0,268 + 0,02 = 0,288 \text{ mm}^{-1}.$$

3. Вычисляем значение Θ .

 $L = \pi d = 314$ мм — при изгибе с вращением круглого вала;

$$\frac{L}{G} = \frac{314}{0,288} = 1090 \text{ mm}^2; \quad \Theta = \frac{L}{G} \cdot \frac{1}{88,3} = \frac{1090}{88,3} = 12,35.$$

4. Для стали 45 можно принять $v_{\sigma} = 0,211-0,000143 \cdot 650 = 0,12$. По табл. 4 или по черт. 1 (приложение 4) находим при $\Theta = 12,35; F(\Theta, v_{\sigma}) = 1,15.$

5. Определяем $K_{\sigma}/K_{d\sigma}$ по формуле (11) настоящего стандарта

$$\frac{K_{\sigma}}{K_{d\sigma}} = \alpha_{\sigma} \cdot F(\Theta, v_{\sigma}) = 1.62 \cdot 1.15 = 1.86.$$

4, 5. (Измененная редакция, Изм. № 1).
6. Для случая тонкой обточки (Rz = 6,3 мкм) по черт. 3 (приложения 4) для σ_в = 650 МПа находим: $K_F = 0,91.$

7. Определяем значение К по формуле (2) настоящего стандарта

$$K = \left(\frac{K_{\sigma}}{k_{\alpha \sigma}} + \frac{1}{K_F} - 1\right). \quad \frac{1}{K_V \cdot K_A} = (1,86 + \frac{1}{0,91} - 1) \cdot 1 = 1,96.$$

(Измененная редакция, Изм. № 1). 8. Коэффициент анизотропии $K_A = 1$, $K_V = 1$. 9. Коэффициент $K_1 = 1$. (Измененная редакция, Изм. № 1).

10. (Исключен, Изм. № 1).

11. Среднее значение предела выносливости вала составит:

$$\overline{\overline{\sigma}}_{-1\pi} = \frac{\overline{\overline{\sigma}}_{-1}}{K} = \frac{300}{1,96} = 153 \text{ M}\Pi a$$

Коэф
фициент вариации $\nu_{\sigma_{\rm max}}$ находим по формуле (38) настоящего стандарта

$$v_{\sigma_{\text{max}}} = \frac{0,1}{1+\Theta_{\sigma}^{v}} = \frac{0,1}{1+12,35^{0,12}} = 0,042.$$

Для подсчета коэффициента вариации $v_{\alpha_{\sigma}}$ находим по черт. 27 (приложения 3) значения α_{σ} при D/d = 1,2и двух значениях, близких к 0,1, например при

$$(\rho/d)_1 = 0.09, \quad \alpha_{\sigma_1} = 1.67, \quad (\rho/d)_2 = 0.11, \quad \alpha_{\sigma_2} = 1.59.$$

По формуле (44) настоящего стандарта находим

$$\frac{\alpha_{\sigma}-1,67}{1,59-1,67}=\frac{\rho/d-0,09}{0,11-0,09},$$

откуда $\alpha_{\sigma} = 2,03 - 4 \cdot \rho/d$.

По формуле (43) настоящего стандарта получаем

$$v_{\alpha_{\sigma}} = \left| \frac{\partial \alpha_{\sigma}}{\partial \rho} \right|_{0} \cdot \frac{\overline{\rho}}{\alpha_{\sigma}} \cdot v_{\rho} = \frac{4}{\alpha_{\sigma}} \cdot \frac{\overline{\rho}}{d} \cdot v_{\rho} = 0,25v_{\rho}.$$

Принимая отклонения радиуса ± 2 мм за $3S_p$, получим:

$$S_{\rm p} = \frac{2}{3} = 0,67$$
 mm, $v_{\rm p} = \frac{0,67}{10} = 0,067$, $v_{\rm ac} = 0,25 \cdot 0,067 = 0,017$.

Из-за отсутствия данных коэффициент вариации $\nu_{\overline{\sigma}_{-1}}$ принимаем равным

$$v_{\sigma_{\rm B}}: v_{\overline{\sigma}_{-1}} \approx v_{\sigma_{\rm B}} = 0,07$$

Общий коэффициент вариации предела выносливости вала составит

$$v_{\sigma_{-1\pi}} = \sqrt{v_{\sigma_{max}}^2 + v_{\sigma_{-1}}^2 + v_{\alpha_{\sigma}}^2} = \sqrt{0.042^2 + 0.07^2 + 0.017^2} = 0.083.$$

(Измененная редакция, Изм. № 1). Пример 2.

Определить среднее значение предела выносливости пластины с отверстием при растяжении-сжатии, показанной на черт. 2.

H = 100 mm; $\alpha = 10^{+0.1}$ mm; t = 12 mm.

Пластина изготовлена из стали марки Ст.3. Rz = 50 мкм.

 $\bar{\sigma}_{_{\rm B}} = 402 \text{ M}\Pi a; \ \bar{\sigma}_{-1}' = 185 \text{ M}\Pi a; \ \nu_{\sigma_{_{\rm B}}} = 0.06; \ \bar{\sigma}_{_{\rm T}} = 270 \text{ M}\Pi a.$

(Измененная редакция, Изм. № 1).

1. Определяем значение α_σ на черт. 29 (приложения 3)

для $\frac{a}{H} = \frac{10}{100} = 0,10$; $\alpha_{\sigma} = 2,73$.

2. Определяем значение G по формуле табл. 1 настоящего стандарта

$$\overline{G} = \frac{2,3}{\rho} = \frac{2,3}{5} = 0,46 \text{ 1/MM} (\rho = \frac{a}{2} = \frac{10}{2} = 5 \text{ MM}).$$

3. Находим коэффициент n по черт. 14 (приложения 2)

$$n = 1, 12.$$

4. Определяем коэффициент K_о по формуле (13) настоящего стандарта

$$K_{\sigma} = \frac{\alpha_{\sigma}}{n} = \frac{2,73}{1,12} = 2,44.$$

5. Определяем параметр ν_{σ} по формуле (27) настоящего стандарта $\nu_{\sigma} = 0,211 - 0,000143 \cdot 402 = 0,15.$ (Измененная редакция, Изм. № 1).

5а. Определяем значения L, \overline{G} и Θ_{rn} для аналогичной пластины без концентратора напряжений по табл. 1 и приложению 4 (черт. 2) настоящего стандарта

$$L = 2t = 2 \cdot 12 = 24$$
 MM,

$$\varphi = \frac{1}{4\sqrt{\frac{f}{\rho}} + 2} = \frac{1}{4\sqrt{\frac{10}{50}} + 2} = 0,26,$$
$$\overline{G} = \frac{2,3(1+\varphi)}{\rho} = \frac{2,3(1+0,26)}{50} = 0,058,$$
$$\Theta_{\Gamma,\Pi} = \frac{L/\overline{G}}{7,5} = \frac{24}{0,058 + 7,5} = 55.$$

(Введен дополнительно, Изм. № 1). 6. Определяем коэффициент $K_{d\sigma}$ по формуле (12) настоящего стандарта

$$K_{d\sigma} = 0.5(1 + \Theta_{DT}^{-V_{\sigma}}) = 0.5(1 + 55^{-0.15}) = 0.77,$$
$$\frac{K_{\sigma}}{K_{d\sigma}} = \frac{2.44}{0.77} = 3.17.$$

(Измененная редакция, Изм. № 1).

- 7. По черт. 3 (приложение 4) находим $K_F = 0,89$. 8. Коэффициент K определяем по формуле (2) настоящего стандарта

$$K = \left(\frac{K_{\sigma}}{K_{d\sigma}} + \frac{1}{K_{F}} - 1\right) \frac{1}{K_{v} \cdot K_{A}} = (3,17 + \frac{1}{0,89} - 1) \cdot 1 = 3,29.$$

(Измененная редакция, Изм. № 1).

9, 10. (Исключены, Изм. № 1).

11. Средний предел выносливости пластины с отверстием вычисляем по формуле (1) настоящего стандарта (коэффициент $K_1 = 1$ для углеродистых сталей)

$$\overline{\overline{\sigma}}_{-1\pi} = \frac{185}{3,29} = 56,2 \text{ MIIa.}$$

(Измененная редакция, Изм. № 1).

Пример 3.

Определить среднее значение предела выносливости вала с канавкой при кручении (черт. 3).

D = 200 MM; d = 180 MM; $\rho = (1.8 \pm 0.3)$ MM.

Черт. 3

Вал изготовлен из стали марки 40XH. $\sigma_{\rm B} = 820$ МПа, $\sigma_{\rm T} = 650$ МПа, $\overline{\overline{\tau}}_{-1}' = 240$ МПа, $\nu_{\sigma_{\rm B}} = 0.07$; канавку изготовляют тонкой обточкой и поверхностному упрочнению не подвергают (Rz = 6,3 мкм).

1. Находим значение α, по черт. 18 (приложения 3) при

$$\frac{\overline{\rho}}{D} = \frac{1.8}{200} = 0,009 \text{ M} \quad \frac{\overline{d}}{D} = \frac{180}{200} = 0.9 \ \alpha_{\tau} = 2.6.$$

2. Определяем значение q по черт. 15 (приложения 2)

$$q = 0.96$$
.

3. Величину К_т определяем по формуле (19) настоящего стандарта

$$K_{\tau} = 1 + q(\alpha_{\tau} - 1) = 1 + 0.96(2.6 - 1) = 2.54.$$

Для d = 180 мм принимаем K₂ = 0,8.
 Определяем параметры ν_σ и ν_τ по формулам (27) и (28) настоящего стандарта:

$$v_{\sigma} = 0,211 - 0,000143 \cdot 820 = 0,09,$$

 $v_{\tau} = 1,5 \cdot 0,09 = 0,140.$

(Измененная редакция, Изм. № 1).

5.1. Определяем значение Θ_{rn} по п. 1.2.3.1 настоящего стандарта

$$\Theta_{\rm FJI} = \left(\frac{d_{\rm FJI}}{7,5}\right)^2 = \left(\frac{180}{7,5}\right)^2 = 576.$$

5.2. Вычисляем коэффициент $K_{d\tau}$ по формуле (12) настоящего стандарта

$$K_{d\tau} = 0.5(1 + \Theta_{\text{EX}}^{-\nu\sigma}) = 0.5(1 + 576^{-0.14}) = 0.71.$$

5.3. Определяем отношение $\frac{K_{\tau}}{K_{d-1}}$

$$\frac{K_{\tau}}{K_{d\tau}} = \frac{2,54}{0,71} = 3,58.$$

5.1-5.3. (Введены дополнительно, Изм. № 1).

6. Из черт. 3 (приложения 4) определяем коэффициент К_F для тонкой обточки (Rz = 6,3 мкм)

$$K_F = 0,89.$$

7. При отсутствии поверхностного упрочнения

$$K_{v} = 1.$$

- 8. При кручении K_A = 1 (см. п. 1.11.2).
- 9. Коэффициент К равен

$$K = (3,58 + \frac{1}{0,89} - 1) \cdot \frac{1}{1 \cdot 1} = 3,7.$$

(Измененная редакция, Изм. № 1).

- 10. Принимаем коэффициент K_1 для d = 180 мм равным 0,74 (п. 1.3.1).
- 11. Вычисляем предел выносливости материала заготовки по формуле (6) настоящего стандарта

$$\bar{\tau}_{1} = 0,74 \cdot 240 = 178 \text{ M}\Pi a$$

12. Вычисляем средний предел выносливости вала по формуле (4) настоящего стандарта

$$\bar{\bar{\tau}}_{-1,\pi} = \frac{178}{3,7} = 48,1.$$

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 7 Справочное

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СТАНДАРТА

Настоящий стандарт является унифицированным стандартом СССР и ГДР, разработанным по плану унификации стандартов двух стран.

В основу стандарта положены методы оценки пределов выносливости и других характеристик сопротивления усталости деталей, вошедшие в стандарты ГДР [1,5—7] и в справочные руководства СССР [2—4].

Излагаются методы оценки медианных значений пределов выносливости деталей $\overline{\overline{\sigma}}_{-l_{\pi}}$ и их коэффициентов вариации $V_{\sigma_{-l_{\pi}}}$, что позволяет определять значения пределов выносливости ($\sigma_{-l_{\pi}}$)_P, соответствующие заданной вероятности P %.

Наиболее точным методом определения коэффициентов *К*, отражающих суммарное влияние всех факторов на пределы выносливости, является экспериментальный метод (п. 1.2.1).

Для расчетного определения эффективных коэффициентов концентрации K_{σ} , K_{τ} и отношений $K_{\sigma}/K_{d\sigma}$, K_{τ}/K_{dt} предлагаются три метода, изложенные в порядке предпочтительного использования, зависящего от имеющейся исходной информации.

Первый метод, изложенный в п. 1.2.3.1, формулы (11), (12), основан на статистической теории подобия усталостного разрушения [4]. Эта теория получила апробирование во многих лабораториях СССР в течение последних 20 лет и успешно используется в ряде отраслей машиностроения. В случае экспериментального определения коэффициентов v_{σ} и v_{τ} путем испытаний на усталость образцов и моделей в статистическом аспекте ошибка в оценке отношений $K_{\sigma}/K_{d\sigma}$ не превышает 4 % с вероятностью 95 %. При испытаниях по стандартной методике ограниченного числа образцов каждого типоразмера для определения v ошибка не превышает 8 % с вероятностью 95 %.

С. 53 ГОСТ 25.504-82

При затруднениях с определением параметра L, а следовательно и критерия подобия Θ , входящего в формулы (11), (12), рекомендуется использовать приближенный метод Зибеля и Штилера, представленный формулами (13), (14), рекомендуемый стандартом ГДР TGL 19340. Для этой же цели допускается применение формул (18), (19), основанных на использовании коэффициентов чувствительности металла к концентрации напряжений q, рекомендуемых в американской справочной литературе /8/, а также в ряде руководств в СССР. Следует иметь в виду, что формулы (13)—(19) приводят к погрешностям существенно большим (до 20 %), чем формулы (11), (12). Формулы (29), (30) для коэффициентов влияния качества обработки поверхности $K_{F\sigma}$, $K_{F\tau}$, формула (20) для коэффициента влияния абсолютных размеров и формула (15) получены разработчиками стандарта ГДР Б. Хенелем, Г. Виртгеном и К. Шустером (Институт легких конструкций г. Дрезден) путем аппроксимации эмпирических графиков, приведенных в TGL 19340.

В разд. З стандарта изложен метод оценки коэффициентов вариации пределов выносливости $V_{\sigma_{-la}}$ вытекающий из теории подобия усталостного разрушения [4]. В связи с оценкой коэффициентов $V_{\sigma_{-la}}$ вводят два медианных значения предела выносливости гладких лабораторных образцов диаметром $d_0 = 7,5$ мм при изгибе с вращением σ_{-1} , $\overline{\sigma}_{-1}$, определенное на образцах металла одной плавки, и $\overline{\overline{\sigma}}_{-1}$, определенное на множестве всех плавок металла данной марки. В связи с этим коэффициент вариации $V_{\overline{\sigma}-1}$ (формулы 35—37) учитывает межплавочный разброс величин $\overline{\sigma}_{-1}$.

Известно, что с ростом размеров заготовки при термообработке снижаются механические свойства металла ($\sigma_{\rm B}$, $\sigma_{\rm T}$, σ_{-1}), определенные на лабораторных образцах малых размеров ([2], фиг. 41, стр. 129). В связи с этим вводят коэффициент K_1 (формула (3)), равный отношению пределов выносливости $\overline{\overline{\sigma}}_{-1}$ и $\overline{\overline{\sigma}}'_{-1}$, определенных на лабораторных образцах диаметром $d_0 = 7,5$ мм, изготовленных из заготовок размером d (таким же, как размер натурной детали) и размером 10—20 мм соответственно.

Теоретические коэффициенты концентрации α_{σ} , α_{τ} предлагается определять по номограммам и формулам Нейбера, по графикам, приведенным в работе [8], а также по приближенной формуле (25), заимствованной из TGL 19340. Последнюю формулу используют в случае необходимости вычислений α_{σ} на ЭВМ.

Величины v_{σ} , v_{τ} , являющиеся параметрами уравнения подобия усталостного разрушения [4], характеризуют чувствительность металла к концентрации напряжений и влиянию абсолютных размеров поперечного сечения. С ростом v_{σ} чувствительность к концентрации напряжений уменьшается, а влияние абсолютных размеров на величины пределов выносливости усиливается.

Значения v_{σ} , v_{τ} находят экспериментально по методике, выбирают 4—5 или более типоразмеров образцов с различными значениями критерия подобия усталостного разрушения Θ (так, чтобы диапазон изменения Θ был по возможности наибольшим). Находят пределы выносливости этих образцов, причем предпочтительно методом «лестницы» или «пробит»-методом. По найденным значениям строят зависимость 1g (ξ —1) от 1g Θ , соответствующую уравнению подобия [4].

$$lg (\xi - 1) = -v_{\sigma} \cdot lg \Theta,$$
(1)
$$\xi = \frac{\alpha_{\sigma} \cdot \sigma_{-1\pi}}{0.5\overline{\sigma}_{-1}}.$$

где

Значение $\overline{\sigma}_{-1}$ находят путем предварительного построения зависимости $\sigma_{max} = \alpha_{\sigma} \cdot \sigma_{-1\beta}$ от lg Θ и ее осреднения. По зависимости (1), найденной методом наименьших квадратов, определяют значение ν_{σ} .

В случае невозможности проведения экспериментов значения v_{σ} и v_{τ} определяют по корреляционным зависимостям (27) и (28).

Расчетные характеристики для оценки долговечности при малоцикловом нагружении определяют применительно к широко используемому подходу, основывающемуся на учете местных циклических деформаций в конструкциях. Расчет выполняют с привлечением деформационно-кинетических критериев малоцикловой прочности, трактующих достижение предельного состояния в виде критических величин квазистатических и усталостных повреждений и их сумм в линейной форме. Расчет ведут в деформациях (циклических упругопластических и односторонне накопленных).

Учитывают кинетику односторонне накопленных и циклических деформаций в процессе нагружения в максимально напряженных зонах конструкции, а также деформационную способность материала при статическом (квазистатическом) и малоцикловом нагружениях. Первая характеризуется располагаемой пластичностью, вторая — кривой малоцикловой усталости конструкционного материала.

ГОСТ 25.504—82 С. 54

Изменяющиеся от цикла к циклу диаграммы деформирования используют в форме обобщенной диаграммы, отражающей процессы циклического упрочнения, разупрочнения и стабилизации. Указанная обобщенная диаграмма вошла в практику расчетов при малоцикловом нагружении.

Задачу о напряженно-деформированном состоянии элементов конструкций решают расчетным и экспериментальными методами в циклической упругопластической постановке.

Названные подходы систематически изложены в ряде изданий [3, 9—11].

БИБЛИОГРАФИЯ

- [1] DDR-Standard TGL 19340, Blatt 1 bis 4 (2 Entwurf, Juli 1974) Maschinenbauteile, Dauerschwingfestigkeit
- [2] Серенсен С.В., Когаев В.П., Шнейдерович Р.М. Несущая способность и расчеты на прочность деталей машин. М., Машгиз, 1963, с. 451
- [3] Серенсен С.В., Когаев В.П., Шнейдерович Р.М. Несущая способность и расчеты на прочность деталей машин. М., «Машиностроение», 1975, с. 488
- [4] Когаев В.П. Расчеты на прочность при напряжениях переменных во времени. М., «Машиностроение», 1977
- [5] Hänel B., Wirthgen G. Neufassung des DDR Standards TGL 19330 «Schwingfestigkeit, Begriffe und Zeichen». IfL-Mitt, Dresden, 18 (1979) 5, s. 178–191
- [6] C. Schuster und C. Wirthgen. Aufbau und Anwendung der DDR-Standards TGL 19340 (Neufassung) «Maschinenbauteile, Dauerschwingfestig-keit», IfL-Mitt., Dresden, 14 (1975) Heft 1/2, s. 3-29
- [7] B/Hanel und G. Wirthgen. Zum DDR-Standards TGL 36766 «Schwigfestigkeit, Ermüdungsprüfung von Werkstoffproben», IfL-Mitt., Dresden, 1979, 5, s. 211-215
- [8] Петерсон Р.Е. Концентрация напряжений. М., «Мир», 1977, с. 302
- [9] Москвитин В.В. Пластичность при переменных нагружениях. Изд. Моск. университета, 1965, с. 263
- [10] Гусенков А.П. Прочность при изотермическом и неизотермическом малоцикловом нагружении. М., «Наука», 1979, с. 295
- [11] Махутов Н.А. Деформационные критерии разрушения и расчет элементов конструкций на прочность. М., «Машиностроение», 1981, с. 272

С. 55 ГОСТ 25.504-82

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН Академией наук СССР, Государственным комитстом СССР по стандартам, Министерством высшего и среднего специального образования СССР, Министерством тракторного и сельскохозяйственного машиностроения
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ ПОСТАНОВЛЕНИЕМ Государственного комитета СССР по стандартам от 18.05.82 № 1972
- 3. Стандарт унифицирован со стандартами ГДР TGL 19340/03 и TGL 19340/04

4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, приложения
ГОСТ 25.502—79	5.4.1, 5.6.1, приложение 1
ГОСТ 1497—84	5.4.1, 5.4.5, 5.5.1
ГОСТ 23207—78	Вводная часть

- 6. Ограничение срока действия снято по протоколу № 3—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 7. ИЗДАНИЕ с Изменением № 1, утвержденным в декабре 1988 г. (ИУС 4-89)