БРОНЗЫ ЖАРОПРОЧНЫЕ

Методы анализа

Издание официальное

Москва $\begin{tabular}{ll} MOCKBA \\ MIK & M3ДАТЕЛЬСТВО СТАНДАРТОВ \\ 2002 \\ \end{tabular}$

ОТ ИЗДАТЕЛЬСТВА

Сборник «Бронзы жаропрочные. Методы анализа» содержит стандарты, утвержденные до 1 марта 2002 г. В стандарты внесены все изменения, принятые до указанного срока.

Текущая информация о вновь утвержденных и пересмотренных стандартах, а также о принятых к ним изменениях публикуется в выпускаемом ежемесячно информационном указателе «Государственные стандарты».

межгосударственный стандарт

БРОНЗЫ ЖАРОПРОЧНЫЕ

Метод определения меди

ГОСТ 23859.1—79

Bronze fire-resistance.

Method for the determination of copper

ОКСТУ 1709

Постановлением Государственного комитета СССР по стандартам от 16 октября 1979 г. № 3937 срок введения установлен

c 01.01.81

Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)

Настоящий стандарт устанавливает гравиметрический электролитический метод определения меди в жаропрочных медных сплавах.

Метод основан на выделении меди электролизом при силе тока 1,5—2,5 А, взвешивании выделившегося на катоде осадка меди и определении оставшейся в электролите меди методами атомной абсорбции в пламени ацетилен-воздух при длине волны 324,7 нм и фотометрическим с купризоном.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 25086—87 с дополнением: за результат анализа принимают среднее арифметическое результатов трех (двух) параллельных определений.

(Измененная редакция, Изм. № 2).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Электролизная установка с источником питания постоянного тока.

Платиновые электроды по ГОСТ 6563—75.

Шкаф сушильный.

Кислота азотная по ГОСТ 4461—77, разбавленная 1:1 и 1:100.

Кислота серная по ГОСТ 4204—77 и разбавленная 1:1 и 1:4.

Кислота фтористоводородная по ГОСТ 10484—78.

Спирт этиловый ректификованный по ГОСТ 18300-87.

Фотоэлектроколориметр или спектрофотометр.

Атомно-абсорбционный спектрометр с лампой с полым катодом на медь.

Кислота лимонная по ГОСТ 3652—69.

Аммиак водный по ГОСТ 3760—79 и разбавленный 1:4.

Аммоний лимоннокислый, раствор: 150 г лимонной кислоты растворяют в 400 см³ воды, добавляют при перемешивании 100 см³ концентрированного аммиака, охлаждают, добавляют еще 100 см³ аммиака, охлаждают и доливают водой до 1000 см³.

Био-циклогексанон-оксалил-дигидразон (купризон), раствор: 2,5 г купризона растворяют при перемешивании в 900 см³ воды при температуре 60—70 °C. После охлаждения раствор фильтруют в темный стеклянный сосуд, доливают водой до 1000 см³. Раствор годен 10 сут.

Медь по ГОСТ 859—2001 с массовой долей меди не менее 99.9 %.

Издание официальное

Перепечатка воспрещена

*

Издание с Изменениями № 1,2, утвержденными в июне 1985 г., марте 1990 г. (ИУС 9—85, 7—90)

Стандартные растворы меди

Раствор А: 0,5 г меди растворяют в 10 см³ азотной кислоты (1:1), удаляют оксиды азота кипячением, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

 1 см^3 раствора A содержит 0,001 г меди.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

 1 см^3 раствора Б содержит 0,0001 г меди.

(Измененная редакция, Изм. № 1, 2).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Для бронз, не содержащих хрома

Навеску бронзы массой 1 г помещают в стакан вместимостью 250 см³, добавляют 15 см³ азотной кислоты, разбавленной 1:1, накрывают часовым стеклом и растворяют при нагревании.

После растворения сплава и удаления окислов азота кипячением, стекло и стенки стакана ополаскивают водой и раствор разбавляют водой до 150 см³. Добавляют 7 см серной кислоты, разбавленной 1:4, и выделяют медь электролизом. Для этого в раствор погружают взвешеные платиновые электроды, стакан с электролитом накрывают часовым стеклом или специальным органическим стеклом с прорезями для электродов и мешалки и проводят электролиз при перемешивании при силе тока 1,5—2,5 A.

После обесцвечивания раствора стенки стакана, стекло и выступающие части электродов ополаскивают водой, добавляют около 20 см^3 воды и продолжают электролиз еще 10-15 мин.

Если на свежепогруженной части катода не выделяется осадок, электролиз считается законченным. В противном случае электролиз ведут еще несколько минут и вновь контролируют полноту выделения меди.

После окончания электролиза, не выключая тока, быстро удаляют стакан с электролитом и ополаскивают катод, погружая поочередно в три стакана с водой, затем с этиловым спиртом. Катод высушивают в сушильном шкафу при 105 °C до постоянной массы, охлаждают и взвешивают.

Одна порция спирта (200 см³) может быть использована для промывки не более 20 электродов. (Измененная редакция, Изм. № 1, 2).

3.2. Для бронз, содержащих хром

Навеску бронзы массой 1 г помещают в стакан вместимостью 150—250 см³, добавляют 15 см³ азотной кислоты, разбавленной 1:1, накрывают часовым стеклом и растворяют при нагревании.

После растворения навески и удаления окислов азота кипячением, стекло и стенки стакана ополаскивают водой и раствор разбавляют водой до 100 см³. Раствор оставляют на 10 мин в теплом месте и фильтруют через плотный фильтр, уплотненный фильтробумажной массой, в стакан вместимостью 250 см³. Фильтр промывают 7—8 раз горячей азотной кислотой, разбавленной 1:100.

K фильтрату добавляют 7 см³ серной кислоты, разбавленной 1:4, и выделяют медь электролизом, как указано в п. 3.1.

3.3. Для бронз, содержащих хром и кремний

Навеску бронзы массой 1 г помещают в платиновую чашку,приливают 10 см³ азотной кислоты, разбавленной 1:1,2—3 см³ фтористоводородной кислоты и накрывают крышкой из фторопласта или платины. После растворения навески раствор упаривают до небольшого объема. Затем охиждают и осторожно приливают 5 см³ серной кислоты, разбавленной 1:1, и упаривают раствор до начала выделения белого дыма серной кислоты. Чашку охлаждают, растворяют соли в 30—40 см³ горячей воды при нагревании, переносят раствор в стакан вместимостью 250—300 см³, приливают 10 см³ азотной кислоты, разбавленной 1:1, кипятят до удаления окислов азота, доливают водой до 150 см³ и определяют медь, как указано в п. 3.1.

3.2,3.3. (Измененная редакция, Изм. № 1).

3.4. Определение остаточной меди в электролите

Электролит после отделения меди выпаривают до объема 80 см³, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

- 3.4.1. Определение меди методом атомно-абсорбционной спектрометрии
- 3.4.1.1. Измеряют атомную абсорбцию меди в пламени ацетилен-воздух при длине волны 324,7 нм параллельно с растворами для построения градуировочного графика.

3.4.1.2 Построение градуировочного графика

В шесть из семи мерных колб вместимостью по 100 см^3 помещают 0.5; 1.0; 2.0; 3.0; 4.0 и 5.0 см³ стандартного раствора Б. Во все колбы добавляют по 5 см^3 азотной (1:1) и серной (1:1) кислот, доливают до метки водой и измеряют атомную абсорбцию меди, как указано в п. 3.4.1.1. По полученным данным строят градуировочный график.

3.4.2. Определение меди фотометрическим методом с купризоном

3.4.2.1. Аликвотную часть раствора 20 см³ помещают в мерную колбу вместимостью 100 см³, добавляют 10 см³ раствора лимоннокислого аммония и раствор аммиака (1:4) до слабощелочной реакции, затем добавляют 2 см³ раствора аммиака (1:4), 10 см³ раствора купризона, немедленно доливают до метки водой и перемешивают. рН полученного раствора должен быть 8,5—9,0 по индикаторной бумаге. Через 5 мин, но не позднее 30 мин, измеряют оптическую плотность раствора на фотоэлектроколориметре с оранжевым светофильтром в кювете с толщиной поглощающего слоя 3 см или на спектрофотометре при 600 нм в кювете с толщиной поглощяющего слоя 1 см. Раствором сравнения служит раствор контрольного опыта.

3.4.2.2. Построение градуировочного графика

В шесть из семи мерных колб вместимостью по 100 см³ помещают 0,5; 0,75; 1,0; 1,5; 2,0 и 2,5 см³ стандартного раствора Б. Во все колбы добавляют по 5 см³ азотной кислоты (1:1), по 10 см³ раствора лимоннокислого аммония и далее анализ проводят, как указано в п. 3.4.2.1. Раствором сравнения служит раствор, не содержащий медь. По полученным данным строят градуировочный график.

3.4—3.4.2.2. (Введены дополнительно, Изм. № 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю меди (X) при определении оставшейся в электролите меди методом атомно-абсорбционной спектрометрии в процентах вычисляют по формуле

$$X = \frac{(m_2 - m_1) \cdot 100}{m} + \frac{c \cdot V \cdot 100}{m},$$

где m_1 — масса катода, г;

 m_2 — масса катода с выделившейся медью, г;

 \bar{c} — концентрация меди, найденная по градуировочному графику, г/см³;

V— объем раствора электролита, см³;

m — масса навески пробы, г.

4.2. Массовую долю меди (X_1) при определении оставшейся в электролите меди фотометрическим методом в процентах вычислят по формуле

$$X_1 = \frac{(m_2 - m_1) \cdot 100}{m} + \frac{m_3 \cdot V \cdot 100}{m \cdot V_1},$$

где m_1 — масса катода, г;

 m_2 — масса катода с выделившейся медью, г;

 m_3 — масса меди, найденная по градуировочному графику, г;

m — масса навески пробы, Γ ;

V— объем раствора электролита, см³;

 V_1 — объем аликвотной части раствора, см³.

- 4.3. Расхождения результатов трех параллельных определений не должны превышать значения допускаемых расхождений d (d показатель сходимости), равного 0,15 %.
- 4.4. Расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости) не должны превышать 0.22~%.
- 4.5. Контроль точности результатов анализа проводят по Государственным стандартным образцам жаропрочных (хромистых) бронз в соответствии с ГОСТ 25086—87.

Разд. 4. (Измененная редакция, Изм. № 2).