

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РУДЫ ЖЕЛЕЗНЫЕ И КОНЦЕНТРАТЫ

МЕТОД ОПРЕДЕЛЕНИЯ ВНЕШНЕЙ УДЕЛЬНОЙ ПОВЕРХНОСТИ

ГОСТ 21043-87 (СТ СЭВ 5499-86)

Издание официальное

РУДЫ ЖЕЛЕЗНЫЕ И КОНЦЕНТРАТЫ

Метод определения внешней удельной поверхности

Iron ores and concentrates.

Method for determination
of external specific surface

ГОСТ 21043—87 [СТ СЭВ 5499—86]

ОКСТУ 0709

Срок действия <u>с 01.01.88</u> до 01.01.93

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на железные руды и концентраты, бентонитовые глины и известняки, приготовленные для производства агломерата и окатыши (далее — концентраты) и устанавливает метод определения внешней удельной поверхности на аппарате АДП (ПСХ) или аппарате Блейна.

Внешняя удельная поверхность — суммарная поверхность частиц в единице массы материала без учета поверхности закрытых

и открытых пор.

Метод заключается в определении зависимости времени прохождения определенного объема воздуха через слой навески ее поверхности с применением анализатора дисперсности.

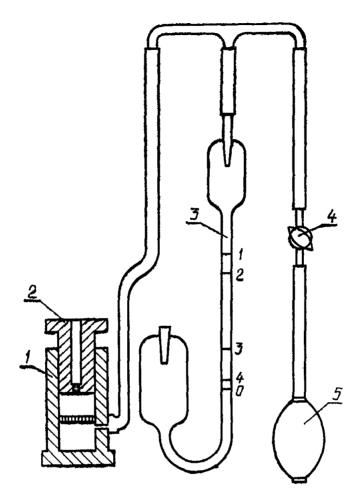
При возникновении разногласий в оценке качества железных руд и концентратов по показателю внешней удельной поверхно-

сти определение проводят на аппарате АДП (ПСХ).

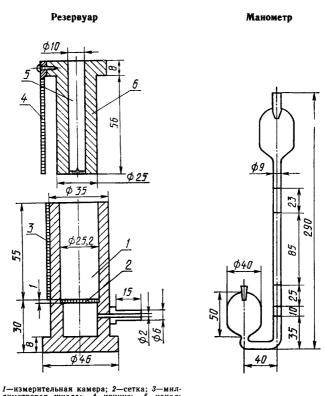
1. ОТБОР ПРОБ

1.1. Отбор проб — по ГОСТ 26136—84.

2. МЕТОД ОПРЕДЕЛЕНИЯ ВНЕШНЕЙ УДЕЛЬНОЙ ПОВЕРХНОСТИ С ПРИМЕНЕНИЕМ АППАРАТА АДП (ПСХ)


2.1. Средства анализа

2.1.1. Аппарат (черт. 1), состоящий из следующих элементов:
1) цилиндрического резервуара (черт. 2), с сеткой. Сетка изготовлена из нержавеющего металла и имеет около 100 равно-


Издание официальное ИЗМ N1 (UVC 8-89) Перепечатка воспрещена

© Издательство стандартов, 1987

Схема аппарата АДП

1-резервуар; 2-поршень; 3-манометр; 4-кран; 5-резиновая груша
Черт. 1

лиметровая шкала; 4—нониус; 5—канал; 6—поршень Черт. 2 Черт. 3

мерно расположенных отверстий диаметром 1 мм. Цилиндр снабжен поршнем, предназначенным для уплотнения пробы в измерительной камере. В теле поршня просверлен канал и пять отверстий диаметром 1 мм для прохождения воздуха;

- 2) манометра (черт. 3), состоящего из двух резервуаров, соединенных стеклянной трубкой. На трубке нанесено пять меток. Манометр соединен с резервуаром, а также посредством крана с резиновой грушей для создания разрежения.
 - 2.1.2. Секундомер с погрешностью измерения не более ± 0.1 с.
- 2.1.3. Кружок фильтровальной бумаги диаметром, соответствующим внутреннему диаметру измерительной камеры.

2.1.4. Стандартный образец концентрата с известной плотностью и удельной внешней поверхностью около 1800 см³/г.

2.1.5. Весы лабораторные с погрешностью взвешивания не бо-

лее 0,01 г.

- 2.1.6. Термометр для определения температуры воздуха в помещении.
- $2.1.7.~\mathrm{III}$ каф сушильный, обеспечивающий устойчивую температуру нагрева $(105\pm5)^{\circ}\mathrm{C}.$
 - 2.2. Подготовка к испытанию
- 2.2.1. Из объединенной пробы готовят лабораторную пробу массой 260 г.

Пробу высушивают до постоянной массы при температуре

(105±5)°C.

Тонкоизмельченные материалы, склонные к слипанию и образованию комков, после сушки разминают резиновым пестиком. Намагниченные концентраты размагничивают.

Из высушенной пробы выделяют две навески для определения

истинной плотности по ГОСТ 25732-83.

- 2.2.2. Проверяют нуль шкалы и нониуса. Для этого в испытательную камеру на сетку помещают два кружка фильтровальной бумаги и после полного введения поршня проверяют совпадение нулевых отметок нониуса и миллиметровой шкалы. В противном случае вносят корректировку при определении высоты слоя навески концентрата во время испытаний. Нуль шкалы и нониуса проверяют перед каждой серией определений.
- 2.2.3. Проверяют герметичность аппарата. Для этого нижний резервуар манометра наполняют манометрической жидкостью до уровня нижней отметки 0 на трубке. После извлечения поршня резервуар плотно закрывают резиновой пробкой, открывают кран и с помощью груши создают в аппарате разрежение. Когда уровень жидкости в трубке достигнет уровня верхней отметки 1, кран закрывают. Аппарат считают герметичным, если уровень жидкости в трубке не изменится в течение 10 мин. Герметичность аппарата проверяют перед каждой серией определений.
 - 2.2.4. Тарировка аппарата
- 2.2.4.1. Из пробы стандартного образца концентрата выделяют пять навесок, массу которых (m_1) вычисляют по формуле

$$m_1 = K \cdot n_W \rho_W$$

где K = 3,33;

 n_W — коэффициент, характеризующий насыпную массу и дисперсность стандартного образца концентрата. Если в сертификате не указано другое значение, принимают $n_W = 1$;

2.2.4.2. На сетку в испытательной камере помещают кружок фильтровальной бумаги, осторожно высыпают одну из навесок, выравнивая уровень концентрата легким постукиванием. Покрывают концентрат вторым кружком фильтровальной бумаги и спрессовывают навеску вручную поршнем сильным нажимом. Отсчитывают по шкале и нониусу высоту слоя навески (h) в камере с погрешностью до ± 0.1 мм.

2.2.4.3. Вынимают поршень, закрывают камеру плотно резиновой пробкой, открывают кран и с помощью груши создают разрежение в аппарате до тех пор, пока уровень жидкости в манометре не достигнет нижней кромки верхнего резервуара. В этот момент закрывают кран и после истечениия 1 мин вынимают пробку. Измеряют время прохождения уровня жидкости в манометре между отметками 1—2. Не извлекая навески, повторяют измерение, фиксируя на этот раз время падения жидкости в манометре между отметками 3—4. Измерение повторяют для всех пяти навесок. Во время выполнения определений измеряют температуру воздуха в помещении и поддерживают относительную влажность от 50 до 90%.

2.2.4.4. Постоянную аппарата (K) вычисляют отдельно для времени прохождения жидкости между отметками 1—2 или 3—4 по формуле

$$K = \frac{m_1 \cdot S_{\overline{W}}}{M_{W} \cdot V \overline{I_{W}}},$$

где M_W — коэффициент, зависящий от высоты слоя спрессованного концентрата и температуры воздуха в помещении (приложение 1);

 t_W — время падения уровня жидкости в манометре между отметками 1—2 или 3—4, с, (значение $\sqrt[4]{t}$ согласно приложению 2);

 S_W — внешняя удельная поверхность стандартного образца концентрата, см²/г.

За окончательный результат принимают среднее арифметическов результатов пяти измерений.

2.2.4.5. Тарировку аппарата проводят не реже одного раза в три месяца, а также в случае изменения условий испытаний (применение фильтровальной бумаги другой плотности, изменение типа жидкости в манометре или замене какой-нибудь детали аппарата).

2.3. Проведение испытания

2.3.1. Для определения внешней удельной поверхности концентрата, массу навески (m_2) в граммах вычисляют по формуле

$$m_2 = K \cdot n_{\kappa} \cdot \rho$$
,

где о — истинная плотность испытуемого концентрата, г/см³;

 n_{κ} — коэффициент, характеризующий насыпную массу и дисперсность пробы концентратов.

Для концентратов с внешней удельной поверхностью $S \ge 1500 \text{ cm}^2/\text{г}$ принимают $n_{\kappa} = 1$, для малораздробленных концентратов $S < 1500 \text{ cm}^2/\text{г}$ принимают $n_{\kappa} = 3$, а для концентратов с большей внутренней пористостью (навеска которых при $n_{\kappa} = 1$ не помещается в резервуаре) принимают $n_{\kappa} = 0.5$.

2.3.2. Определяют время прохождения воздуха через слой испытуемого концентрата. Для этого на сетке в измерительном резервуаре устанавливают кружок фильтровальной бумаги и помещают навеску, выравнивая уровень концентрата легким посту-

киванием по резервуару.

Прикрывают концентрат вторым кружком фильтровальной бумаги и спрессовывают навеску вручную, сильно и равномерно нажимая на поршень. Отсчитывают по шкале и нониусу высоту спрессованного слоя навески в камере с погрешностью не более ± 0.1 мм. Извлекают поршень, плотно закрывают резервуар резиновой пробкой, а затем открывают кран и с помощью груши создают разрежение в аппарате до тех пор, пока уровень жидости в манометре не достигнет нижней кромки верхнего резервуара.

В этот момент кран закрывают и через 1 мин вынимают пробку. Измеряют время падения уровня жидкости в манометре между отметками 1—2. При быстром падении жидкости между отметками 1—2 (менее 6 с) отсчет времени проводят между отметками 3—4. Одновременно измеряют температуру окружающего воздуха

во время определения.

2.4. Обработка результатов

2.4.1. Внешнюю удельную поверхность испытуемого концентрата (S_{κ}) , в см²/г, вычисляют по формуле

$$S_{\kappa} = K \cdot \sqrt{n_{\kappa}} \cdot \frac{M_{\kappa} \cdot \sqrt{t_{\kappa}}}{m_{2}},$$

где К — постоянная аппарата;

 n_{κ} — коэффициент, характеризующий насыпную массу и дисперсность пробы концентрата;

 M_{κ} — коэффициент, зависящий от высоты слоя спрессованного концентрата и температуры воздуха в помещении (см. приложение 1):

 t_{κ} — время падения мениска жидкости в манометре, измеренное соответственно между отметками 1-2 или 3-4, с:

 m_2 — масса навески, г.

Если $n \neq 1$, то при определении M_{κ} следует откорректировать высоту слоя материала (h) в сантиметрах по формуле

$$h=\frac{h_1}{h_\kappa},$$

где h_1 — измеренная высота слоя спрессованного концентрата, см. 2.4.2. За окончательный результат принимают среднее арифметическое результатов двух определений, если расхождение результатов между ними не превышает 2%. Если расхождение превышает эту величину, проводят третье определение и за окончательный результат принимают среднеарифметическое результатов двух наиболее близких по значению определений. Если третье определение не входит в диапазон 2% с одним из первых определений, испытание признает недействительным.

3. МЕТОД ОПРЕДЕЛЕНИЯ ВНЕШНЕЙ УДЕЛЬНОЙ ПОВЕРХНОСТИ С ПРИМЕНЕНИЕМ АППАРАТА БЛЕЙНА

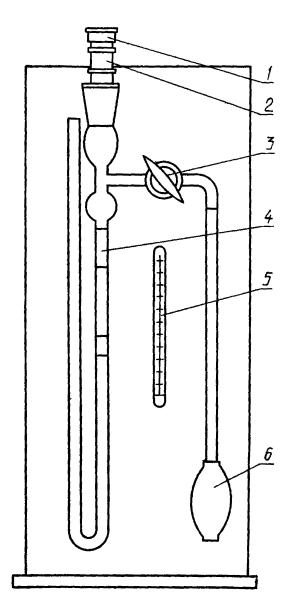
- 3.1. Средства испытания
- 3.1.1. Аппарат Блейна (черт. 4), состоящий из следующих элементов:
- 1) цилиндрического резервуара (черт. 5), имеющего измерительную камеру, изготовленную из коррозионностойкого материала. В нижней части камеры на выступе установлена сетка, изготовленная из нержавеющего металла толщиной (0,9±0,1) мм. Сетка имеет от 30 до 40 равномерно расположенных по всей площади отверстий диаметром 1 мм. Вдоль образующей цилиндрической поверхности поршня выполнена воздухоудаляющая канавка. Зазор между поршнем и стенкой измерительной камеры должен составлять 0,1 мм. Длина поршня должна быть такой, чтобы расстояние между верхней поверхностью сетки и торцевой поверхностью, находящегося в резервуаре поршня составляло (15±1,0) мм.

 \hat{U} -образного манометра (черт. 6), изготовленного из стеклянной трубки. Одно плечо манометра открыто, второе снабжено боковым отводом. На плечо с боковым отводом нанесены четыре метки. Манометр наполняют до уровня нижней метки трудно летучей жидкостью с контрастной окраской, не реагирующей с кон-

центратами, например, керосином.

3.1.2. Ртуть.

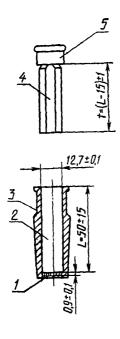
3.1.3. Гигрометр.

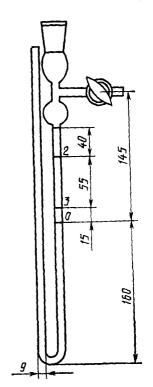

3.1.4. Аппаратура и материалы по пп. 2.1.2—2.1.7.

3.2. Подготовка к испытанию

3.2.1. Подготовка пробы — в соответствии с п. 2.2.1.

3.2.2. Аппарат проверяют на герметичность. Для этого наполняют манометр жидкостью, плотно закрывают измерительную


Схема аппарата Блейна


1-поршень; 2-резервуар; 3-кран; 4-манометр; 5-термометр; 6-резиновая груша

Черт. 4

Резервуар

U-образный манометр

1—сегка; 2—измерительная камера; 3—илиф для соединения с манометром; 4—воздухоотводящая канавка; 5—головка поршия

Черт. 5

Черт. 6

камеру резиновой пробкой при открытом кране и с помощью груши создают разрежение. Когда уровень жидкости в манометре достигнет верхней метки, кран закрывают. Если уровень жидкости в течение 10 мин не изменится, аппарат считают герметичным.

- 3.2.3. Тарировку аппарата проводят не реже одного раза в 3 месяца, а также при изменении условий испытания (применение кружков фильтровальной бумаги с другой плотностью, изменение вида жидкости в манометре и т. п.).
- 3.2.3.1. Для определения рабочего объема измерительной камеры на сетку накладывают два кружка фильтровальной бумаги и камеру полностью наполняют ртутью, одновременно встряхи-

вая резервуар легким постукиванием по столу. Уровень поверхности ртути выравнивают с помощью стеклянной плитки, выливают ртуть в предварительно взвешенную высокую посуду и определяют массу ртути. Затем из камеры удаляют один кружок фильтровальной бумаги, а на оставшийся насыпают навеску стандартного образца концентрата массой 4,6 г.

Содержимое камеры встряхивают легким постукиванием резервуара по столу. Затем сверху концентрата помещают предварительно извлеченный из резервуара кружок фильтровальной бумаги и слой концентрата спрессовывают поршнем так, чтобы его головка соприкасалась с кромкой камеры. После осторожного извлечения поршня оставшийся над слоем концентрата объем камеры полностью заполняют ртутью и выравнивают ее уровень с помощью стеклянной плитки. Затем ртуть выливают и взвешивают.

Рабочий объем измерительной камеры резервуара (V) в кубических сантиметрах вычисляют с погрешностью не более до $0.005~{\rm cm}^3$ по формуле

$$V=\frac{m_3-m_4}{\rho_{Hg}}$$
,

где m_3 — масса ртути, заполняющей камеру без навески концентрата, г;

та — масса ртути, заполняющей камеру сверх слоя навески стандарта образца концентрата, г;

 ϱ_{Hg} — плотность ртути при температуре измерения, г/см³, (приложение 3).

Рабочий объем камеры определяют три раза, причем для каждого определения готовят отдельную навеску стандартного образца концентрата.

Расхождение между результатами трех определений не долж-

но превышать 0,01 см³.

3.2.3.2. Для определения массы навески стандартного образца концентрата взвешивают 10 г концентрата и встряхивают его в течение 2 мин в закрытой посуде вместимостью не менее 20 см³, затем отбирают и взвешивают навеску (m_5) в граммах, рассчитанную по формуле

$$m_5 = \rho_W \cdot V(1 - e_W),$$

где ϱ_W — истинная плотность стандартного образца концентрата, г/см³;

 еw — пористость слоя стандартного образца концентрата, спрессованного до рабочего объема камеры, составляющая 0,5. 3.2.3.3. Для измерения времени прохождения воздуха через слой стандартного образца концентрата навеску массой, рассчитанной по формуле, переносят в измерительную камеру на сито

с кружком фильтровальной бумаги.

Содержимое камеры встряхивают легким постукиванием резервуара по столу, а затем сверху концентрата помещают кружок фильтровальной бумаги и спрессовывают навеску поршнем так, чтобы головка поршня соприкасалась с кромкой камеры. После извлечения поршня резервуар со стандартным образцом концентрата устанавливают на плечо манометра при открытом кране. Поднимают жидкость в манометре с помощью груши до самой высокой метки и сразу же закрывают кран. Проходящий через слой стандартного образца концентрата воздух выравнивает давление, и уровень жидкости в манометре понижается. В момент, когда уровень жидкости приближается ко второй сверху метке, включают секундомер и измеряют время падения жидкости на участке между второй и третьей метками. Одновременно измеряют температуру окружающей среды.

3.2.3.4. Постоянную аппарата (К) вычисляют по формуле

$$K = \frac{S_{\mathbf{W}} \cdot \rho_{\mathbf{W}} \cdot (1 - e_{\mathbf{W}}) \cdot V \overline{\eta_{p}}}{V e_{\mathbf{W}}^{3} - V t_{\mathbf{W}}},$$

где S_W — внешняя удельная поверхность стандартного образца концентрата, см 3 /г;

 ϱ_W — истинная плотность стандартного образца концентрата, г/см³;

 еw — пористость слоя стандартного образца концентрата, спрессованного до рабочего объема камеры, составляющая 0,5 (значение 1—еw согласно приложению 4);

 η_0 — вязкость воздуха при температуре измерения, $\Pi a \cdot c$ (см. приложение 3);

 t_W — время падения жидкости в манометре, с.

За окончательный результат принимают среднее арифметическое результатов трех определений, если расхождение между ними не превышает 1 %.

3.3. Проведение испытания

3.3.1. Часть лабораторной пробы концентрата помещают в посуду с крышкой вместимостью не менее 20 см 3 и встряхивают в течение 2 мин. От подготовленной таким образом пробы отбирают и взвешивают навеску массой (m_6) в граммах, рассчитанную по формуле

$$m_6 = \rho_{\kappa} \cdot V(1 - e_{\kappa}),$$

где ϱ_{κ} — истинная плотность испытуемого концентрата, г/см³;

- e_{κ} пористость слоя испытуемого концентрата спрессованного до рабочего объема резервуара, составляющая 0.5:
- V рабочий объем резервуара.

Если взвешенное количество концентрата окажется чрезмерным и его невозможно спрессовать в камере, отбирают меньшую навеску и для этой навески рассчитывают пористость (e) по формуле, см. п. 3.2.

3.3.2. Для измерения времени прохождения воздуха через слой навески концентрата переносят навеску концентрата в измерительную камеру на сетку с кружком фильтровальной бумаги, а

затем поступают как указано в п. 3.2.3.3.

3.4. Требования к обработке результатов испытания

3.4.1. Внешнюю удельную поверхность концентрата (S_{κ}) в квадратных сантиметрах на грамм вычисляют по формуле

$$S_{\kappa} = \frac{\kappa \cdot \sqrt{e^3} \cdot \sqrt{t_{\kappa}}}{\rho_{\kappa} (1 - e_{\kappa}) \sqrt{\eta_{\rho}}},$$

где η_{ρ} — вязкость воздуха при температуре проведения испытания, $\Pi a \cdot c$;

 t_{κ} — время падения жидкости в манометре, с.

Значение величины η_{ρ} приведено в приложении 2, а величин пористости e_{κ} , $(1-e_{\kappa})$ и $\sqrt{e_{\kappa}^{s}}$ — в приложении 3.

Значение величин времени падения жидкости в манометре в

секундах и значения $\sqrt[t]{t}$ приведены в приложении 4.

3.4.2. Окончательный результат определения принимают в соответствии с п. 2.4.2.

ПРИЛОЖЕНИЕ 1

ЗАВИСИМОСТЬ КОЭФФИЦИЕНТА M ОТ ВЫСОТЫ СЛОЯ СПРЕССОВАННОГО КОНЦЕНТРАТА И ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ, ПРИ КОТОРОЙ ПРОИЗВОДЯТ ИСПЫТАНИЕ

Таблица 1

								Таблі	ицаі
			I	оэффицио	ент М при	температ	ype, °C		
h, CM	11	13	15	17	19	21	23	25	30
0,80 0,81 0,82 0,83 0,84 0,85 0,86 0,87 0,90 0,91 0,92 0,93 1,00 1,03 1,04 1,05 1,06 1,10 1,11 1,13 1,14 1,15 1,16 1,17 1,18 1,20	65 73 81 89 97 104 111 119 127 135 143 151 159 168 176 184 192 201 209 218 227 235 243 251 260 269 277 286 299 308 317 326 337 343 358 366 375 384 392	65 73 81 89 97 104 111 119 127 135 143 151 159 168 176 184 192 201 209 218 227 235 243 251 268 276 285 299 307 316 326 333 341 349 357 365 374 383 391	65 73 81 89 97 104 111 119 127 135 143 151 159 168 176 184 192 201 209 218 226 234 242 250 267 275 284 292 298 306 315 324 332 348 356 364 373 382 390 390 390 390 390 390 390 390 390 390	65 73 81 89 97 104 111 119 127 135 143 151 159 168 176 184 192 201 209 218 226 234 242 250 266 275 283 291 305 314 323 331 331 339 347 353 363 372 389	64 72 80 88 96 104 111 118 127 135 143 151 159 167 175 183 192 200 208 217 225 233 241 249 265 274 282 290 296 304 313 322 330 338 346 351 388 388	64 72 80 88 95 103 110 118 126 134 142 150 158 166 174 183 191 199 208 216 224 234 248 248 265 273 281 289 295 303 312 321 321 321 321 321 327 337 345 353 361 379 387	63 71 80 88 95 103 110 118 126 134 142 150 158 165 173 183 191 207 216 224 232 240 248 248 264 273 281 289 295 303 311 320 328 336 344 352 360 369 377 386	63 71 79 87 94 102 109 117 125 133 141 149 157 165 173 182 190 207 215 223 231 239 247 247 263 272 288 294 302 319 327 335 343 359 368 376 385	62 70 78 86 93 101 108 116 124 132 140 148 156 164 172 181 189 198 206 214 221 229 237 245 261 270 278 286 292 300 308 317 325 340 348 356 365 373 382

Продолжение табл. 1

								жение т	10A. I
			1	Қоэффици	ент М при	температ	ype, °C		
<i>h</i> , см									
	11	13	15	17	19	21	2 3	25	30
				<u> </u>	<u> </u>		<u> </u>		
1,21	400	399	398	397	396	394	393	392	389
1,22	408	407	406	405	404	402	401	400	397
1,23	417	416	415	413	412	410	409	400 408	405
1,22 1,23 1,24 1,25 1,26	424	423	422 429	421 428 436	420	419	418	416	413
1,25	431	430	429	428	427	425	424	493	420 428
1,26	439	438	437	436	434	433	432	431	428
1,27	446	445	437 444 452 460	443	441	440	439	438	435 443
1,28 1,29	454	453	452	451	450 457	448	447	446	443
1,29	462 4 7 0	461	460	459	457	456	465	431 438 446 454	451
1,30	480	469	468 477	467	465	464	463	462 469 477	459
1,31 1,32	488	479 487	4//	475 483	473	472	471	469	466
1,32	496	487	485	483	481	479	478	477	451 459 466 474
1,33 1,34	504	503	493	491 499	489 497	487	486	485	481
1,35	511	510	493 501 508	1 499 E06	497	495	494	493	489 486
1 36	518	517	515	506 513	504	502	501	500	486
1,36 1,37	525	524	522	219	512 519	510 517	509	514	504
1,38	532	531	522 529	520 527	526	524	515 523	485 493 500 507 514 521	510 518
1,39	539	538	536	534	532	531	523 529	528	524
1,40	547	540	544	542	540	538	537	528 536 544 551 559	529
1,41	555	554	582	550	549	547	546	544	532 540
1.49	562	561	559	557	556	554	553	551	547
1.43	570	569	567	565	564	562	561	559	555
1,44	577	576	574	572 579	571	569	561 568	000	561
1,45	584	583	581	579	578	576	575	574	570
1,46	591	590	588	586	l 584 i	582	581	578	574
1,47 1,48	598	597	595 602	593	591	589	588	586	581
1,48	605	604	602	586 593 600 607	597	587	588 595	593	589
1,49	612	611	608 616	007	606	604	602	600	586
1,50	619 628	618	016	602	613	611	609	616	603
$\substack{1.51\\1.52}$	635	627	625	620	621	619	618	603	612
1,52	642	634 641	632	614 623 630 637 644	628 625	626 633	625	630	605
1,54	649	648	646	644	635 642	640	632 639	637	620
1,55	656	655	639 646 653	1 651	649	647	646	644	640
1,56	663	662	660	658 665 672	656	654	659	650	581 589 586 603 612 618 625 632 640 648
1,57	670	669	660 667 674	665	663	661	652 659 686 673	657	653
1,58	677	669 676	674	672	670	668	686	664	659
1,59	684	683	681	679	677	675	673	671	653 659 667
1,59 1,60	691	690	681 688	686	684	682	1 680	678	672
1,61	697	690 696	l 694	692	690	688	1 686	684	672 679
1.62	704	703	701	686 692 699	697	695	693	691	688
1,63 1,64	711	710	701 708	706 713	704	702	693 700	586 593 600 607 616 623 630 637 644 650 657 664 671 678 684 691 698 705 711	688 692 700 700 713 719
1,64	719	718	(15)	713	711	709	l 707	705	700
1,65	724	723	721	719	717	715	713	711	700
1,66	731	730	728	720	724	722 729	720 727	718	713
1,67	738 745	737 744	735 741	719 726 733 739	731 737	729 735	727 733	725 731	719 725
1,68 1,69	752	750	741 748	746	744	735 742	740	738	725 713
1,70	759	757	755	753	751	742 749	740	745	740
1,10	. 103			, ,,,,,	. 101	173	, ,,,,	ן טדיין	170

Продолжение табл. 1

			ŀ	(оэффици	ент М при	температ	ype, °C		иол. 1
<i>h</i> , см	11	13	15	17	19	21	23	25	30
1,71 1,72 1,73 1,74 1,75 1,77 1,78 1,81 1,82 1,88 1,88 1,88 1,89 1,91 1,93 1,93 1,94 1,99 2,05 10 2,15 2,25 2,65 2,75 2,95 2,95 2,95 2,95 2,95 2,95 2,95 2,9	767 773 780 785 791 798 805 812 818 825 831 837 843 849 855 861 867 873 885 892 905 911 917 923 930 936 942 949 982 1012 1041 1069 1098 1178 1178 1230 1259 1283 1305 1429 1451 1474	765 771 778 783 789 796 803 810 816 823 829 835 841 847 853 859 865 871 877 883 890 915 921 928 934 940 947 980 1010 1039 1067 1096 1121 1147 1176 1203 1228 1256 1280 1303 1354 1382 1426 1448 1471	762 769 775 781 787 794 801 808 814 827 833 839 845 857 863 869 875 881 888 895 901 907 913 919 926 932 938 945 975 1035 1063 1091 1117 1144 1172 1199 1224 1250 1376 1398 1421 1444 1467	760 767 773 779 785 799 806 812 819 825 831 837 843 849 855 861 867 873 879 886 893 905 911 917 924 930 936 942 972 1002 1031 1159 1087 1114 1141 1168 1195 1297 1394 1394 1417 1440 1463	758 765 771 777 783 790 796 804 810 817 823 835 841 847 852 858 864 871 876 883 891 902 909 914 921 927 933 939 969 999 1029 1056 1084 1111 1138 1164 1191 1217 1242 1268 1390 1413 1436 1459	756 763 769 775 781 788 794 802 808 815 821 827 833 839 845 861 869 873 880 888 892 900 901 918 924 930 936 936 1026 1053 1081 1187 1213 1236 1264 1290 1314 1336 1408 1432 1455	754 761 767 773 779 786 792 800 806 813 825 831 837 843 843 847 853 859 866 871 878 886 891 903 909 916 922 928 934 964 993 1050 1078 1105 1135 1135 1136 1136 1136 1136 1136 113	753 759 735 771 777 783 790 797 803 810 816 822 828 834 840 845 851 857 863 869 876 883 889 895 901 907 914 920 926 932 961 991 1021 1048 1075 1102 1129 1154 1181 1206 1231 1257 1283 1308 1354 1378 1401 1424 1447	748 754 760 766 771 778 785 792 797 805 811 816 823 829 836 840 845 857 863 870 877 884 890 895 901 925 925 985 1011 1039 1064 1092 1120 11246 1271 1296 1342 1364 1390 1411 1432

ЗНАЧЕНИЕ ВРЕМЕНИ ПАДЕНИЯ [t] ОТ УРОВНЯ ЖИДКОСТИ В МАНОМЕТРЕ МЕЖДУ ОТМЕТКАМИ 1—2 ИЛИ 3—4 И ЗНАЧЕНИЕ $\sqrt{-t}$ В СЕКУНДАХ

									T	абли	ца 2
t	\sqrt{t}	t	Vit	t	$V_{\overline{t}}$	t	$\left V_{\overline{t}}\right $	t	$ V_t $	t	$V_{\overline{t}}$
10,0 10,2 10,4 10,6 10,6 11,0 11,2 11,4 11,6 11,8 12,2 12,4 12,6 13,4 13,4 14,4 14,4 14,6 15,6 16,4 16,6 16,6 16,6 17,0 17,2 17,6 17,6 18,0 17,0 17,6 17,6 18,0 17,0 17,0 17,0 17,0 17,0 17,0 18,0 18,0 18,0 18,0 18,0 18,0 18,0 18	3,16 3,19 3,226 3,329 3,335 3,41 3,44 3,452 3,558 3,66 3,71 4,33 3,558 3,77 4,00 4,10 4,12 4,24 4,24 4,24 4,24 4,29 4,31	26,5,5,27,5,5,28,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	5,15 5,225 5,344 5,55 5,56 6,77 5,57 5,57 5,57 5,57 5,57	57,5 58,5 59,5 60,5 61,5 62,5 63,5 64,5 65,5 66,5 66,5 66,5 67,5 68,5 69,5 70,5 71,5 72,5 73,5 74,5 75,5 76,5 77,5 77,5 77,5 77,5 77,5 77	7,558 7,652 7,658 7,775 7,81 7,84 7,87 7,994 7,97 8,005 8,102 8,168 8,192 8,25 8,31 8,34 8,49 8,43 8,43 8,43 8,43 8,43 8,43 8,43 8,43	88 88,5 89,5 90,5 91,5 92,92,5 93,5 94,5 95,5 96,5 97,5 98,5 99,5 100 100,5 101 102 103 104 105 106 107 108 109 110 111 111 111 111 111 111	9,38 9,44 9,45 9,49 9,51 9,57 9,59 9,62 9,64 9,70 9,73 9,75 9,88 9,85 9,93 9,95 10,00 10,05 10,15 10,25 10,39 10,44 10,58 10,63 10,63 10,63 10,63 10,72 10,86	137 138 140 141 142 143 144 145 146 147 148 150 151 152 153 154 155 156 157 160 161 162 163 164 165 167 171 172 173 174 177 178 179 180	11,70 11,75 11,83 11,96 12,00 12,04 12,08 12,12 12,12 12,25 12,25 12,29 12,33 12,41 12,45 12,45 12,49 12,57 12,65 12,65 12,65 12,65 12,88 12,92 12,37 12,81 12,85 12,88 12,92 12,33 12,37 12,81 12,85 12,88 12,92 12,33 12,37 12,81 12,85 12,88 12,92 12,33 13,00 13,04 13,08 13,11 13,19 13,22 13,34 13,19 13,27 13,34 13,38 13,19 13,38 13,38 13,38 13,38 13,38 13,38	199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 229 220 221 222 223 224 225 226 227 228 229 231 232 231 232 234 235 236 237 238 239 240 241	14,11 14,17 14,21 14,25 14,26 14,33 14,35 14,49 14,46 14,49 14,56 14,73 14,76 14,80 14,80 14,87 14,90 14,93 14,97 15,00 15,31 15,17 15,20 15,31 15,17 15,26 15,30 15,36 15,40 15,43 15,46 15,46 15,46 15,46 15,46 15,56

Продолжение табл. 2

t	V_{t}	t	$V_{\overline{t}}$	t	$V_{\overline{t}}$	t	$ V_{\overline{t}} $	t	$V_{\overline{t}}$	t	$V_{\overline{t}}$
18,8 19,0 19,2 19,4 19,6 19,8 20,0 20,5 21,0 21,5 22,0 22,5 23,0 24,0 24,5 25,0 25,5	4,34 4,36 4,38 4,40 4,43 4,45 4,53 4,58 4,64 4,69 4,74 4,80 4,90 4,95 5,00 5,05	48 48,5 49,5 50,5 51,5 52,5 53,5 54,5 55,5 56,5	6,93 6,96 7,00 7,04 7,07 7,10 7,14 7,21 7,24 7,28 7,31 7,35 7,42 7,45 7,48 7,51	79 79,5 80,5 81,5 82,5 83,5 84,5 85,5 86,5 86,5 87,5	8,89 8,92 8,94 8,97 9,00 9,03 9,06 9,09 9,11 9,14 9,17 9,20 9,25 9,27 9,30 9,33 9,36	119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	10,91 10,95 11,00 11,05 11,09 11,14 11,18 11,22 11,27 11,31 11,36 11,40 11,45 11,49 11,53 11,58 11,58 11,58	181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	13,45 13,49 13,53 13,56 13,60 13,67 13,71 13,75 13,78 13,82 13,86 13,89 13,93 13,93 14,00 14,04 14,07	243 244 245 246 247 248 250 251 252 253 254 255 256 257 258 259 260	15,59 15,62 15,65 15,68 15,72 15,78 15,81 15,81 15,81 15,91 15,91 15,94 15,97 16,00 16,00 16,09 16,12

ПРИЛОЖЕНИЕ 3

зависимость фактической плотности ртути (ϱ_{Hg}), вязкости воздуха (η_{ϱ}) и ($\sqrt{\eta_{\varrho}}$) от температуры

Таблица 3

T, °C	Фактическая плотность ртути Р _Н д. г/см ³	Вязкость воздуха $\eta_{ ho}$, Па \cdot c	$\sqrt{\eta_{ ho}}$
16 18 20 22 24 26 28 30 32	13,56 13,55 13,55 13,54 13,54 13,53 13,53 13,53 13,52 13,52	0,00001788 0,00001798 0,00001808 0,00001818 0,00001828 0,00001837 0,00001847 0,00001857 0,00001867	0,004228 0,004240 0,004252 0,004264 0,004276 0,004286 0,0 298 0,004309 0,004321

ЗНАЧЕНИЕ ПОРИСТОСТИ (e) И ВЕЛИЧИН (1—e) И $\sqrt{e^3}$

Таблица 4

							1 4 0 2	тица 4
e	1 -e	$V = e^3$	e	1-e	$\sqrt{e^3}$	е	1-e	$\sqrt{e^3}$
0,395 0,396 0,397 0,398 0,399 0,400 0,401 0,402 0,403 0,404 0,405 0,406 0,407 0,408 0,409 0,411 0,413 0,414 0,415 0,416 0,417 0,418 0,470 0,471 0,472 0,473 0,473 0,473 0,475 0,476 0,477 0,478 0,479 0,481 0,482 0,483 0,488 0,488 0,489 0,490	0,605 0,604 0,603 0,602 0,601 0,600 0,599 0,598 0,597 0,596 0,595 0,591 0,593 0,592 0,591 0,588 0,587 0,588 0,587 0,588 0,587 0,588 0,587 0,588 0,587 0,588 0,587 0,529 0,529 0,529 0,529 0,529 0,529 0,521 0,522 0,521 0,521 0,511 0,511 0,511	0,538 0,539 0,540 0,541 0,542 0,543 0,544 0,545 0,546 0,546 0,546 0,547 0,550 0,551 0,552 0,553 0,555 0,555 0,555 0,555 0,605 0,605 0,607 0,606 0,610 0,611 0,612 0,613 0,616 0,619 0,621 0,622	0,420 0,421 0,422 0,423 0,424 0,425 0,426 0,427 0,428 0,430 0,431 0,432 0,433 0,434 0,435 0,436 0,437 0,436 0,439 0,440 0,441 0,442 0,443 0,449 0,495 0,499 0,505 0,506 0,501 0,502 0,503 0,504 0,505 0,506 0,505 0,506 0,507 0,508 0,509 0,511 0,512 0,513 0,515	0,580 0,579 0,578 0,577 0,576 0,575 0,574 0,573 0,572 0,571 0,570 0,568 0,566 0,566 0,566 0,566 0,566 0,565 0,558 0,557 0,558 0,557 0,558 0,557 0,558 0,559 0,503 0,502 0,501 0,503 0,502 0,501 0,503 0,499 0,498 0,497 0,498 0,498 0,497 0,488 0,487	0,561 0,562 0,563 0,564 0,565 0,566 0,567 0,568 0,569 0,571 0,571 0,572 0,573 0,578 0,578 0,578 0,578 0,578 0,578 0,582 0,627 0,627 0,627 0,632 0,632 0,633 0,633 0,634 0,635 0,637 0,638 0,637 0,638 0,639 0,641 0,642 0,642	0,445 0,446 0,447 0,448 0,450 0,451 0,452 0,453 0,454 0,455 0,456 0,457 0,458 0,459 0,460 0,461 0,462 0,463 0,464 0,465 0,466 0,467 0,468 0,520 0,521 0,522 0,523 0,524 0,525 0,526 0,527 0,528 0,527 0,528 0,529 0,530 0,531 0,534 0,535 0,536 0,537 0,538 0,538	0,555 0,555 0,555 0,553 0,555 0,555 0,556 0,549 0,548 0,546 0,543 0,542 0,541 0,543 0,533 0,533 0,533 0,535 0,534 0,479 0,478 0,477 0,478 0,477 0,478 0,477 0,478 0,477 0,478 0,477 0,478 0,477 0,479 0,469 0,469 0,465 0,462 0,462 0,463 0,462 0,463 0,462 0,463 0,462 0,463	0,583 0,584 0,585 0,585 0,586 0,587 0,588 0,599 0,590 0,591 0,592 0,593 0,594 0,595 0,596 0,597 0,598 0,599 0,600 0,601 0,602 0,603 0,604 0,647 0,647 0,648 0,649 0,655 0,652 0,653 0,654 0,655 0,655 0,655 0,655 0,656 0,657 0,658 0,659 0,660 0,661 0,661 0,663

Продолжение табл. 4

e	1 - -e	$\sqrt{e^3}$	е	1-e	$\sqrt{e^s}$	e	1-e	$\sqrt{e^s}$
0,491	0,509	0,622	0,516	0,484	0,643	0,541	0,459	0,664
0,492	0,508	0,623	0,517	0,483	0,644	0,542	0,458	0,665
0,493	0,507	0,624	0,518	0,482	0,645	0,543	0,457	0,666
0,494	0,506	0,625	0,519	0,481	0,646	0,544	0,546	0,666

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

ИСПОЛНИТЕЛИ

- В. А. Арсентьев; В. П. Маковей; Н. Н. Петрик; В. Д. Доценко; Т. Е. Павленок
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28 апреля 1987 г. № 1443
- 3. Срок первой проверки 1992 г. Периодичность проверки 5 лет.
- 4. Стандарт полностью соответствует СТ СЭВ 5499-86
- 5. B3AMEH FOCT 21043-81
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ГОСТ 25732—83	2.2.1
ГОСТ 26136—84	1.1

Изменение № 1 ГОСТ 21043—87 Руды железные и концентраты. Метод определения внешней удельной поверхности

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 24.05.89 № 1308

Дата введения 01.01.90

Пункт 2.1.3 после слова «бумаги» дополнить словами: «марки Φ С по ГОСТ 12026-76».

Пункт 2.1.4 дополнить абзацем: «При отсутствии стандартного образца концентрата допускается использование стандартного образца других материалов (например кварцевого песка)».

(Продолжение см. с. 38)

Пункт 2.1.7 дополнить значением: (150 ± 5) °C.

Пункт 2.2.1 дополнить абзацем (после второго): «Руды, не содержащие летучих примесей, допускается сущить при температуре (150 ± 5) °C»;

третий абзац. Исключить слова: «Намагниченные концентраты размагничи-

вают»;

четвертый абзац. Заменить ссылку: ГОСТ 25732—83 на ГОСТ 25732—88. Пункт 2.2.4.3. Первый абзац. Исключить слова: «закрывают камеру плотно резиновой пробкой».

Пункт 2.3.2 Второй абзац. Исключить слова: «плотно закрывают резервуар

резиновой пробкой»;

третий абзац. Исключить слова: «и через 1 мин вынимают пробку».

Пункт 2.4.1. Второй абзац. Заменить обозначение: n на n_K . Пункт 2.4.2. Заменить значение: 2 % на 70 см²/г (2 раза).

(ИУС № 8 1989 г.)

Редактор А. А. Зимовнова Технический редактор В. Н. Прусакова Корректор А. В. Прокофьева

Сдано в наб. 25.05.87 Подп. в печ. 10.08.87 1,5 усл. п. л. 1,5 усл. кр.-отт. 1,24 уч.-изд. л. Цена 5 кол.