

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДИОДЫ ПОЛУПРОВОДНИКОВЫЕ СВЧ ОГРАНИЧИТЕЛЬНЫЕ

МЕТОД ИЗМЕРЕНИЯ ПОРОГОВОЙ И ПРОСАЧИВАНИРА РОЙНОСТЕЙ ИЗТОРИИ В ТОРОГОВИТЬ В ТОРОГОВ

FOCT 19656.16-86

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ДИОДЫ ПОЛУПРОВОДНИКОВЫЕ СВЧ ОГРАНИЧИТЕЛЬНЫЕ

Метод измерения пороговой и просачивающейся мощностей

Semiconductor microwave limiter diodes. Measurement method of break-down and leakage powers FOCT 19656.16—86

OKIT 62 1800

Постановлением Государственного комитета СССР по стандартам от 24 июня 1986 г. № 1758 срок действия установлен

c 01.07.87

Несоблюдение стандарта преследуется по закону

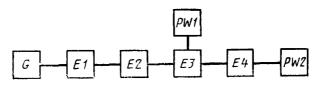
Настоящий стандарт распространяется на полупроводниковые ограничительные СВЧ диоды и устанавливает метод измерения пороговой $(P_{\rm nop})$ и просачивающейся $(P_{\rm npoc})$ мощностей в непрерывном режиме.

Общие требования при измерении — по ГОСТ 19656.0—74.

Пояснения терминов, применяемых в настоящем стандарте, приведены в справочном приложении 1.

1. ПРИНЦИПЫ И РЕЖИМ ИЗМЕРЕНИЯ

1.1. Пороговую мощность определяют измерением уровня СВЧ мощности, подводимой на вход диодной камеры с ограничительным диодом, при котором ослабление, создаваемое диодной камерой, достигает заданного значения.


1.2. Просачивающуюся мощность определяют измерением уровня СВЧ мощности на выходе диодной камеры с ограничительным

диодом при заданном значении входной мощности.

1.3. Значения частоты измерения и уровня СВЧ мощности на входе диодной камеры с ограничительным диодом (при измерении $P_{\rm проc}$) следует устанавливать в стандартах или технических условиях (ТУ) на диоды конкретных типов.

2. АППАРАТУРА

2.1. Измерения следует проводить на установке, электрическая структурная схема которой приведена на чертеже.

G — генератор СВЧ мощности; E1 — вентиль; E2 — переменный аттенюатор; E3 — ответвитель; E4 — диодная камера с ограничительным диодом; PW1, PW2 — измерители мощности

- 2.2. Қоэффициент стоячей волны по напряжению входа и выхода аттенюатора E2 не должен превышать значения 1,15 в диапазоне частот, используемых при измерении.
- 2.3. Қоэффициент стоячей волны по напряжению входа и выхода ответвителя *ЕЗ* не должен превышать значения 1,2 в диапазоне частот, используемых при измерении.

Отклонение переходного ослабления ответвителя E3 от номинального значения в диапазоне частот измерений не должно выходить за пределы $\pm 5\%$.

Направленность ответвителя ЕЗ должна быть не менее 30 дБ.

2.4. Диодная камера *Е4* должна быть проходного типа и обеспечивать на частоте измерения потери с эквивалентами короткого замыкания и холостого хода в пределах значений, указанных в таблице.

Диапазон частот измерения, ГГц	Потери диодной камеры с эквивалентом	
	холостого хода $L_{X \ X}$, дБ, не более	короткого замыкания $L_{\mathbf{K.3}}$, д \mathbf{S} , не более
0,3-3,0	0,5	20,0
3,0-37,0	0,7	18,0
37,5—100,0	1,0	15,0

Эквивалент короткого замыкания — металлическая деталь, соответствующая по электрическим параметрам измеряемому диоду в режиме высокого уровня мощности (ВУМ).

Эквивалент холостого хода — диэлектрическая деталь, соответствующая по электрическим параметрам измеряемому диоду в режиме низкого уровня мощности (НУМ).

2.5. Рабочий диапазон измерителя мощности РW2 должен соответствовать полосе частот спектра выходного сигнала $P_{\mathrm{вых}}$, значения которой следует устанавливать в стандартах или ТУ на диоды конкретных типов.

3. ПОДГОТОВКА К ПРОВЕДЕНИЮ ИЗМЕРЕНИЙ

3.1. При помощи генератора G и аттенюатора E2 устанавливают уровень мощности в режиме НУМ, требуемый при настройке диодной камеры с эквивалентами короткого замыкания и холостого хода.

Значение мощности, требуемое при настройке, следует устанавливать в стандартах или ТУ на диоды конкретных типов.

- 3.2. Попеременно устанавливая в диодную камеру Е4 эквиваленты короткого замыкания и холостого хода и контролируя при этом мощность на выходе диодной камеры, настраивают ее на частоте измерения в режим, при котором потери $L_{\kappa 3}$ и $L_{\mathbf{x}.\mathbf{x}}$ находятся в пределах значений, указанных в таблице.
 - 3.3. Значения $L_{\kappa,s}$ и $L_{\kappa,x}$ в децибелах определяют по формулам:

$$L_{\text{K,3}} = 10 \text{ lg} \frac{P_{\text{BX}}}{P_{\text{BMX,K,3}}} L_{\text{X,X}} = 10 \text{ lg} \frac{P_{\text{BX}}}{P_{\text{BMX,X,X}}},$$

- где $P_{\rm Bx}$ установленное значение мощности на входе диодной жамеры, Вт; $P_{\text{вых. к.з}}$ — измеренное значение мощности на выходе настроен
 - ной диодной жамеры с эквивалентом короткого замыкания, Вт;
 - $P_{\text{вых. x.x}}$ измеренное значение мощности на выходе настроенной диодной камеры с эквивалентом холостого хода, Вт.

4. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ ПОРОГОВОЙ МОЩНОСТИ

- 4.1. Проверяемый диод устанавливают в диодную камеру E4. 4.2. Мощность на входе диодной камеры E4, $P_{\rm Bx}$ при помощи генератора G и переменного аттенюатора E2 увеличивают от нуля до значения, при котором потери, вносимые диодной камерой с диодом, $L = 10 \lg \frac{P_{\rm BX}}{P_{\rm Barrow}}$ превышают значение $L_{\rm X.X}$ на 1 дБ. Измерен-

ное в этом случае значение $P_{\rm Bx}$ равно значению $P_{\rm nop}$.

4.3. Значения $P_{\rm Bx}$ и мощности на выходе диодной камеры с диодом $P_{\mathtt{вых}}$ определяют при помощи измерителей мощности PWIи PW2.

5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ $P_{\mathrm{прос}}$

5.1. Проверяемый диод устанавливают в диодную камеру *E4*.

5.2. Уровень мощности на входе диодной камеры $P_{\rm Bx}$ устанавливают при помощи генератора G и переменного аттенюатора E2.

5.3.~ При помощи измерителя мощности PW2 измеряют значение $P_{\pi poc}$.

6. ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЙ

6.1. Погрешность измерения $P_{\text{пор}}$ не должна выходить за пределы:

 $\pm 15\%$ с доверительной вероятностью 0,95 в диапазоне частот 0,3—3 $\Gamma\Gamma$ ц;

 $\pm 20\%$ с доверительной вероятностью 0,95 в диапазоне частот 3—37,5 $\Gamma\Gamma$ ц.

Погрешность измерения $P_{\text{пор}}$ при частоте выше 37,5 ГГц устанавливают в стандартах или ТУ на диоды конкретных типов.

6.2. Погрешность измерения $P_{\rm прос}$ не должна выходить за пределы:

 $\pm 10\%$ с доверительной вероятностью 0,95 в диапазоне частот 0,3—3 ГГ $_{\rm II}$:

 $\pm 15\%$ с доверительной вероятностью 0,95 в диапазоне частот 3—37.5 $\Gamma\Gamma$ и.

Погрешность измерения $P_{\rm mpoc}$ при частоте выше 37,5 ГГц устанавливают в стандартах или ТУ на диоды конкретных типов.

6.3. Расчет погрешности измерения приведен в справочном приложении 2.

ПОЯСНЕНИЯ ТЕРМИНОВ, ПРИМЕНЯЕМЫХ В НАСТОЯЩЕМ СТАНДАРТЕ

 Пороговая мощность — уровень мощности СВЧ на входе диодной камеры с ограничительным диодом, при котором ослабление, создаваемое камерой с диодом, увеличивается на 1 дБ относительно его значения в режиме НУМ.

2. Просачивающаяся мощность — уровень мощности СВЧ на выходе диодной камеры с ограничительным диодом при заданном значении ВУМ.

Низкий и высокий уровни мощности — определение по ГОСТ 23769—79.

ПРИЛОЖЕНИЕ 2 Справочное

РАСЧЕТ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ПОРОГОВОЙ И ПРОСАЧИВАЮЩЕЙСЯ **МОЩНОСТЕЙ**

1. Погрешность измерения пороговой мощности $\delta P_{\text{пор}}$ рассчитывают по фор**ж**уле

$$\frac{\delta^{2}P_{\text{BX}}}{K_{1}^{2}} + \frac{a_{1}^{2}\delta^{2}P_{\text{BMX}}}{K_{2}^{2}} + \frac{\delta^{2}P_{\text{BX1}}}{K_{3}^{2}} + \frac{a_{2}\delta^{2}P_{\text{BMX 1}}}{K_{4}^{2}} + \frac{1}{K_{4}^{2}} + \frac{\delta^{2}P_{\text{BMX 1}}}{K_{4}^{2}} + \frac{\delta^{2}P_{\text{BMX 1}}}{K_{5}^{2}} + \frac{\delta^{2}P_{\text{BMX 1}}}{K_{5}^{2}} + \frac{\delta^{2}P_{\text{BMX 1}}}{K_{6}^{2}} + \frac{\delta^{2}P_{\text{BMX 1}}}{K_{6}^{2}} + \frac{a_{2}\delta^{2}P_{\text{BMX 1}}}{K_{4}^{2}} + \frac{a_{2}\delta^{2}P_{\text{BMX 1}}}{K_{4}^{2}$$

где

 $\delta P_{\mathtt{Bx}}$ — погрешность измерения мощности на входе диодной камеры при ее настройке в режиме НУМ;

 $\delta P_{\mathtt{B} \, \mathtt{M} \, \mathtt{X}}$ — погрешность измерения мощности на выходе диодной камеры при ее настройке в режиме НУМ;

 $\delta P_{\rm BXI}$ — погрешность измерения мощности на входе диодной камеры, при которой ослабление, создаваемое диодной камерой с диодом, достигает заданного значения;

 $\delta P_{\mathtt{BMXI}}$ — погрешность измерения мощности на выходе диодной камеры с диодом, при которой мощность на входе диодной камеры равна значению $P_{\text{вк1}}$;

 $\delta_1 P$, $\delta_2 P$ — погрешности, обусловленные рассогласованием элементов измерительного тракта;

 K_1 , K_2 , K_3 , K_4 , K_5 , K_6 — предельные коэффициенты, зависящие от закона распределения составляющих погрешности и доверительной вероятности; при равномерном законе распределения составляющих погрешности измерителя мощности

 $K_1 = K_2 = K_3 = K_4 = 1,73$; при распределении составляющих погрешности рассогласования по закону арксинуса $K_5 = K_6 = 1.41$;

- a_1, a_2 коэффициенты, учитывающие влияние неточности измерения мощности на выходе диодной камеры и рав-
 - K_{Σ} коэффициент, зависящий от закона распределения суммарной погрешности измерения и доверительной вероятности. Если $a_1 = a_2 = 1$ и суммарная погрешность является композицией равномерного закона и закона арксинуса, то $K_{\Sigma} = 1.96$.
- 2. Попрешность измерения просачивающейся мощности δP_{npoc} рассчитывают по формуле

$$\delta P_{\text{npoc}} = \pm K_{\Sigma}^{r} \sqrt{\frac{(a')^{2}\delta^{2}P_{\text{BY }2}}{(K_{1}^{\prime})^{2}} + \frac{\delta^{2}P_{\text{BMX }2}}{(K_{2}^{\prime})^{2}} + \frac{\delta_{3}^{2}P}{(K_{3}^{\prime})^{2}} + \frac{\delta_{4}^{2}P}{(K_{4}^{\prime})^{2}}}, \qquad (2)$$

где

 δP_{BX2} — погрешность измерения заданного значения мощности на входе диодной камеры:

 $\delta P_{\mathtt{B}\,\mathtt{M}\,\mathtt{X}2}$ — погрешность измерения мощности на выходе диодной камеры с диодом при установленном значении $P_{\mathtt{B}\,\mathtt{X}2}$; $\delta_{\mathtt{B}}P$, $\delta_{\mathtt{4}}P$ — погрешности, обусловленные рассогласованием элементов

измерительного тракта;

- $K_1^*, K_2^*, K_3^*, K_4^*$ предельные коэффициенты, зависящие от закона распределения составляющих погрешности и доверительной вероятности; при равномерном законе распределения погрешности измерителя мощности $K_1 = K_2 = 1,73$; при распределении составляющих погрешности рассогласования по закону арксинуса $K_3 = K_4 = 1,41$;
 - а' коэффициент, учитывающий влияние неточности установления мощности на входе диодной камеры и равный 1.
 - $K_{\Sigma}^{'}$ коэффициент, зависящий от закона распределения суммарной погрешности измерения и доверительной вероятности. Если $a_1 = 1$ и суммарная погрешность является композицией равномерного закона и закона арксинуса, то $K_{\Sigma}^{'}=1,96$.
- 3. Пример расчета погрешностей
- 3.1. Данные для расчета:

$$P_{\text{вх}}$$
=6 мВт; $P_{\text{вх 1}}$ =500 мВт; $P_{\text{вх 2}}$ =2500 мВт; $P_{\text{вых}}$ =5,35 мВт; $P_{\text{вых 1}}$ =316 мВт; $P_{\text{вых 2}}$ =400 мВт.

Қоэффициенты стоячей волны по напряжению входа и выхода переключателей равны 1,2.

При использовании в качестве измерителей мощности ваттметров поглощаемой мощности М3-56 и М3-53 погрешности измерения мощности в диапазоне частот 0,3—3 ГГц равны:

$$P_{\text{BX}}=4\%$$
; $P_{\text{BX}}=4,1\%$; $P_{\text{BX}}=4\%$; $P_{\text{Bb}}=4\%$; $P_{\text{Bb}}=4,2\%$;

Значения погрешностей рассогласования равны:

$$\delta_1 P = \delta_2 P = 3.5 \circ_0$$
.

3.2. Значения погрешностей измерения $\delta P_{\text{пор}}$ и $\delta P_{\text{прос}}$ в диапазоне частот 0,3—3 ГГц равны:

$$\delta P_{\text{nop}} = 1,96 \sqrt{\left(\frac{4,0}{1,73}\right)^2 + \left(\frac{4,0}{1,73}\right)^2 + \left(\frac{4,1}{1,73}\right)^2 + \left(\frac{4,2}{1,73}\right)^2 + \left(\frac{3,5}{1,41}\right)^2 + \left(\frac{3,5}{1,41}\right)^2} = 12\%.$$

$$\delta P_{\text{npoc}} = 1,96 \left(\frac{4,0}{1,73}\right)^2 + \left(\frac{4,4}{1,73}\right)^2 + \left(\frac{3,5}{1,41}\right)^2 + \left(\frac{3,5}{1,41}\right)^2 = 9,7\%.$$

При расчете погрешностей $\delta P_{\pi o p}$ и $\delta P_{\pi p o c}$ по формулам (1) и (2) для диапазона частот 3—37,5 ГГц получим $\delta P_{\pi o p}$ =17,4% и $\delta P_{\pi p o c}$ =13,1%.

> Редактор М. В. Глушкова Технический редактор М. И. Максимова Корректор Е. И. Евтеева

Сдано в наб. 21.07.86 Подп. в печ. 25.08.86 0,5 усл. п. л. 0,5 усл. кр.-отт. 0,43 уч.-изд. л. Тир. 12 000 Цена 3 коч.