

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЛАМПЫ ПРИЕМНО-УСИЛИТЕЛЬНЫЕ И ГЕНЕРАТОРНЫЕ МОЩНОСТЬЮ, ПРОДОЛЖИТЕЛЬНО РАССЕИВАЕМОЙ АНОДОМ, до 25 Вт

МЕТОДЫ ИЗМЕРЕНИЯ ДИНАМИЧЕСКОГО КОЭФФИЦИЕНТА УСИЛЕНИЯ И АСИММЕТРИИ УСИЛЕНИЯ НА НИЗКОЙ ЧАСТОТЕ

ГОСТ 19438.1-74

Издание официальное

Цена 3 ком

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СТАНДАРТОВ

СОВЕТА МИНИСТРОВ СССР

МОСКВА

СОЮЗА

CCP

ЛАМПЫ ПРИЕМНО-УСИЛИТЕЛЬНЫЕ И ГЕНЕРАТОРНЫЕ МОЩНОСТЬЮ, ПРОДОЛЖИТЕЛЬНО РАССЕИВАЕМОЙ АНОДОМ, до 25 Вт

ГОСТ 19438.1—74

Методы измерения динамического коэффициента усиления и асимметрии усиления на низкой частоте

Receiving amplifier and transmitting tubes with power to 25 watt continuously scattered by anode. Measurement methods of dynamic amplification factor and amplificating asymmetri at LF

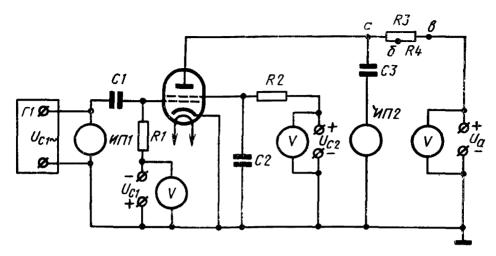
Взамен ГОСТ 8105—56

Постановлением Государственного комитета стандартов Совета Министров СССР от 25/I 1974 г. № 251 срок действия установлен

с 01.07 1975 г. до 01.07 1980 г.

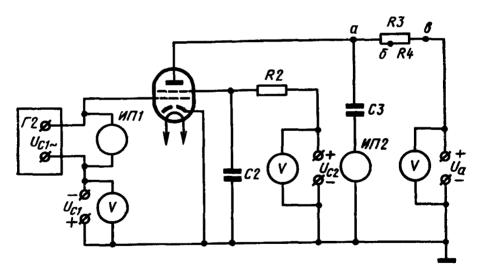
Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на электронные усилительные, выпрямительные и генераторные лампы мощностью, продолжительно рассеиваемой анодом, до 25 Вт и устанавливает методы измерения динамического коэффициента усиления и асимметрии усиления в диапазоне частот от 400 до 1500 Гц с относительной погрешностью измерения не более 10%.


Применение данных методов измерения предусматривается стандартами или техническими условиями, утвержденными в установленном порядке (далее — стандартами), на лампы конкретных типов.

1. АППАРАТУРА

- 1.1. Аппаратура для измерения динамического коэффициента усиления.
- 1.1.1. Общие требования к испытательным установкам по ГОСТ 8089—71.
- 1.1.2. Принципнальная электрическая схема испытательной установки для измерения динамического коэффициента усиления на низкой частоте должна соответствовать приведенной на черт. 1 или 2 (в качестве примера приведены электрические схемы для измерения динамического коэффициента усиления тетрода при фиксированном смещении управляющей сетки).


Издание официальное

Перепечатка воспрещена

 ΓI — генератор синусондального напряжения с частотой, фиксируемой в пределах от 400 до 1500 Γ ц; R I — резистор; R 2, R 3 — безындукционые резисторы; $U \Pi I$ — вольтметр или делитель напряжения и вольтметр; $U \Pi I$ — вольтметр, C I, C 2, C 3 — конденсаторы.

Черт. 1.

 $\Gamma 2$ — генератор синусоидального напряжения с частотой, фиксируемой в пределах от 400 до 1500 Γ ц; R2, R3 — безындукционные резисторы; $U\Pi 1$ — вольтметр или делитель напряжения и вольтметр; $U\Pi 2$ — вольтметр; C2, C3 — конденсаторы.

Черт. 2

1.1.3. Қоэффициент нелинейных искажений нагруженных генераторов $\Gamma 1$ и $\Gamma 2$ не должен превышать 2%.

Выходные контакты генератора $\Gamma 2$ должны быть гальванически связанными. Гальваническую связь между выходными контактами генератора $\Gamma 2$ осуществляют путем включения внешнего резистора. Падение напряжения постоянного тока между выход-

ными контактами генератора $\Gamma 2$ при заданном в стандартах значении напряжения переменного тока управляющей сетки не должно составлять более 0.5% этого значения.

- 1.1.4. Сопротивление резистора *R3* должно соответствовать установленному в стандартах с допустимым отклонением от плюс 1 до минус 1%, а реактивная составляющая сопротивления на выбранной частоте генератора не должна превышать 1% от его номинального значения.
- 1.1.5. Падение напряжения постоянного тока на сопротивлении резистора RI при заданном в стандартах значении напряжения переменного тока управляющей сетки не должно составлять более 0,5% напряжения управляющей сетки.

1.1.6. Сопротивление резистора R2 должно соответствовать установленному в стандартах с допустимым отклонением от плюс

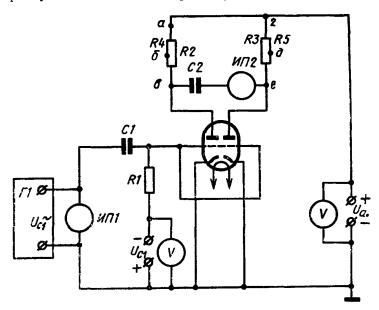
5 до минус 5% от его номинального значения.

1.1.7. Входное сопротивление вольтметра $И\Pi 2$ на частоте измерения должно быть не менее $100~R_3$. Допускается включение цени вольтметра $U\Pi 2$ к контакту δ (вместо контакта a). В этом случае входное сопротивление вольтметра должно быть не менее $100~R_4$.

При установлении напряжения анода U_a падение напряжения на сопротивлении резистора R3 не учитывают. Допускается градуирование вольтметра $И\Pi 2$ непосредственно в единицах динамического коэффициента усиления.

1.1.8. В качестве вольтметров ИП1 и ИП2 применяют один и

тот же прибор.

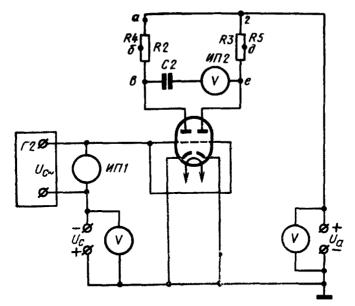

1.1.9. Емкостное сопротивление конденсатора *C1* на выбранной частоте генератора *Г1* не должно превышать одну десятую сопротивления резистора *R1*. Сопротивление изоляции конденсатора *C1* должно превышать сопротивление резистора *R1* не менее чем в 100 раз.

1.1.10. Емжостное сопротивление конденсатора C2 на выбранной частоте генератора не должно превышать одну десятую значения сопротивления резистора R2. Сопротивление изоляции конденсатора C2 должно превышать сопротивление R2 не менее чем

в 50 раз.

- 1.1.11. Емкостное сопротивление конденсатора C3 на выбранной частоте генератора не должно превышать одну десятую значения входного сопротивления вольтметра $И\Pi 2$. Сопротивление изоляции конденсатора C3 должно превышать входное сопротивление вольтметра $U\Pi 2$ не менее чем в 50 раз.
- 1.1.12. Напряжение переменного тока управляющей сетки должно быть таким, чтобы коэффициент нелинейных искажений напряжения на анодной нагрузке R3 не превышал 5%.
- 1.2. Аппаратура для измерения асимметрии усиления

- 1.2.1. Общие требования к испытательным установкам по п. 1.1.1.
- 1.2.2. Принципиальная электрическая схема испытательной установки для измерения асимметрии усиления на низкой частоте должна соответствовать приведенной на черт 3 или 4. (В качестве примера приведены электрические схемы для измерения асимметрии усиления двойного триода.)


 ΓI — генератор синусоидального напряжения с частотой, фиксируемой в пределах от 400 до 1500 Γ ц; R I — резистор; R 2, R 3—безындукционные резисторы; $U\Pi I$ — вольтметр или делитель напряжения и вольтметр; $U\Pi I$ 2—вольтметр; C I1, C I2—конденсаторы.

Черт. 3

- 1.2.3. Требования к генераторам синусоидального напряжения Г1 и Г2 по п. 1.1.3.
- 1.2.4. Падение напряжения постоянного тока на сопротивлении резистора *R1* по п. 1.1.5.
- 1.2.5. Сопротивления резисторов R2, R3 должны соответствовать установленным в стандартах с допустимым отклонением от плюс 5 до минус 5%, а реактивные составляющие сопротивлений резисторов на выбранной частоте генератора не должны превышать 5% от их номинальных значений.

Разность значений сопротивлений этих резисторов не должна быть более 2% от их номинальных значений.

1.2.6. Вход вольтметра *ИП2* должен быть симметричным (Одна из возможных электрических схем лампового зольтметра с симметричным входом указана в приложении).

 $\Gamma 2$ — генератор сивусоидального напряжения с частотой, фиксируемой в пределах от 400 до 1500 Гц; R2, R3 — безындукционные резисторы, HIII — вольтметр или делитель напряжения и вольтметр; III2 — вольтметр; III2 — вольтметр; III3 — вольтметр — вольтмет

Черт. 4

Входное сопротивление вольтметра $И\Pi 2$ на частоте измерения должно быть не менее $200~R_2$.

Допускается подключение цепи вольтметра $И\Pi 2$ к контактам δ и ∂ (вместо контактов θ и e). В этом случае входное сопротивление вольтметра $И\Pi 2$ на частоте измерения должно быть не менее $200~R_4$.

При установлении напряжения анода U_a падение напряжения на сопротивлении резисторов R2, R3 не учитывают.

- 1.2.7. Требования к вольтметрам $И \tilde{\Pi} 1$ и $U \Pi 2$ по п. 1.1.8.
- 1.2.8. Требования к емкостному сопротивлению и сопротивлению изоляции конденсатора *C1* по п. 1.1.9.
- 1.2.9. Емкостное сопротивление конденсатора C2 на выбранной частоте генератора не должно превышать одной десятой входного сопротивления вольтметра $И\Pi 2$.

2. ПОДГОТОВКА К ИЗМЕРЕНИЯМ

- 2.1. Перед испытанием лампы подвергают предварительному подогреву в течение времени и режиме, установленных в стандартах.
- 2.2. Электрический режим испытания устанавливают в соответствии с требованиями стандартов.

3. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

3.1. Лампу устанавливают на испытательную позицию и выдерживают в режиме испытания до того момента, когда контролируемый параметр достигнет установившегося значения.

3.2. Фиксируют установивщееся значение параметра.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Динамический коэффициент усиления (K_{v}) при измерении на испытательной установке с принципиальной схемой, указанной на черт. 1 или 2, и подключении цепи вольтметра ИЙ2 к коптакту а вычисляют по формуле

$$K_{y,a} = \frac{U_{a^{\sim}}}{U_{c,1^{\sim}}}, \qquad (1)$$

а при подключении цепи вольтметра $И\Pi 2$ к контакту δ — по формуле

$$K_{y,6} = \frac{U_{a\sim}}{U_{c1\sim}} \cdot \frac{R_3}{R_4} , \qquad (2)$$

где $U_{\rm a}\sim$ — переменная составляющая напряжения анода, измеренная вольтметром $U\Pi 2$, B; $U_{c1} \sim -3$ аданное в стандартах напряжение переменного тока

управляющей сетки, В;

 R_3 — сопротивление анодной нагрузки, Ом; R_4 — сопротивление, измеренное между контактами δ и δ ,

Асимметрию усиления (ΔK_{v}) при измерении на испытательной установке с электрической схемой, указанной на черт. З или 4, и при подключении цепи вольтметра $H\Pi 2$ к контактам ви е вычисляют по формуле

$$\Delta K_{y} = \frac{\Delta U_{a}}{U_{c,1}}, \qquad (3)$$

а при подключении цепи вольтметра $H\Pi 2$ к контактам δ и ∂ — по одной из формул:

$$\Delta K_{y} = \frac{\Delta U_{a} \sim}{U_{c1} \sim} \cdot \frac{R_{2}}{R_{4}} ; \qquad (4)$$

$$\Delta K_{y} = \frac{\Delta U_{a} \sim}{U_{c1} \sim} \cdot \frac{R_{a}}{R_{5}} , \qquad (5)$$

где Δ U_a — разность напряжений переменного тока, измеренная вольтметром $U\Pi 2$, между контактами вие или би д, В;

 $U_{\rm c1}$ — заданное в стандартах напряжение переменного тока управляющей сетки, В;

 R_2 , R_3 — сопротивления анодной нагрузки, Ом;

 $\tilde{R}_4, \; \tilde{R}_5 =$ сопротивления, измеренные между контактами a и b или c и d, b, b, b, b, b, c

Допускается взамен вольтметра $И\Pi 2$ с симметричным входом использовать вольтметр с несимметричным входом и входным сопротивлением не менее $100~R_2$ или $100~R_3$.

В этих случаях асимметрию усиления ΔK_{y} вычисляют по фор-

муле:

$$\Delta K_{y} = \frac{U_{a_{1}} \sim -U_{a_{2}} \sim}{U_{c_{1}} \sim} , \qquad (6)$$

где $U_{a\, i\, \sim}$ — напряжение переменного тока апода, измеренное вольтметром между контактом s и землей, B;

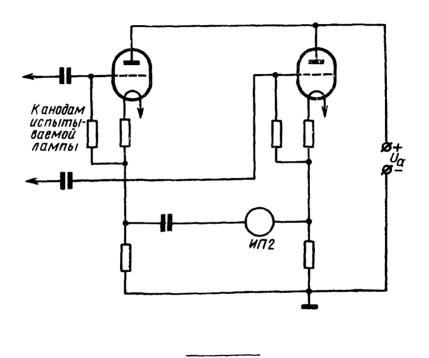
 $U_{a2\sim}$ — напряжение переменного тока анода, измеренное вольтметром между контактом e и землей, B;

 $U_{\ c1\sim}$ — заданное в стандартах напряжение переменного тока управляющей сетки, B,

или по одной из формул:

$$\Delta K_{y} = \frac{U_{a1} \sim -U_{a2} \sim}{U_{c1} \sim} \cdot \frac{R_{2}}{R_{4}} ; \qquad (7)$$

$$\Delta K_{y} = \frac{U_{a1} \sim -U_{a2} \sim}{U_{c1} \sim} \cdot \frac{R_{s}}{R_{5}} , \qquad (8)$$


где $U_{ai\sim}$ — напряжение переменного тока анода, измеренное вольтметром между контактом δ и землей, B;

 $U_{a2\sim}$ — напряжение переменного тока анода, измеренное вольтметром между контактом ∂ и землей, B;

R₂, R₃ — сопротивления анодной нагрузки, Ом;

 R_4 , R_5 — сопротивления, измеренные между жонтактами a и b или c и d. Ом.

Схема лампового вольтметра с симметричным входом для измерения асимметрии усиления двойных триодов

Редактор Е. И. Глазкова
Технический редактор В. Н. Солдатова
Корректор В. М. Смирнова

Сдано в набор 31. 01. 74 Подп. в печ. 04. 04. 74 0,5 п. л. Тир. 8000

Группа Э29

Мизменение № 1 ГОСТ 19438.1—74 Лампы приемно-усилительные и генераторные мощностью, продолжительно рассенваемой анодом, до 25 Вт. Методы иззмерения динамического коэффициента усиления и асимметрии усиления на низкой частоте

Постановлением Государственного комитета СССР по стандартам от 11.03.86 № 502 срок введения установлен с 01.06.86

e 01.00.80

Вводную часть дополнить абзацем: «Общие требования при измерении и эмеребования безопасности — по ГОСТ 19.438.0—80».

(Продолжение см. с. 332)

(Продолжение изменения к ГОСТ 19438.1—74)

Пункты 1.1.1, 1.2.1 исключить. Пункты 1.1.3, 1.1.12. Заменить слова: «коэффициент нелинейных искажений» на «коэффициент гармоник».

Раздел 4 дополнить пунктом — 4.2: «4.2. Относительная погрешность измерения динамического коэффициента усиления и асимметрии усиления на **низкой** частоте находится в пределах ± 10 % с установленной вероятностью $P^* = 0.95$ ».

(ИУС № 6 1986 г.)