ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРАНЗИСТОРЫ БИПОЛЯРНЫЕ

Методы измерения статического коэффициента передачи тока

Transistors bipolar. Methods for measuring statis current transfer radio

ГОСТ 18604.2—80*

[CT C3B 4288—83] B3aMeH

OKΠ 62 2312

Постановлением Государственного комитета СССР по стандартам от 4 июля 1980 г. № 3392 срок действия установлен

c 01.01.82

до 01.01.87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на биполярные транзисторы и устанавливает методы измерения статического коэффициента передачи тока $h_{21\,9}$ на импульсном и постоянном токах.

Общие требования при измерении должны соответствовать ГОСТ 18604.0—83 и требованиям, изложенным в соответствующих разделах настоящего стандарта.

Стандарт полностью соответствует СТ СЭВ 4288—83 и Публикации МЭК 147—2 в части метода измерения параметра h_{21} э на постоянном токе.

(Измененная редакция, Изм. № 1).

1. МЕТОД ИЗМЕРЕНИЯ СТАТИЧЕСКОГО КОЭФФИЦИЕНТА ПЕРЕДАЧИ ТОКА НА ИМПУЛЬСНОМ ТОКЕ

- $1.1.\ M$ етод определения h_{219} измерением $h_{219}+1$ транзистора, включенного по схеме с общей базой
 - 1.1.1. Принцип и условия измерения
- 1.1.1.1. Значение постоянного тока эмиттера $I_{\mathfrak{I}}$ или постоянного тока коллектора $I_{\mathfrak{K}}$ и напряжения на коллекторе указывают в стандартах или технических условиях на транзисторы конкретных типов (далее в стандартах).

Издание официальное

Перепечатка воспрещена

 \star

 ^{*} Переиздание (декабрь 1985 г.) с Изменением № 1, утвержденным в октябре 1984 г. (ИУС 1—85).

1.1.1.2. Скважность импульсов тока эмиттера Q должна быть: $Q \geqslant 10$ при токе эмиттера равном или больше 1 мА;

 $Q \geqslant 2$ при токе эмиттера до 1 мА.

Минимальную длительность импульса $t_{\,\mathrm{H\,min}}$ рассчитывают по формуле

$$t_{
m ii \; min} \geqslant rac{5h_{219 \;
m max}}{2\pi f_{
m rp}}$$
 ,

где $h_{219\,\mathrm{max}}$ — максимальное значение статического коэффициента передачи тока, определяемое рабочим диапазоном установки;

f_{гр} — граничная частота коэффициента передачи тока, указывают в стандартах.

Максимальную длительность импульеа указывают в стандартах, для мощных высоковольтных транзисторов она должна быть не более 300 мкс.

1.1.2. Аппаратура

1.1.2.1. Параметр $h_{219} + 1$ следует измерять на установке,

структурная схема которой приведена на черт. 1.

1.1.2.2. Значение остаточного гока сенератора однополярных импульсов G в интервале между импульсами при измерении по среднему значению не должно превышать

$$\frac{I_{9\min}}{100Q}$$
 , HJH $\frac{I_{9\min}}{100}$,

если ток измеряют по амплитуде импульса.

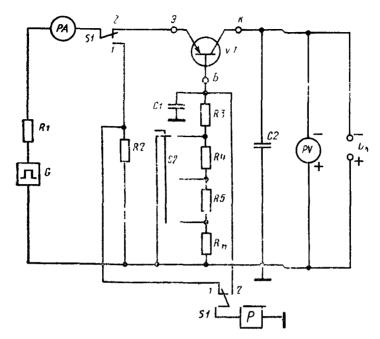
где І э min — минимально допустимый постоянный ток эмиттера.

1.1.2.3. Источник постоянного напряжения должен обеспечивать постоянный ток коллектора

$$I_{\mathrm{K}}>rac{I_{\mathrm{\Im max}}}{Q}$$
 ,

где $I_{3 \text{ max}}$ — максимально допустимый постоянный ток эмиттера.

1.1.2.4. Чувствительность u_1 пикового вольтмегра P, соответствующая полному отклонению стрелки, должна удовлетворять условиям


$$u_1 \leqslant \frac{u_{\text{K min}}}{10}$$
; $u_1 \leqslant I_{\text{9 n in}} R_2$;

где $U_{\rm K\ min}$ — минимально допустимое постоянное напряжение коллектор-база;

R2 — калибровочный резистор.

При измерении h_{21} э +1 при токе эмиттера до 1 мА чувствительность u_1 пикового вольтметра должна удовлетворять условиям

$$u_1 \ll \frac{U_{\text{K min}}}{100}$$
; $u_1 \leqslant I_{\text{3 min}} R_2$.

PA—нзмеритель тока эмиттера; SI—переключатель; VT—измеряемый транзистор, $RI,\ R2$. , R ,—резисторы, $CI,\ C2$ —конденсаторы; G—генератор однополярных импульсов; S2—перек-початель поддиатазонов h 19 $^{+1}$; PV—измеритель постоянного напряжения, P—пи-

ковый вольтметр. Черт. 1

Пиковый вольтметр должен измерять только импульсную составляющую тока базы.

1.1.2.5. Входное сопротивление пикового вольтметра $R_{\text{вх }P}$ должно удовлетворять условию

$$R_{\text{BX}P} \gg 100R_{\text{B max}}$$
,

где $R_{\text{Б мах}}$ — максимальное значение сопротивления в цепи базы. Если $R_{\text{вх P}}$ меньше указанного значения, то учитывают его шунтирующее действие. Пиковый вольтметр P градуируют в значениях $h_{21,9}$ или $h_{21,9}+1$.

1.1.2.6. Значение сопротивления резистора в цепи эмиттера *R1* (или внутреннего сопротивления источника тока эмиттера) рассчитывают, исходя из формулы

$$R_1 \geqslant 50 \frac{U_{3B \max}}{I_{3 \min}}$$
 ,

где $U_{\, {
m ЭБ}}$ — максимально допустимое пос $_{
m ТОЯ}$ напряжение эмиттер-база для данного поддиапазона тока эмиттера.

Если нормировано максимальное напряжение насыщения базаэмиттер, то

$$R_1 \geqslant 50 \frac{U_{\text{B9 Hac}}}{I_{\text{9 min}}}$$
,

где $U_{59 \text{ нас}}$ — напряжение насыщения база-эмиттер.

1.1.2.7. Значение сопротивления резистора R2 для данного поддиапазона постоянного тока эмиттера должно выбираться из условия

$$R_2 \leqslant \frac{R_1}{50}$$
 , $R_2 \leqslant \frac{U_{\text{ BO Hac}}}{I_2}$

1.1.2.8. Сопротивление токосъемного резистора R3 в цепи базы, предназначенное для поддиапазона наименьших $h_{219} + 1$, зависит от выбранного поддиапазона постояного тока эмиттера:

$$R_3 = R_2(h_{213} + 1)_{min}; R_3 + R_4 = R_3 l_1;$$

 $R_3 + R_4 + R_5 = (R_3 + R_5) l_2.$

где $(h_{21\,9}\,+1)_{\min}$ — минимальное значение параметра; $R_3,\ R_4,\dots R_n$ — калибрсванные резисторы, значения которых выбирают в зависимости от перекрытия поддиапазонов, на которые разбивают весь диазначений измеряемого параметра $h_{219} + 1$ или h_{219} ;

 l_1 , l_2 — перекрытия поддиапазонов по сопротивлению, значения которых должны быть в пределах от 2 до 3,3.

Значения сопротивлений резисторов $R_2,\ R_3,\ \ldots R_n$ подбирают с погрешностью ± 1 %.

Для измерителей с цифровым отсчетом $l_1 = l_2 = \dots l = 10$.

Примечания:

1. Переключение поддиапазонов значений h_{21} допускается осуществлять делителем в пиковом вольтметре. Вместо пикового вольтметра допускается применять осциллограф.

2. Схема включения калибровочного и токосъемных резисторов может отличаться от приведенной на черт 1, если она обеспечивает значение погрешности не превышающей значение погрешности измерительной установки.

1.1.2.9. Емкость конденсатора C2, блокирующая источник коллекторного напряжения и обеспечивающая спад напряжения коллектора, не превышающий 10 % от заданного за время действия импульса тока эмиттера, рассчитывают по формуле

$$C_2 = \frac{10I_{\Im \max}t_{\Pi}}{U_{\mathrm{K}\min}} ,$$

где $t_{\rm n}$ — длительность импульса тока эмиттера.

Емкость конденсатора C2 может быть меньше указанного или он может отсутствовать, если источник коллекторного напряжения способен обеспечить ток $I_{\rm K} = I_{\rm 9~max}$ и спад напряжения коллектора за время $t_{\rm n}$ не превышает 10 % заданного.

1.1.2.10. Емкость конденсатора *С1*, предотвращающего появление выбросов тока базы в результате переходных процессов, выбирают из условия

$$0.1t_n \gg \tau_6 = C_1 R_{6n} \gg \frac{h_{219 \text{max}}}{4\pi f_{r0}}$$
,

где т_б — постоянная времени цепи базы;

 R_{6n} — эквивалентное сопротивление, полученное в результате последовательного соединения резисторов $R_3,\ R_4\dots R_n$ в зависимости от положения перєключателя S_2 ;

 $f_{\rm rp}$ — граничная частота коэффициента передачи тока, указы-

вают в стандартах.

Для транзисторов, у которых значение f_{rp} не нормируется, используют значение f_{h216} или $|h_{219}|f$ (f_{h216} — предельная частота коэффициента передачи тока; $|h_{219}|$ — модуль коэффициента передачи тока на высокой частоте; f — частота измерения);

 $h_{21\, \Im\, \mathrm{max}}$ — максимальное значение параметра для данчого под-

диапазона измерений.

Примечания:

1 Если вышеприведенное условие не может быть выполнено с помощью одного конденсатора, то для каждого значения R_{6n} должно быть найдено соответствующее значение C_{6n} , получаемое как последовательное соединение нескольких конденсаторов

2 При измерении $h_{21\,\Im}$ в режиме измерения с током эмиттера до 1 мА и при длительности фронта импульса тока эмиттера больше, чем $\frac{1}{4\pi f_{\rm rp}}$ значение τ_6 уменьшают и подбирают экспериментально

1.1.2.11. Базовый импульс тока не должен иметь выбросов. Для устранения выбросов могут быть использованы интегрирующие фильтры с постоянной времени, выбранной аналогично та.

Примечание. Допускается наличие выбросов на базовом импульое тока при условии, что измерение $h_{21\; \Im}$ прозслят после окончания переходных процессов.

1.1.2.12. Для защиты транзистора от перегрузок и паразитного возбуждения применяют специальные схемы подключения транзисторов, примеры которых приведены в справочном приложении. Схемы подключения и требования к элементам указывают в стандартах.

Включение защитных элементов не должно приводить к превышению основной погрешности измерительной установки, указанной в настоящем стандарте.

- 1.1.3. Подготовка и проведение измерения и обработка результатов
- 1.1.3.1. Устанавливают заданный в стандартах режим измерения ток эмигтера $I_{\,\Theta}$ и постоянное напряжение ог источника питания коллектора.

В цепь эмиттера измеряемого транзистора через резистор R1 псдают однополярный импульс тока $I_{\mathfrak{I}}$ от генератора однополярных импульсов. Значение тока эмиттера регулируют плавно внутри каждого поддиапазона измерения и ступенчато от поддиапазона к поддиапазону и контролируют прибором PA. Регулировку тока осуществляют плавным (или ступенчатым) изменением амплитуды напряжения генератора однополярных импульсов или плавным изменением сопротивления резистора R1. Допускается установка тока эмиттера в виде дискретного ряда фиксированных значений без плавной регулировки.

Допускается преводить измерения на одиночных импульсах.

На коллектор измеряемого транзистора подают постоянное наппряжение $U_{\rm K}$ от источника постоянного напряжения. Значение $U_{\rm K}$ регулируют плавно внутри каждого поддиапазона и ступенчато от поддиапазона к поддиапазону. Допускается подача напряжения на коллектор в виде импульса, который начинается раньше и заканчивается позже импульса тока эмиттера. При этом конденсатор C2 из схемы измерения исключают.

Допускается установка напряжения на коллекторе в виде дискретного ряда фиксированных значений без плавной регулировки.

В момент отсутствия импульса тока эмиттера значение напряжения на коллекторе может отличаться от значения, оговоренного в стандартах. Однако при этом должно соблюдаться условие $U_K \leq U_{K \ni 0 \text{ гр}}$, граничное напряжение указывают в стандартах.

Если граничное напряжение $U_{\,\mathrm{K90\,rp}}$ не нормируется, то $U_{\,\mathrm{K}} \! \leqslant \! 0,\! 4U_{\,\mathrm{K5\,max}}$, где $U_{\,\mathrm{K5\,max}}$ — максимально допустимое постоянное напряжение коллектор-база, указывают в стандартах.

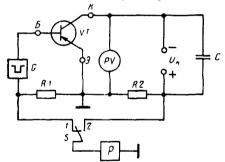
- 1.1.3.2. Переключатель S1 ставят в положение 1 и производят калибровку. Пиковый вольтметр P подссединен к резистору R2. Плавным изменением чувствительности пикового вольтметра P добиваются, чтобы стрелка отклонялась на заданную при калибровке отметку шкалы (если индикатор цифрсвой при калибровке должно высвечиваться определенное число).
- 1.1.3.3. Не меняя найденной при калибровке чувствительности пикового вольтметра P, переключатель SI ставят в положение 2. Переключателем S_2 добиваются того, чтобы стрелка находилась в пределах рабочей части шкалы. По положениям переключателя S2 и стрелки пикового вольтметра P опрелеляют значение параметра $h_{21.9}$.

1.1.4. Показатели точности

Основная погрещность измерительных установок, использующих для измерения стрелочные приборы, должна находиться в пределах ± 5 % конечного значения рабочей части шкалы и в пределах ± 10 % измеряемого значения в начале рабочей части шкалы.

При измерении параметра $h_{21\,9}$ в режиме измерения при токе эмиттера до 1 мА основная погрешность измерительных установок должна находиться в пределах $\pm 10\,\%$ конечного значения шкалы и в пределах $\pm 15\,\%$ измеряемого значения в начале рабочей части шкалы

Для измерителей с цифровым отсчетом основная погрешность должна находиться в пределах $\pm 5~\%~\pm 2$ знака младшего разряда дискретного отсчета измеряемого значения в режиме измерения с током эмиттера, равным или большим 1 мA, и в пределах $\pm 10~\%$ ± 2 знака младшего разряда дискретного отсчета измеряемого значения в режиме измерения при токе эмиттера до 1 мA


(Измененная редакция, Изм. № 1).

- 1.2. Метод измерения $h_{21.9}$ в схеме с общим эмиттером
 - 1.2 1. Принцип и условия измерения

Условия измерения соответствуют требованиям, указанным в п. 1.1.1.

1.22. Аппаратура

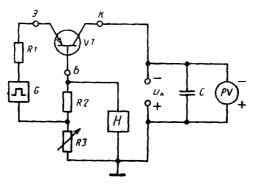
1.2.2.1. Параметр h_{219} следует измерять на установке, структурная электрическая схема которой приведена на черт. 2.

VT—измеряемый транзистор, G—генератор однополярных импульсов, PV—измеритель напряжения U_{K} —источник питания напряжения коллектора C—конденсатор R1, R2—резисторы, S—переключатель P—пико вый вольтметр P

1.2.2.2. Выбор основных элементов схемы измерения следует производить в соответствии с требованиями пп. 1.1 2.2—1.1.2.4; 1.1.2.6; 1.1.2.7; 1.1.2.9; 1 1 2 12 со следующими дополнениями и уточнениями:

а) значение сопротивления резистора R2 и напряжения источника питания коллектора $U_{\rm K}$ должны выбираться из условий:

$$U_{K} = U_{K\ni} + I_{K} R_{2};$$
 $U_{K} < U_{K\ni OPD}$


Резисторы R1 и R2 могут включаться в любом участке цепи, где протекают измеряемые токи, при этом основная погрешность измерительной установки не должна превышать значения, указанного в п. 1.1.4. Дспускается вместо резистора R2 использовать генератор тока, обеспечивающий задание тока коллектора, оговоренного в стандартах.

б) входное сопротивление пикового вольтметра $R_{\rm BXP}$ должно

выбираться из условий:

$$R_{\text{BX}P} \geqslant 100R_1; \\ R_{\text{BX}P} \geqslant 100R_2;$$

в) пиковый вольтметр P может отсутствовать, если задание и измерение тока обеспечиваются с помощью прецизионных резисторов или другим способом.

VI—измеряемый транзистор RI, R2, R3—резисторы, U_K —источник питания напряжения коллектора, C—конденсатор; PV—измеритель напряжения, H—нуль-индикатор.

Черт. 3

- 1.2.2.3. Допускается вместо генератора однополярных импульсов использовать источник питания постоянного тока. При этом схема измерения и требования к конкретным элементам угочняются в стандартах на конкретный тип транзистора.
- 1.2.3, Подготовка и проведение измерений и обработка результатов
- 1.2.3.1. Требования к режиму измерения $I_{\mathfrak{I}}$ и $U_{\mathfrak{K}\mathfrak{I}}$ должны соответствовать указанным в п. 1.1.3.1 применительно к данной схеме измерения.

1.2.3.2. Переключатель S устанавливают в положение 2. Регулировкой амплитуды генератора однополярных импульсов устанавливают заданное значение тока $I_{\rm K}$, которое определяют как

$$I_{\rm K} = \frac{U_{R_2}}{R_2}$$

Регулировкой напряжения $U_{\rm K}$ в момент действия импульса базового тока устанавливают напряжение на коллекторе, равное $U_{\rm K9}$.

1.2.3.3. Переключатель S устанавливают в положение 1. Постоянный ток базы определяют как

$$I_{\rm B} = \frac{U_{R_1}}{R_1} \ .$$

1.2.3.4. Статический коэффициент передачи тока определяют как

$$h_{219} = \frac{I_{K}}{I_{B}} = \frac{U_{R_{2}}}{U_{R_{1}}} \cdot \frac{R_{1}}{R_{2}}$$
.

1.2.3.5. Заданное значение тока коллектора $I_{\rm K}$ может быть установлено изменением значения сопротивления резистора R1 при постоянной амплитуде напряжения генератора однополярных импульсов U_G или источника питания постоянного тока.

При заданных значениях напряжения U_G и тока коллектора I_K параметр $h_{21,9}$ определяется значением сопротивления резистора R1. Сопротивление резистора R1 определяют по формуле

$$R_1 = h_{219_0} R_2 \frac{U_{R_1}}{U_{R_2}}$$
,

где h_{2190} — значение измеряемого параметра, соответствующего условию

$$U_{R_1}=U_P\ll I_{\mathrm{Kmin}}R_2;$$

 U_P — напряжение, соответствующее полному отклонению стрелки шкалы пикового вольтметра, которое должно быть $U_P \leqslant I_{K \min} R_2$;

 $I_{\rm K\,min}$ — наименьшее значение амплитуды импульса тока коллектора, определяемое рабочим диапазоном измерительной установки для данного значения сопротивления резистора R2. Если напряжение, соответствующее полному отклонению стрелки пикового вольтметра, равно $U_P = I_{\rm K} R_2 = U_{R_2}$, то $R_1 = h_{21.90}$ R_2 .

1.2.4. Показатели точности измерения

1.2.4.1. Показатели точности измерения соответствуют требованиям, указанным в п. 1.1.4.

1.3. Метод измерения с помощью нуль—индикатора

1.3.1 Принцип и условия измерения

1.2.1.1. Измерение производится по принципу моста, значение измеряемого параметра соответствует отношению значений сопротивлений резисторов в цепях базы и коллектора.

1.3.1.2 Условия измерения соответствуют требованиям, указан-

ным в п. 1.1.1.

1.3.2. Аппаратира

1.3.2.1. Параметр h_{213} следует измерять на установке, струк-

турная схема которой приведена на черт. 3.

- 1.3.2.2. Выбор основных элементов схемы измерения следует производить в соответствии с требованиями пп. 1.1.2.2, 1.1.2.3, 1.1.2.6, 1.1.2.7, 1.1.2.12 со следующими дополнениями и уточнениями:
- а) емкость конденсатора C должна выбираться в соответствии с требованиями п. 1.1.2.9 к конденсатору C_2 ;

б) пределы изменения резистора R3 должны соответствовать

$$\frac{R_2}{h_{219 \text{ min}}} \gg R_3 \gg \frac{R_3}{h_{219 \text{ max}}}$$
;

в) чувствительность и входное сопротивление нуль-индикатора определяют из соотношения

$$U_{\rm H} {\leqslant} I_{\rm 3} \cdot \frac{h_{\rm 213}}{h_{\rm 213} + 1} \cdot \frac{\Delta R_{\rm 3} \cdot R_{\rm BX \; H}}{R_{\rm 3} + R_{\rm 2} + R_{\rm BX \; H}} \; ,$$

где ΔR_3 — изменение значения сопротивления в цепи коллектора, соответствующее изменению измеряемого параметра $h_{21\,\Im}$ на одну значащую цифру $\Delta h_{21\,\Im}$

$$|\Delta R_3| = R_3 \cdot \frac{\frac{\Delta h_{219}}{h_{219}}}{1 + \frac{\Delta h_{219}}{h_{219}}};$$

 $U_{\rm H}$ — чувствительность нуль-индикатора;

R вхн — входное сопротивление нуль-индикатора;

г) значение сопротивления резистора R2 должно соответствовать требованиям п. 1.1.2.7. Максимальное значение сопротивления резистора R2 выбирают из условия

$$R_1 \gg \frac{50R_2}{h_{219}+1}$$
,

где R_1 — выходное сопротивление генератора однополярных импульсов, которое должно соответствовать требсваниям п. 1.1.2.6.

- 1.3.3. Подготовка и проведение измерений и обработка результатов
- 1.3.3.1. Основные требования к режиму измерения транзистора I_{\ni} и $U_{\rm K}$ должны соответствовать указанным в п. 1.1.3.1.

1.3.3.2. От генератора однополярных импульсов задают постоянный ток эмиттера I_{Θ} . От источника постоянного напряжения коллектора устанавливают заданное значение напряжения U_{K}

1.3.3.3. Изменяя сопротивление резистора R3; добиваются равенства напряжений $U_{R_3} = U_{R_2}$ (при этом напряжение на входе нуль-индикатора должно быть равно нулю). Допускается изменять сопротивление резистора R2 при постоянном R3.

1.3.3.4. Параметр $h_{21,9}$ определяют по формуле

$$h_{219} = \frac{R_2}{R_3}$$

1.3.4. Показатели точности измерения

Показатели точности измерения должны соответствовать указанным в п. 1.1.4.

2. МЕТОД ИЗМЕРЕНИЯ СТАТИЧЕСКОГО КОЭФФИЦИЕНТА ПЕРЕДАЧИ ТОКА НА ПОСТОЯННОМ ТОКЕ

2.1. Принцип и условия измерения

2.1.1. При измерении параметра h_{219} на тостоянном токе должны соблюдаться условия в диапазоне рабочих температур:

$$I_{\rm KBO} < \frac{I_{\rm K}}{h_{219~{\rm max}} \, 50} = \frac{I_{\rm 9}}{(1 + h_{219~{\rm max}}) \, 50} \; ,$$

где $I_{\mathsf{K}\mathsf{BO}}$ — обратный ток коллектора, указывают в стандартах.

Если обратный ток коллектора не соответствует указанному неравенству, необходимо учитывать дополнительную погрешность, вносимую значением $I_{\rm KBO}$.

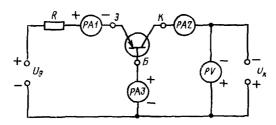
- 2.1.2. Режим измерения по постоянному току: значение постоянного тока эмиттера $I_{\rm S}$ или постоянного тока коллектора $I_{\rm K}$ и постоянного напряжения коллектор-база $U_{\rm KB}$ указывают в стандартах.
 - 2.2. Аппаратура

2.2.1. Параметр \hat{h}_{219} или $h_{219}+1$ следует измерять на установке, структурная электрическая схема которой приведена на

черт. 4.

- 2.2.2. Значение токозадающего сопротивления R (резистора или внутреннего сопротивления источника постоянного тока эмиттера) должно соответствовать требованиям п. 1.1.2.6 к резистору R1.
- 2.2.3. При измерении параметра $h_{21:3}$ задают постоянный ток коллектора $I_{\rm K}$ и прибор PA1 из схемы исключается. При измере-

нии параметра $h_{219}+1$ задают постоянный ток эмиттера I_9 и


прибор РА2 из схемы исключается.

 $^{-}$ 2.2.4. Постоянный ток базы $I_{\rm B}$ измеряют прибором PA3 или по падению напряжения на калиброванном сопротивлении, включенном вместо прибора PA3, требования к которому соответствуют указанным в п. 1.1.2.8.

2.2.5. Падение напряжения на приборах PA2, PA3 или калиброванном сопротивлении в цепи базы должно быть меньше или

равно 0,1 Uк.

2.2.6. Допускается измерение параметра h_{219} при заданном постоянном токе эмиттера и при напряжении на коллекторе, равном нулю.

 $PA1,\ PA2,\ PA3$ —измерители постоянного тока; PV—измеритель постоянного напряжения, R—токозадающий резистор, VT—измеряемый транзистор, U_{K} —источник питания напряжения коллектора, $U_{\mathfrak{P}}$ —источник питания постоянного тока эмиттера

Черт. 4

Падение напряжения в цепи базы не должно превышать 50 мВ. Требования к элементам схемы при этом аналогичны требованиям к соответствующим элементам схемы черт. 4.

2.3. Подготовка и проведение измерения

2.3.1. Измеряемый транзистор подключают к схеме. Устанавливают заданный в стандартах режим измерения по постоянному току.

2.3.2. При измерении h_{21} э ток коллектора и ток базы определяют соответственно по показаниям приборов PA2 и PA3, при измерении h_{21} э +1 токи эмиттера и базы определяют по показаниям приборов PA1 и PA3.

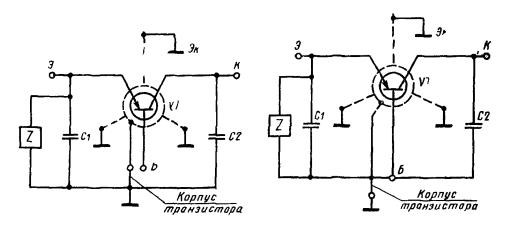
2.4. Обработка результатов

Значения параметров определяют по формулам:

$$h_{219} = \frac{I_{\text{K}}}{I_{\text{B}}}$$
 или $h_{219} + 1 = \frac{I_{\text{9}}}{I_{\text{B}}}$

2.5. Показатели точности измерения Показатели точности измерений соответствуют требованиям, указанным в п. 1.1.4.

ПРИЛОЖЕНИЕ Справочное


ПРИМЕРЫ СХЕМ ПОДКЛЮЧЕНИЯ ВЧ И СВЧ ТРАНЗИСТОРОВ К СХЕМАМ ИЗМЕРЕНИЯ СТАТИЧЕСКОГО КОЭФФИЦИЕНТА ПЕРЕДАЧИ ТОКА $h_{\ 219}$, ПРЕДСТАВЛЕННЫМ НА ЧЕРТ. 1—3 НАСТОЯЩЕГО СТАНДАРТА

1 Схемы подключения транзисторов к схемам измерения параметра $h_{21\mathfrak{S}}$ высокочастотные параметры которых удовлетворяют соотношению

$$\frac{f_{\rm rp}}{\tau_{\rm K}}$$
 < 30,

где f_{rp} — граничная частота коэффициента передачи тока, МГц,

 au_{κ} — постоянная времени цепи обратной овязи на высокой частоте, пс, приведены на черт 1

Э_К—экран, VT—измеряемый транзис тор, Z—ограничитель напряжения, C1, С2—блокировочные конденсаторы
Черт. 1

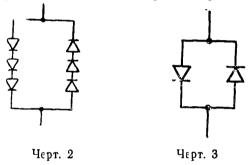
1 1 Конденсаторы C1 и C2 блогируют выводы транзистора по высокой частоте с целью повышения устойчивости и избежания паразитного самовозбуждения Эти конденсаторы монтируют непосредственно на выводах кснтактного устройства. Длину соединительных выводов необходимо сокращать до минимальной. Рекомендуется применение контактных устройств, в которых номинальные значения емкостей C_1 и C_2 являются составной частью конструкции. Значения емкостей C_1 и C_2 выбирают в пределах от 30 до 20000 пФ

Следует обеспечивать условия для уменьшения погрешности измерения за счет падения напряжения на соединительных проводах и контактах путем разделения контактов и соединительных выводов контактного устройства на токовые и потенциальные.

2 3ak 256

1.2. Для уменьшения проходной емкости эмиттера и коллектора контактного устройства отделяют выводы эмиттера и коллектора друг от друга электростатическим экраном.

Принимают меры к уменьшению взаимной индукции чежду выводами:


контактного устройства.

1.4. Вывод корпуса транзистора присоединяют к корпусу (к земле) измерительной установки через конденсатор (по высокой частоте). В этом случав номинал емкости выбирают в пределах от 10000 до 50000 пФ, а требования к монтажу аналогичны требованиям к монтажу конденсаторов С1 и С2.

1.5. Примеры схем ограничителя напряжения Z, предназначенного для защиты эмиттерного перехода от случайных увеличений напряжения обратной по-лярности и для ограничения напряжения холостого хода на зажимах контактного устройства при отключении транзистора, приведены на черт. 2 и 3 приложения. Схема на черг. 3 ограничивает напряжение на уровне ± (0,5-0,6) В, на черт. 2 — на уровне $\pm (1,5-1,8)$ В.

Урсвень ограничительного напряжения выбирают в 1.5—2 раза больше, чем

прямое падение напряжения на зажимах измеряемого транзистора.

2. Схема подключения транзисторся к схемам измерения параметра $h_{21,2}$, электрические параметры которых не удовлетворяют нераветству, приведенному в п. 1 приложения, представлена на черт. 4.

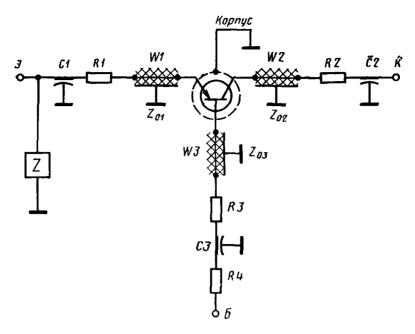
2.1. Волновые сопротивления линий $\mathcal{I}I - \mathcal{I}I3$ выбирают в пределах от 20 до

150 Ом. Рекомендуемые значения: Z_{01} =20 Ом, Z_{02} =50 Ом, Z_{03} =50 Ом

Следует обеспечивать условия для устранения паразитных связей линиями, подключенными к различным выводам транзистора.

2.2. Нагрузочные резисторы передающих линий разны волновым сопротивлениям соответствующих линий:

$$R_1 = Z_{01}; R_2 = Z_{02}; R_3 = Z_{03}$$


Нагрузочные резисторы включают последовательно в депи выводов тран-

зисторов на всех частотах.

Так как значения их малы, они не влияют на результаты измерения параметра $h_{21,2}$, в противном случае необходимо принимать меры,исключающие это влияние.

23. Значения емкостей проходных конденсаторов С1, С2, С3, которые выбирают в пределах от 300 до 10000 пФ, не сказываются на результатах измерения параметра h_{21} Э.

2.4. Следует обеспечивать условия для устранения паразитной связи между передающими линиями в цепях различных выводов транзистора и к уменьшению проходной емкости между выводами эмиттера и коллектора контактного устройства ($C_{
m K3} < C_{
m K3}$, где $C_{
m K3} -$ паразитная ємкость между выводами кол-

 $R1,\ R2,\ R3$ —нагрузочные резисторы; $C1,\ C2,\ C3$ —проходные конденсаторы; $W1,\ W2,\ W3$ —полосковые передающие линии с волновым сопротивлением $Z_{01},\ Z_{02},\ Z_{03}.$

Черт. 4

лектора и эмиттера контактного устройства; $c_{\mathrm{K} \ni}$ — емкость между выводами

коллектора и эмиттера измеряемого транзистора).

2.5. Отраничитель напряжения должен соответствовать требованиям, изложенным в п. 1.5. Дополнительным требованием является увеличение уровня ограничения по сравнению со значением уровня ограничения, указанным в п. 1.5, на значение ΔU_{\Im} , которое определяется как $\Delta U_{\Im} = I_{\Im} R_1$, и на значение ΔU_K определяемое как

$$\Delta U_{\mathrm{K}} = I_{\mathrm{K}} \cdot R_{\mathbf{2}} \cong R_{\mathbf{2}} \cdot I_{\mathfrak{B}}$$
 ,

где I_{\Im} — ток эмиттера, указанный в стандартах.

2.6. Напряжение коллектор-база при измерении в схеме, подключения, приведенной на черт. 4, определяют по формуле

$$U_{KB} = U_K - I_{\mathfrak{B}} \cdot R_2$$
,

где U — напряжение на источнике питания коллектора.