ФЕРРОТИТАН

МЕТОДЫ ОПРЕДЕЛЕНИЯ ХРОМА

Издание официальное

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

- Г.И. Капланов, И.К. Майборода, П.М. Геращенко, Н.И. Литвиненко, А.В. Цевина, Т.И. Гуреева, В.А. Джурда
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.04.85 № 1251
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. Стандарт полностью соответствует СТ СЭВ 4528-84
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
ГОСТ 61—75	2.2		
ΓΟCT 83—79	2.2, 3.2		
ΓΟCT 1277—75	3.2		
ΓOCT 3118—77	2.2, 4.2		
ΓΟCT 4147—74	4.2		
ΓΟCT 4204—77	2.2, 3.2		
ΓOCT 4220—75	2.2, 3.2, 4.2		
ΓOCT 4233—77	3.2		
ΓΟCT 4234—77	4.2		
ΓΟCT 446177	2.2, 3.2, 4.2		
ΓOCT 6613—86	1.2		
ΓΟCT 7172—76	2.2		
ΓOCT 10484—78	2.2, 3.2, 4.2		
ΓOCT 20478—75	3.2		
ΓOCT 20490—75	2.2, 3.2		
ΓOCT 28473—90	1.1		
CT C9B 4528—84	Вводная часть		
ТУ 6-09-07-1672-88	2.2		

- 6. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11—12—94)
- 7. ПЕРЕИЗДАНИЕ (декабрь 1998 г.) с Изменением № 1, утвержденным в ноябре 1990 г. (ИУС 1—91)

Редактор Р.Г.Говердовская Технический редактор В.Н.Прусакова Корректор В.И.Варенцова Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 16.02.99. Подписано в печать 18.03.99. Усл.печ.л. 0,93. Уч.-изд.л. 0,87. Тираж 138 экз. С 2276. Зак. 247.

межгосударственный СТАНДАРТ

ФЕРРОТИТАН

Методы определения хрома

FOCT 14250.12-85

Ferrotitanium. Methods of chromium determination

ОКСТУ 0809

Дата введения 01.07.86

Настоящий стандарт устанавливает методы определения хрома в ферротитане: фотометрический — при массовой доле хрома от 0,05 до 0,2 %; титриметрический — при массовой доле хрома от 0,2 до 2,0 %; атомно-абсорбционный — при массовой доле хрома от 0,05 до 2,0 %. Стандарт полностью соответствует СТ СЭВ 4528-84.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 28473.
- 1.2. Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц, проходящих через сито с сеткой № 016 по ГОСТ 6613.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на окислении хрома до шестивалентного марганцовокислым калием и окислении дефинилкарбазида хромом (VI) в сернокислой среде с образованием окращенного комплексного соединения. Измеряют оптическую плотность раствора на спектрофотометре при длине волны 580 нм или фотоэлектроколориметре в области светопропускания 510—560 нм.

Мешающие определению элементы отделяют осаждением углекислым натрием.

2.2. Аппаратура, реактивы и растворы Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота соляная поГОСТ 3118.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204, разбавленная 1:1, 1:4.

Кислота уксусная по ГОСТ 61.

Калий марганцовокислый по ГОСТ 20490, раствор с массовой концентрацией 10 г/лм³.

Натрий углекислый безводный по ГОСТ 83, раствор с массовой концентрацией 200 г/дм³.

Калий пиросернокислый по ГОСТ 7172.

1,5-дифенилкарбазид по ТУ 6-09-07-1672, свежеприготовленный раствор с массовой концентрацией 1 г/дм³: 0,1 г реактива растворяют в 10 см³ уксусной кислоты, приливают 90 см³ воды и перемешивают.

Калий двухромовокислый по ГОСТ 4220.

Издание официальное

Перепечатка воспрешена

© Издательство стандартов, 1985 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями Стандартный раствор хрома: 0,2829 г двухромовокислого калия, при необходимости перекристаллизованного и высущенного в течение 1 ч при температуре 170—180 °С, растворяют в воде в мерной колбе вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,0001 г хрома.

(Измененная редакция, Изм. № 1).

2.3. Проведение анализа

2.3.1. Навеску ферротитана массой 0,2 г растворяют в зависимости от массовой доли кремния одним из двух способов.

Способ 1. При массовой доле кремния до 5 % навеску ферротитана помещают в коническую колбу вместимостью 100 см³, приливают 20 см³ соляной кислоты, 5 см³ раствора серной кислоты 1:1 и нагревают до растворения навески. Затем приливают по каплям 1—2 см³ азотной кислоты и выпаривают до паров серной кислоты. Содержимое колбы охлаждают, приливают 30—40 см³ воды и нагревают до растворения солей.

При наличии нерастворимого остатка его отфильтровывают на фильтр средней плотности, промывают горячей водой, собирая фильтрат в коническую колбу вместимостью 250 см³ (основной раствор). Фильтр с остатком помещают в платиновый тигель, высушивают, озоляют и прокаливают при температуре 800—850 °C. Осадок в тигле смачивают 2—3 каплями воды, приливают 3—5 капель раствора серной кислоты 1:1 и 3—4 см³ раствора фтористоводородной кислоты. Содержимое тигля выпаривают досуха и прокаливают при температуре 550—600 °C. Остаток в тигле сплавляют с 1—2 г пиросернокислого калия, тигель охлаждают и плав растворяют в 20—25 см³ воды. Полученный раствор присоединяют к основному раствору и выпаривают до объема 30—40 см³.

Способ 2. При массовой доле кремния свыше 5 % навеску ферротитана помещают в платиновую чашку, смачивают 2—3 см³ воды, приливают 1,5—2 см³ раствора фтористоводородной кислоты, 3—4 см³ азотной кислоты, чашку с раствором нагревают до полного растворения навески, приливают 5 см³ раствора серной кислоты 1:1 и выпаривают до паров серной кислоты. Содержимое чашки охлаждают, приливают 5—10 см³ воды, нагревают до растворения солей и переводят в коническую колбу вместимостью 250 см³, обмывая стенки чашки горячей водой. Раствор выпаривают до объема 30—40 см³.

В полученный одним из указанных способов раствор, нагретый до температуры 70—80 °С, приливают 1 см³ раствора марганцовокислого калия, кипятят до выпадения осадка двуокиси марганца и разбавляют горячей водой до 40—50 см³, затем небольшими порциями при перемешивании приливают 30 см³ раствора углекислого натрия. Раствор с осадком охлаждают, переводят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

Раствор фильтруют через сухой плотный фильтр в сухую колбу вместимостью 250 см³, отбрасывая первые порции фильтрата.

Аликвотную часть анализируемого раствора 25 см³ помещают в мерную колбу вместимостью 100 см³, приливают 3 см³ раствора серной кислоты 1:4, 50 см³ воды, 5 см³ раствора дифенилкарбазида, доливают до метки водой и перемешивают.

Через 10—15 мин, если соотношение ванадия и хрома в пробе не превышает 3:1, или через 25—30 мин, если оно больше, измеряют оптическую плотность раствора на спектрофотометре при длине волны 580 нм или фотоэлектроколориметре в области светопропускания 510—560 нм. Раствором сравнения служит раствор контрольного опыта.

Массу хрома определяют по градуировочному графику.

- 2.3.2. Для построения градуировочного графика в шесть мерных колб из семи вместимостью по 250 см³ помещают 0,5; 1,0; 1,5; 2,5; 3,0 и 4,0 см³ стандартного раствора хрома, что соответствует 0,00005; 0,00010; 0,00015; 0,00025; 0,00030 и 0,00040 г хрома, доливают до метки водой и перемешивают. Аликвотные части растворов по 25 см³ помещают в мерные колбы вместимостью по 100 см³, приливают по 3 см³ раствора серной кислоты 1:4 и далее поступают, как указано в п. 2.3.1. Раствором сравнения служит раствор, не содержащий стандартного раствора хрома.
 - 2.4. Обработка результатов
 - 2.4.1. Массовую долю хрома (Ст) в процентах вычисляют по формуле

$$Cr = \frac{m_1}{m_2} \cdot 100 , \qquad (1)$$

где m_1 — масса хрома, найденная по градуировочному графику, г;

- т. масса навески, соответствующая аликвотной части анализируемого раствора, г.
- 2.4.2. Нормы точности и нормативы контроля точности измерения массовой доли хрома приведены в табл. 1.

		Допускаемое расхождение, %			
Массовая доля хрома, %	Погрешность результатов анализа, %	двух средних результатов анализа, выполненных в различных условиях	двух параллельных определений	трех парадлельных определений	результатов анализа стандартного образца от аттестованного значения
От 0,05 до 0,1 включ.	0,02	0,02	0,02	0,02	0,01
Св. 0,1 » 0,2 »	0,02	0.03	0,03	0,03	0,02
» 0,2 » 0,5 »	0,03	0,04	0,03	0,04	0,02
» 0,5 » 1,0 »	0,04	0,05	0,04	0,05	0,02
» 1,0 » 2,0 »	0,05	0,07	0,06	0,07	0,03

(Измененная редакция, Изм. № 1).

3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД

3.1. Сущность метода

Метод основан на окислении трехвалентного хрома надсернокислым аммонием до шестивалентного в сернокислой среде в присутствии азотнокислого серебра. Хромовую кислоту восстанавливают раствором соли двухвалентного железа, избыток которого оттитровывают раствором марганцовокислого калия.

3.2. Реактивы и растворы

Кислота серная по ГОСТ 4204, разбавленная 1:1, 1:4, 1: 19.

Кислота азотная по ГОСТ 4461.

Кислота фтористоводородная по ГОСТ 10484.

Натрий углекислый безводный по ГОСТ 83, раствор с массовой концентрацией 2 г/дм³.

Кислота фенилантраниловая, раствор с массовой концентрацией 2 г/дм3: 0,2 г фенилантраниловой кислоты растворяют при нагревании в 100 см³ раствора углекислого натрия.

Серебро азотнокислое по ГОСТ 1277, раствор с массовой концентрацией 2,5 г/дм³.

Аммоний надсернокислый по ГОСТ 20478, свежеприготовленный раствор с массовой концентрацией 200 г/дм³.

Натрий хлористый по ГОСТ 4233, раствор с массовой концентрацией 50 г/дм3.

Калий двухромовокислый по ГОСТ 4220 с концентрацией эквивалента 0,02 моль/дм³: 0,9808 г двухромовокислого калия, при необходимости перекристаллизованного и высущенного в течение 1 ч при температуре 170—180 °C, растворяют в воде в мерной колбе вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см³ раствора двухромовокислого калия содержит 0,0003466 г хрома.

Соль закиси железа и аммония двойная сернокислая (соль Мора), раствор с концентрацией эквивалента 0,02 моль/дм³: 8 г соли растворяют в 800—900 см³ раствора серной кислоты 1:19 в мерной колбе вместимостью 1 дм³, доливают до метки раствором серной кислоты 1:19 и перемещивают.

Массовую концентрацию раствора соли Мора устанавливают по двухромовокислому калию следующим образом: в коническую колбу вместимостью 500 см³ приливают 25 см³ раствора двухромовокислого калия, 30 см³ раствора серной кислоты 1:4 и 200 см³ воды. К раствору прибавляют 7 капель раствора фенилантраниловой кислоты и титруют раствором соли Мора до перехода синефиолетовой окраски раствора в зеленую.

Массовую концентрацию раствора соли Мора (Т), выраженную в г/см³ хрома, вычисляют по формуле

$$T = \frac{C_1 \cdot V_1}{V}, \tag{2}$$

где C_1 — концентрация хрома в растворе двухромовокислого калия, г/см³; V_1 — объем раствора двухромовокислого калия, взятый для титрования, см³; V — объем раствора соли Мора, израссодованный на титрование, см³.

Калий марганцовокислый по ГОСТ 20490, раствор с концентрацией эквивалента 0,02 моль/дм3: 0,64 г марганцовокислого калия растворяют в 500-600 см³ воды, переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемещивают. Раствор переволят в склянку из темного стекла, в которой его оставляют на 7-10 сут., а затем сливают в другую склянку из темного стекла.

Для установки соотношения растворов марганцовокислого калия и соли Мора в колбу вместимостью 250 см³ приливают из бюретки 25 см³ раствора соли Мора, 100 см³ воды, 40 см³ раствора серной кислоты 1:4 и титруют марганцовокислым калием до слабо-розовой окраски, устойчивой в течение 1 мин.

Соотношение растворов марганцовокислого калия и соли Мора (К) вычисляют по формуле

$$K = \frac{V_2}{V_3},\tag{3}$$

где V_2 — объем раствора марганцовокислого калия, израсходованный на титрование, см³; V_3 — объем раствора соли Мора, взятый для титрования, см³.

Массовую концентрацию раствора марганцовокислого калия (T_1) , выраженную в г/см³ хрома, вычисляют по формуле

$$T_{l} = \frac{T}{K}. \tag{4}$$

(Измененная редакция, Изм. № 1).

3.3. Проведение анализа

Навеску ферротитана массой, указанной в табл. 2, помещают в платиновую чашку, смачивают водой, приливают 10 см³ раствора фтористоводородной кислоты и 5 см³ азотной кислоты. Чашку с раствором нагревают до растворения навески, приливают 20 см³ раствора серной кислоты 1:1, нагревают до паров серной кислоты и охлаждают. Стенки чашки обмывают небольшим количеством воды и вновь выпаривают раствор до паров серной кислоты.

Таблица 2

Массовая доля хрома, %	Масса навески, г
От 0,2 до 1,0 включ.	1,0
Св: 1,0 → 2,0 →	0,5

После охлаждения в чашку прибавляют 30 см3 воды и растворяют соли при нагревании. Затем содержимое чашки переводят в коническую колбу вместимостью 500 см3, приливают горячей воды до 200 см³, приливают 10 см³ раствора серной кислоты 1:1, 10 см³ раствора азотнокислого серебра, 30 см³ раствора надсернокислого аммония, нагревают до появления малиновой окраски и кипятят до полного окисления хрома и разложения надсернокислого аммония. Затем добавляют 10 см³ раствора хлористого натрия и кипятят до исчезновения малиновой окраски. Раствор охлаждают до комнатной температуры, прибавляют из бюретки раствор соли Мора до перехода желтой окраски раствора в зеленую, добавляют еще 7—10 cm³ раствора соли Мора. Избыток раствора соли Мора при энергичном перемешивании оттитровывают раствором марганцовокислого калия до появления розовой окраски, устойчивой в течение 1 мин.

3.4. Обработка результатов

3.4.1. Массовую долю хрома (Сг) в процентах вычисляют по формуле

$$Cr = \frac{T_1(K \cdot V_4 - V_5)}{m} \cdot 100 , \qquad (5)$$

где V_4 — объем раствора соли Мора, взятый для титрования, см³;

 V_5 — объем раствора марганцовокислого калия, израсходованный на титрование избытка раствора соли Мора, см3;

т — масса навески, г.

3.4.2. Нормы точности и нормативы контроля точности измерения массовой доли хрома приведены в табл. 2.

(Измененная редакция. Изм. № 1).

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

4.1. Сущность метода

Метод основан на растворении пробы в смеси соляной и азотной кислот, последующем выпаривании с хлорной кислотой, распылении раствора в пламя закись азота-ацетилен и измерении атомной абсорбции хрома при длине волны 357,9 нм.

4.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный со всеми принадлежностями.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461.

Кислота хлорная плотностью 1,53 или 1,67 г/см³.

Кислота фтористоводородная по ГОСТ 10484.

Железо металлическое.

Железо треххлористое по ГОСТ 4147.

Раствор железа: 12.5 г металлического железа или 60,5 г треххлористого железа растворяют в 100 см³ раствора соляной кислоты и окисляют 4—6 каплями азотной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,025 г железа.

Титан металлический.

Раствор титана: 12,5 г титана растворяют при нагревании в 250 см³ раствора соляной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки раствором соляной кислоты и перемешивают.

1 см³ раствора содержит 0,025 г титана.

Калий хлористый по ГОСТ 4234, раствор с массовой концентрацией 190 г/дм³.

Хром металлический.

Калий двухромовокислый по ГОСТ 4220.

Стандартные растворы хрома.

Раствор А: 0,5000 г хрома в высоком стакане вместимостью 400 см³ растворяют в 100 см³ раствора соляной кислоты при нагревании, накрыв стакан часовым стеклом. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают

или 1,4144 г двухромовокислого калия, при необходимости перекристаллизованного и высушенного в течение 1 ч при температуре 170-180 °C и охлажденного в эксикаторе, растворяют в высоком стакане вместимостью 400 см 3 в 200 см 3 воды, переносят в мерную колбу вместимостью 500 см 3 , доливают до метки водой и перемешивают.

1 см³ раствора А содержит 0,001 г хрома.

Раствор Б: 25,0 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,00025 г хрома.

(Измененная редакция, Изм. № 1).

- 4.3. Проведение анализа
- 4.3.1. Навеску ферротитана массой 0,5 г при массовой доле хрома до 1 % или 0,25 г при массовой доле хрома свыше 1 % растворяют в зависимости от массовой доли кремния в пробе одним из двух способов.
- Способ 1. При массовой доле кремния до 5 % навеску ферротитана помещают в стакан вместимостью 250 см^3 , добавляют $10-15 \text{ см}^3$ раствора соляной кислоты и 5 см^3 азотной кислоты. После прекращения бурной реакции раствор нагревают до растворения пробы, затем добавляют 10 см^3 хлорной кислоты.
- Способ 2. При массовой доле кремния свыше 5 % навеску ферротитана помещают в платиновую чашку, смачивают водой, добавляют 10 см³ раствора фтористоводородной кислоты и небольшими порциями 5 см³ азотной кислоты. После прекращения бурной реакции раствор нагревают до растворения пробы, затем добавляют 10 см³ хлорной кислоты.

Раствор, полученный способом 1 или 2, выпаривают до паров хлорной кислоты, выпаривание продолжают еще в течение 5 мин, затем раствор охлаждают, добавляют 50 см³ воды и нагревают до растворения солей. После охлаждения раствор переносят в мерную колбу вместимостью 100 см³, добавляют 10 см³ раствора хлористого калия, доливают до метки водой и перемешивают. Раствор фильтруют через сухой плотный фильтр в сухой стакан, отбрасывая первые порции фильтрата.

4.3.2. Для построения градуировочного графика при массовой доле хрома до 1 % в восемь стаканов вместимостью по 250 см³ наливают по 2 см³ раствора железа и по 2 см³ раствора титана на каждые 10 % их содержания в навеске, добавляют по 5 см³ азотной кислоты, затем в семь стаканов

добавляют 1,0; 3,0; 6,0 см³ раствора Б, далее 2,0; 3,0; 4,0 и 5,0 см³ раствора А, что соответствует 0,00025; 0,00075; 0,00150; 0,00200; 0,00300; 0,00400 и 0,00500 г хрома.

При массовой доле хрома свыше 1 % в семь стаканов вместимостью по 250 см³ наливают по 1 см³ раствора железа и по 1 см³ раствора титана на каждые 10 % их содержания в навеске, добавляют по 5 см³ азотной кислоты, затем в шесть стаканов добавляют 2,5; 3,0; 3,5; 4,0; 4,5 и 5,0 см³ раствора А, что соответствует 0,0025; 0,0030; 0,0035; 0,0040; 0,0045 и 0,0050 г хрома.

Во все стаканы добавляют по 10 см³ хлорной кислоты и выпаривают растворы до паров хлорной кислоты, выпаривание продолжают еще в течение 5 мин, затем растворы охлаждают, добавляют по 5 см³ воды и нагревают до растворения солей. После охлаждения растворы переносят в мерные колбы вместимостью по 100 см³, добавляют по 10 см³ раствора хлористого калия, доливают до метки водой и перемещивают.

4.3.3. Атомную абсорбцию хрома измеряют в анализируемом растворе, растворе контрольного опыта и в растворах для построения градуировочного графика при длине волны 357,9 нм в пламени закись азота—ацетилен.

Градуировочный график строят по результатам, полученным после вычитания значения абсорбции раствора, не содержащего стандартный раствор хрома, из значений абсорбции растворов, содержащих стандартный раствор, и соответствующим им массовым долям хрома.

После вычитания значения атомной абсорбции раствора контрольного опыта из значения атомной абсорбции анализируемого раствора находят концентрацию хрома в растворе по градуировочному графику.

4.4. Обработка результатов

4.4.1. Массовую долю хрома (Ст) в процентах вычисляют по формуле

$$Cr = \frac{C \cdot V_6}{m} \cdot 100 , \qquad (6)$$

где C — концентрация хрома в растворе, найденная по градуировочному графику, г/см 3 ;

 V_6 — объем анализируемого раствора, см³;

т — масса навески, г.

4.4.2. Нормы точности и нормативы контроля точности измерения массовой доли хрома приведены в табл. 2.

(Измененная редакция, Изм. № 1).