ФЕРРОТИТАН

методы определения циркония

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ФЕРРОТИТАН

Методы определения циркония

ГОСТ 14250.11—80*

Ferrotitanium.

Methods for determination of zirconium

Взямен ГОСТ 14250.11—71

ОКСТУ 0809

Постановлением Государственного комитета СССР по стандартам от 17 марта 1980 г. № 1172 дата введения установлена

c 01.07.80

Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)

Настоящий стандарта устанавливает методы определения циркония в ферротитане: фотометрический — при массовой доле циркония от 0,01 до 2,5 %; атомно-абсорбционный — при массовой доле циркония от 0,2 до 2,5 %. Стандарт полностью соответствует СТ СЭВ 4526—84. (Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 28473—90.
- 1.2. Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц, проходящих через сито с сеткой № 016 по ГОСТ 6613—86.

12. ФОТОМЕТРИЧЕСКИЙ МЕТОД

1а.1. Сущность метода

Метод основан на способности циркония образовывать в 0,15—0,2 М растворе серной кислоты с ксиленоловым оранжевым комплексное соединение пурпурно-красного цвета. Оптическую плотность окрашенного раствора измеряют на спектрофотометре при длине волны 540 нм или фотоэлектроколориметре с светофильтром в области светопропускания от 500 до 560 нм.

Влияние железа устраняется восстановлением его аскорбиновой кислотой.

Разд. 1а. (Введен дополнительно, Изм. № 1).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр или фотоэлектроколориметр. Муфельная печь с температурой нагревания (1000±25) °C. Кислота соляная по ГОСТ 3118—77 и разбавленная 1:1. Кислота серная по ГОСТ 4204—77 и разбавленная 1:4, 1:3, 1:1.

Издание официальное

Перепечатка воспрещена

*Переиздание (декабрь 1998 г.) с Изменениями № 1, 2, утвержденными в апреле 1985 г., ноябре 1990 г. (ИУС 7—85, 1—91)

> © Издательство стандартов, 1980 © ИПК Издательство стандартов, 1999

Кислота аскорбиновая, раствор с массовой концентрацией 50 г/дм3.

Водорода перекись по ГОСТ 10929-76.

Динатриевая соль этилендиамин-N, N, N', N'-тетрауксусной кислоты (трилон Б) по ГОСТ 10652—73, 0,05 М раствор.

Аммоний хлористый по ГОСТ 3773—72, сухая соль и раствор с массовой концентрацией $10 \, \Gamma/\mathrm{дm}^3$.

Ксиленоловый оранжевый, раствор с массовой концентрацией 1 г/дм3.

Железо металлическое восстановленное.

Титан электролитический.

Кислота азотная по ГОСТ 4461-77.

Кислота фтористоводородная по ГОСТ 10484-78.

Аммиак водный по ГОСТ 3760-79.

Калий пиросернокислый по ГОСТ 7172-76.

Хлорокись циркония, стандартные растворы А и Б.

Раствор А: 3,534 г хлорокиси циркония помещают в стакан вместимостью 300 см³, приливают 100 см³ соляной кислоты и растворяют при нагревании. Раствор переливают в мерную колбу вместимостью 1000 см³, приливают 400 см³ соляной кислоты, охлаждают, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,001 г циркония.

Устанавливают массовую концентрацию стандартного раствора А: 50 см³ раствора помещают в стакан вместимостью 300 см³, добавляют 3 г хлористого аммония, аммиак до выпадения осадка гидроокиси и приливают аммиак с избытком 5 см³.

Полученный раствор нагревают до кипения, осадку дают скоагулироваться, отфильтровывают на фильтр средней плотности и промывают 6—8 раз горячим раствором аммония с массовой концентрацией 10 г/дм³. Фильтр с осадком помещают во взвешенный платиновый тигель, осторожно озоляют, прокаливают в муфельной печи при температуре (1000±25) °C до постоянной массы, охлаждают и взвещивают.

Массовую концентрацию стандартного раствора (7) вычисляют по формуле

$$T = \frac{[(m^{\text{\tiny s.4}} \ m_1) - (m_2 - m_3)] \cdot 0,7403}{V} \ ,$$

где т — масса платинового тигля с осадком двуокиси циркония, г;

 m_1 — масса платинового тигля без двуокиси циркония, г;

 m_2 — масса платинового тигля с осадком контрольного опыта, г;

 m_3 — масса платинового тигля без осадка контрольного опыта, г;

0,7403 — коэффициент пересчета двуокиси циркония на цирконий;

V— объем стандартного раствора A, взятый для установления титра, см³.

Раствор Б: 10 см³ стандартного раствора А помещают в мерную колбу вместимостью 100 см³, доливают раствор соляной кислотой (1:1) до метки.

1 см³ раствора Б содержит 0,0001 г циркония.

(Измененная редакция, Изм. № 1, 2).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Массу навески ферротитана и аликвотную часть раствора в зависимости от массовой доли пиркония определяют по табл. 1.

Таблица 1

Массовая доля циркония, %	Масса навески, г	Вместимость мерной колбы, см ³	Объем аликвотной части раствора, см ³	
От 0,01 до 0,1 Св. 0,1 » 0,5	0,5 0,25	100 250	10	
* 0,5 * 1,0 * 1,0 * 2,5	0,23 0,1 0.1	250 250 250	10	

Навеску ферротитана помещают в коническую колбу вместимостью 250 см³, приливают 25 см³ раствора серной кислоты 1:4 при массовой доле циркония от 0,01 до 0,1 % или 50 см³ раствора серной кислоты 1:3 при массовой доле циркония св. 0,1 до 1,0 % или 50 см³ раствора серной кислоты 1:1 при массовой доле циркония свыше 1,0 % и растворяют при слабом нагревании. Затем прибавляют 5 см³ азотной кислоты, раствор выпаривают до паров серной кислоты и охлаждают. Стенки колбы обмывают водой и вновь выпаривают до паров серной кислоты. Охлаждают, приливают 40—60 см³ воды, нагревают до растворения солей, отфильтровывают осадок кремниевой кислоты на фильтр средней плотности и промывают горячей водой 6—8 раз, фильтрат сохраняют (основной раствор).

Фильтр с осадком помещают в платиновый тигель, озоляют и прокаливают при температуре 600—700 °C. Осадок в тигле смачивают водой, прибавляют 3—5 капель раствора серной кислоты 1:1, 2—3 см³ раствора фтористоводородной кислоты и выпаривают досуха.

Остаток в тигле прокаливают при температуре 600—700 °С и сплавляют с 1 г пиросернокислого калия. Плав растворяют в горячей воде и присоединяют к основному раствору. Раствор выпаривают, охлаждают и переводят в мерную колбу вместимостью, указанной в табл. 1, доводят до метки водой, перемешивают и фильтруют через сухой фильтр средней плотности в сухую колбу. Первые порции фильтрата отбрасывают.

В две мерные колбы вместимостью по 50 см³ отбирают аликвотные части раствора, выбранные по табл. 1, приливают по 5 см³ раствора аскорбиновой кислоты, доводят водой до объема 40 см³, перемешивают. Через 20 мин во вторую колбу прибавляют 2 см³ раствора ди-Na-ЭДТА. Затем в обе колбы прибавляют по 1 см³ раствора ксиленолового оранжевого, доливают до метки водой и перемешивают. Раствор второй колбы служит раствором сравнения.

Через 5 мин измеряют оптическую плотность раствора пробы, раствора контрольного опыта и растворов для построения градуировочного графика на спектрофотометре при длине волны 540 нм или фотоэлектроколориметре в области светопропускания 510—560 нм.

После вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы находят массу циркония по градуировочному графику.

- 3.2. Для построения градуировочного графика в конические колбы вместимостью по 250 см³ в зависимости от массовой доли циркония в пробе поочередно отбирают стандартный раствор Б в количествах:
- 0,0; 0,5; 1,0; 1,5; 2,0 и 2,5 см³, что соответствует 0,0000; 0,00005; 0,00010; 0,00015; 0,00020 и 0,00025 г циркония при массовой доле циркония от 0,01 до 0,05 %.
- 0,0; 2,5; 3,0; 3,5; 4,0; 4,5 и 5,0 см³, что соответствует 0,0000; 0,00025; 0,00030; 0,00035; 0,00040; 0,00045 и 0,00050 г циркония при массовой доле циркония свыше 0,05 до 0,1 %;
- 0,0; 2,0; 3,0; 4,0; 5,0; 6,0; 8,0 и 10,0 см³, что соответствует 0,0000; 0,00020; 0,00030; 0,00040; 0,00050; 0,00060; 0,00080 и 0,00100 г циркония при массовой доле циркония свыше 0,1 до 1,0 %; 0,0; 10,0; 12,5; 15,0; 17,5; 20,0 и 25,0 см³, что соответствует 0,0000; 0,00100; 0,00125; 0,00150;

0,00175; 0,00200 и 0,00250 г циркония — при массовой доле циркония свыше 1,0 %.

Во все колбы добавляют навески железа и титана массой, соответствующей их содержанию в навеске, приливают по 25 см³ раствора серной кислоты 1:4 при массовой доле циркония от 0,01 до 0,1 % или 50 см³ раствора серной кислоты 1:3 — при массовой доле циркония свыше 0,1 до 1,0 % или 50 см³ раствора серной кислоты 1:1 при массовой доле циркония свыше 1 % и растворяют при нагревании. Далее поступают, как указано в п. 3.1.

Раствор, не содержащий стандартного раствора Б, служит раствором сравнения.

По полученным значениям оптических плотностей растворов и соответствующим им массовым долям циркония строят градуировочный график.

3.1, 3.2. (Измененная редакция, Изм. № 1, 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю циркония (Х) в процентах вычисляют по формуле

$$X=\frac{m\cdot 100}{m_1},$$

где m — масса циркония, найденная по градуировочному графику, г;

 m_1 — масса навески, г.

4.2. Нормы точности и нормативы контроля точности измерения массовой доли циркония приведены в табл. 2.

	Погрешность результатов анализа, %	Допускаемое расхождение, %			
Массовая доля циркония, %		двух средних результатов анализа, выполненных в различных условиях	двух параллельных определений	трех параллельных определений	результатов анализа стандартного образца от аттестованного значения
От 0,01 до 0,02 включ.	0,006	0.007	0,006	0,007	0,004
CB. 0.02 * 0.05 *	0,008	0,010	0,008	0.010	0,005
▶ 0,05 ▶ 0,10 ▶	0,02	0,02	0.02	0,02	0,01
* 0,1 * 0,2 *	0,02	0,03	0,03	0,03	0,02
* 0,2 * 0,5 *	0,03	0,04	0,03	0,04	0,02
* 0,5 * 1,0 *	0,04	0,05	0,04	0,05	0,03
* 1,0 * 2,5 *	0,06	0,07	0,06	0,07	0,04

(Измененная редакция, Изм. № 2).

5. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

5.1. Сущность метода

Метод основан на растворении пробы в смеси соляной и азотной кислот, распылении раствора в пламя закись азота-ацетилен и измерении атомной абсорбции циркония при длине волы 360,1 нм.

5.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный со всеми принадлежностями.

Кислота соляная по ГОСТ 3118—77 и разбавленная 1:1.

Кислота азотная по ГОСТ 4461-77.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1, 1:20.

Кислота фтористоводородная по ГОСТ 10484—78.

Калий пиросернокислый по ГОСТ 7172-76.

Аммиак водный по ГОСТ 3760-79.

Аммоний хлористый по ГОСТ 3773—72 и раствор с массовой концентрацией 10 г/дм3.

Калий углекислый по ГОСТ 4221—76 и раствор аммония с массовой концентрацией 10 г/дм³.

Железо треххлористое по ГОСТ 4147—74.

Железо металлическое.

Раствор железа: 12,5 г металлического железа или 60,5 г треххлористого железа растворяют в 100 см³ раствора соляной кислоты и окисляют 4—6 каплями азотной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемещивают.

1 см³ раствора содержит 0,025 г железа.

Титан металлический.

Раствор титана: 12,5 г титана растворяют при нагревании в 250 см³ раствора соляной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки раствором соляной кислоты и перемешивают.

1 см³ раствора титана содержит 0,025 г титана.

Алюминий металлический.

Раствор алюминия: 10 г алюминия растворяют при нагревании в 250 см³ раствора соляной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают. Перед применением при необходимости фильтруют.

1 см³ раствора содержит 0,02 г алюминия.

Циркония (IV) хлорокись.

Цирконий металлический.

Стандартный раствор циркония: 0,5000 г циркония помещают в платиновую чашку, приливают 5 см³ раствора фтористоводородной кислоты и небольшими порциями 5 см³ азотной кислоты. После полного растворения раствор выпаривают досуха и выпаривание повторяют еще два раза, добавляя по 5 см³ азотной кислоты. Охлажденный остаток растворяют в воде, переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,002 г циркония;

или 8,8330 г хлорокиси циркония помещают в стакан вместимостью 400 см³, растворяют при нагревании в 250 см³ раствора соляной кислоты. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки раствором соляной кислоты и перемешивают.

Аликвотную часть раствора 100 см³ помещают в мерную колбу вместимостью 250 см³, доливают до метки водой и перемешивают.

1 см³ раствора содержит примерно 0,002 г циркония.

Для установления массовой концентрации циркония от раствора в мерной колбе вместимостью 500 см³ отбирают 20 см³, помещают в стакан вместимостью 250 см³, добавляют 30 см³ воды, 3 г хлористого аммония, аммиак до выпадения осадка гидроокиси циркония и в избыток 5 см³. Раствор с осадком нагревают до кипения и через 1 ч фильтруют осадок на фильтр средней плотности, промывают 7—9 раз горячим раствором хлористого аммония. Фильтр с осадком помещают в прокаленный при температуре 850—950 °C в течение 5—10 мин и взвешенный платиновый тигель, высушивают, озоляют, прокаливают при температуре 950—1000 °C в течение 1 ч, охлаждают в эксикаторе и взвешивают.

Массовую концентрацию циркония в стандартном растворе (T), выраженную в г/см³, вычисляют как указано в разделе 2.

(Измененная редакция, Изм. № 2).

- 5.3. Проведение анализа
- 5.3.1. Навеску ферротитана массой 1 г растворяют в зависимости от массовой доли кремния в пробе одним из двух способов.

С п о с о б 1. При массовой доле кремния до 5 % навеску ферротитана помещают в стакан вместимостью 250 см³, приливают 10 см³ соляной кислоты и 5 см³ азотной кислоты. После прекращения бурной реакции раствор нагревают до растворения, затем добавляют 20 см³ раствора серной кислоты 1:1.

Способ 2. При массовой доле кремния свыше 5 % навеску ферротитана помещают в платиновую чашку, смачивают водой, приливают 10 см³ фтористоводородной кислоты и небольшими порциями 5 см³ азотной кислоты. После прекращения бурной реакции раствор нагревают до растворения пробы, затем добавляют 20 см³ раствора серной кислоты 1:1.

Раствор, полученный способом 1 или 2, выпаривают до паров серной кислоты, охлаждают, стенки стакана или чашки обмывают водой и вновь выпаривают до паров серной кислоты. После охлаждения к раствору добавляют 40 см³ воды и нагревают до растворения солей. Раствор фильтруют через фильтр средней плотности, промывают фильтр 7—9 раз горячей водой. Фильтрат и промывные воды помещают в стакан вместимостью 250 см³, выпаривают до объема 20—30 см³, охлаждают и сохраняют (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, затем прокаливают при температуре 700—800 °C в течение 5—10 мин. После охлаждения остаток смачивают 3—5 каплями раствора серной кислоты 1:1, приливают 3—5 см³ раствора фтористоводородной кислоты, затем содержимое тигля выпаривают досуха и прокаливают при температуре 700—800 °C в течение 3—5 мин. После охлаждения к остатку добавляют 2 г углекислого калия и сплавляют в течение 15—20 мин при температуре 900—950 °C. Охлажденный тигель помещают в стакан вместимостью 250 см³, приливают примерно 40 см³ воды и выщелачивают плав при нагревании. Тигель вынимают из стакана, обмывают горячей водой и оставляют стакан с раствором в теплом месте на 5 мин, затем фильтруют раствор через фильтр средней плотности и промывают фильтр 5—7 раз теплым раствором углекислого калия. Фильтрат и промывные воды отбрасывают.

Фильтр с осадком помещают в тот же платиновый тигель, высушивают, озоляют, затем прокаливают при температуре 800—900°С, в течение 5 мин. После охлаждения в тигель добавляют 1 г пиросернокислого калия и сплавляют при температуре 900 °С. Тигель охлаждают, приливают 10 см³ раствора серной кислоты 1:20 и выщелачивают плав при нагревании. Полученный раствор присоединяют к основному раствору.

После охлаждения объединенный раствор переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

5.3.2. Для построения градуировочного графика в семь стаканов вместимостью по 250 см³ наливают по 4 см³ раствора железа и по 4 см³ раствора титана, на каждые 10 % их содержания в навеске по 0,5 см³ раствора алюминия на каждый процент его содержания в навеске пробы, приливают 5 см³ азотной кислоты, по 20 см³ раствора серной кислоты 1:1, затем в шесть стаканов добавляют 1,0; 2,5; 5,0; 7,5; 10,0 и 12,5 см³ стандартного раствора циркония, что соответствует 0,002; 0,005; 0,010; 0,015; 0,020 и 0,025 г циркония.

Все растворы выпаривают до паров серной кислоты, охлаждают, обмывают стенки стаканов небольшим количеством воды и выпаривание повторяют. После охлаждения к раствору добавляют по 40 см³ воды, по 1 г пиросернокислого калия, нагревают до растворения солей, охлаждают, переносят в мерные колбы вместимостью по 100 см³, доливают до метки водой и перемешивают.

5.3.3. Атомную абсорбшию пиркония измеряют в анализируемом растворе, растворе контрольного опыта и в растворах для построения градуировочного графика при длине волны 360,1 нм в пламени закись азота-ацетилен.

Градуировочный график строят по результатам, полученным после вычитания значения атомной абсорбции раствора, не содержащего стандартный раствор циркония, из значений атомных абсорбций растворов, содержащих стандартный раствор, и соответствующим им массовым долям циркония.

После вычитания значения атомной абсорбции раствора контрольного опыта из значения атомной абсорбции анализируемого раствора находят концентрацию циркония в растворе пробы по градуировочному графику.

- 5.4. Обработка результатов
- 5.4.1. Массовую долю циркония (Zr) в процентах вычисляют по формуле

$$Zr = \frac{C \cdot V}{m} \cdot 100,$$

- где C концентрация циркония в растворе или в аликвотной части, найденная по градуировочному графику, г/см³;
 - V— объем анализируемого раствора, см 3 ;
 - m масса навески пробы или ее части, соответствующей аликвотной части анализируемого раствора, г.
- 5.4.2. Нормы точности и нормативы контроля точности измерения массовой доли циркония приведены в табл. 1.

(Измененная редакция, Изм. № 2).

Редактор Р.Г. Говердовская Технический редактор В.Н. Прусакова Корректор С.Н. Гаврищук Компьютерная верстка В.И. Грищенко

Изл. лиц. № 021007 от 10.08.95.

Сдано в набор 16.02.99.

Подписано в печать 18.03.99. C2275. 3ak. 246.

Усл. печ. л. 0,93