# КОНЦЕНТРАТЫ ЦИНКОВЫЕ

# МЕТОД ОПРЕДЕЛЕНИЯ МЫШЬЯКА

Издание официальное

# межгосударственный стандарт

### КОНЦЕНТРАТЫ ЦИНКОВЫЕ

## Метод определения мышьяка

**ΓΟCT 14048.5—78** 

Zinc concentrates.

Method for determination of arsenic

ОКСТУ 1709

Дата введения 01.01.80

Настоящий стандарт распространяется на цинковые концентраты всех марок и устанавливает фотометрический метод определения массовой доли мышьяка от 0,05 до 0,7 %. Метод основан на фотометрическом определении мышьяка в виде синего мышьякомолибденового комплекса в области длин волн 660-680 нм после отделения его от сопутствующих элементов путем дистилляции в виде треххлористого соединения или экстракцией четыреххлористым углеродом из раствора c (HCl)=9 моль/дм<sup>3</sup>, содержащего 0,1 моль/дм<sup>3</sup> иодида калия.

Стандарт полностью соответствует рекомендации СЭВ РС 520—66.

(Измененная редакция, Изм. № 1, 2).

### 1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методу анализа по ГОСТ 27329.
- 1.2. Контроль правильности результатов анализа осуществляют с помощью стандартных образцов, методом добавок или сопоставлением результатов анализа, полученных по стандартизованной и аттестованной методикам, не реже одного раза в месяц, а также при смене реактивов, растворов, после длительного перерыва в работе в соответствии с ГОСТ 14048.2.
  - 1.1, 1.2. (Измененная редакция, Изм. № 2).

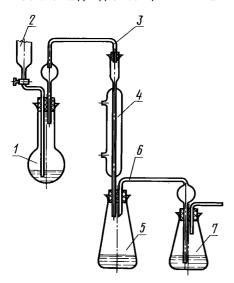
#### 1а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 1а.1. Требования безопасности по ГОСТ 25363 с дополнениями:
- при проведении анализа используются реактивы, оказывающие вредное воздействие на организм человека: кислоты, гидроксид натрия, сернокислый гидразин, пероксид водорода, мышья-ковистый ангидрид и соли мышьяка, четыреххлористый углерод. При работе с указанными веществами необходимо руководствоваться требованиями безопасности, изложенными в нормативно-технической документации на их изготовление и применение;
- содержание вредных веществ в воздухе рабочей зоны (паров кислот, четыреххлористого углерода, трихлорида мышьяка), выделяющихся в ходе анализа, не должно превышать предельно допустимых концентраций по ГОСТ 12.1.005; контроль следует осуществлять по методическим указаниям, утвержденным Минздравом СССР, или по ГОСТ 12.1.016.

(Измененная редакция, Изм. № 1, 2).

### 2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

2.1. Для проведения анализа применяют:


спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра со всеми принадлежностями;

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1978 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями

#### Установка для дистилляции мышьяка



1 — перегонная колба вместимостью 500 см<sup>3</sup>; 2 — капельная воронка; 3 — насадка с брызгоуловителем; 4 — водяной холодильник; 5 — приемник (коническая колба вместимостью 250 см<sup>3</sup>); 6 — стеклянная трубка с грушевидным расширением; 7 — контрольный приемник (коническая колба вместимостью 250 см<sup>3</sup>)

установку для дистилляции мышьяка (см. чертеж); весы лабораторные рычажные по ГОСТ 24104; колбы стеклянные лабораторные по ГОСТ 25336;

цилиндры, колбы мерные и воронки делительные стеклянные по ГОСТ 1770;

пипетки стеклянные по НТД;

кислоту азотную по ГОСТ 4461;

кислоту серную по ГОСТ 4204, разбавленную 1:1 и 1:5; кислоту соляную по ГОСТ 3118, плотностью 1,19 г/см<sup>3</sup> и очищенную от мышьяка следующим образом: в 500 см<sup>3</sup> соляной кислоты растворяют 10 г йодистого калия. Раствор переносят в делительную воронку вместимостью 500 см<sup>3</sup>, прибавляют 25 см<sup>3</sup> четыреххлористого углерода и встряхивают в течение 2 мин. Дают отстояться и сливают органический слой. Водный слой еще раз экстрагируют 25 см<sup>3</sup> четыреххлористого углерода. Органический слой отбрасывают;

кислоту соляную раствор  $\hat{c}$  (HCl)=9 моль/дм<sup>3</sup> готовят из очищенной от мышьяка соляной кислоты разбавлением водой 3:1:

аммоний молибденовокислый по ГОСТ 3765, раствор соли в серной кислоте; готовят следующим образом: 1 г соли растворяют в 100 см<sup>3</sup> серной кислоты, разбавленной 1:5;

водорода пероксид по ГОСТ 10929, раствор 10 г/дм<sup>3</sup>; гидразин сернокислый по ГОСТ 5841 и раствор  $1.5 \text{ г/дм}^3$ ;

калий бромистый по ГОСТ 4160 и раствор 0,07 г/дм<sup>3</sup> (5 см<sup>3</sup> раствора концентрации 1,5 г/дм<sup>3</sup> разбавляют водой по 100 см<sup>3</sup>);

натрия гидроксид по ГОСТ 4328, раствор 100 г/дм<sup>3</sup>;

реактивную смесь, свежеприготовленную; готовят следующим образом: к 25 см<sup>3</sup> раствора молибденовокислого аммония прибавляют 2,5 см<sup>3</sup> раствора сернокислого гидразина. Раствор переводят в мерную колбу вместимостью 100 см<sup>3</sup>, разбавляют до метки водой и перемешивают;

калий марганцовокислый по ГОСТ 20490, раствор 1 г/дм3;

калий йодистый по ГОСТ 4232;

титан треххлористый по НТД;

углерод четыреххлористый по ГОСТ 20288;

фенолфталеин по НТД, спиртовой раствор 1 г/дм<sup>3</sup>;

ангидрид мышьяковистый по ГОСТ 1973;

стандартные растворы мышьяка.

Раствор А. 0,132 г мышьяковистого ангидрида растворяют при нагревании в 5-10 см<sup>3</sup> раствора, содержащего 100 г/дм<sup>3</sup> едкого натра, переводят в мерную колбу вместимостью 1000 см<sup>3</sup>, нейтрализуют по фенолфталеину серной кислотой, разбавленной 1:5, доливают до метки водой и перемешивают.

1 см<sup>3</sup> раствора А содержит 0,1 мг мышьяка.

Раствор Б. 10 см<sup>3</sup> раствора А помещают в мерную колбу вместимостью 100 см<sup>3</sup> доводят до метки водой и перемешивают.

1 см<sup>3</sup> раствора Б содержит 0,01 мг мышьяка.

(Измененная редакция, Изм. № 1, 2).

# 3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. При определении мышьяка дистилляционно-фотометрическим способом навеску цинкового концентрата массой 0,5000—1,000 г (в зависимости от содержания мышьяка) помещают в коническую колбу вместимостью 250 см<sup>3</sup>, смачивают водой, приливают 10—15 см<sup>3</sup> азотной кислоты и оставляют при комнатной температуре до прекращения бурной реакции. После выпаривания основной массы кислоты приливают 10 см<sup>3</sup> разбавленной 1:1 серной кислоты и нагревают раствор до появления паров серной кислоты. Затем раствор охлаждают, обмывают стенки колбы 5 см<sup>3</sup> воды

и повторяют выпаривание до появления паров серной кислоты. К остатку приливают 70 см<sup>3</sup> воды, нагревают в течение 15—20 мин и после охлаждения переливают в перегонную колбу. Колбу, в которой проводилось разложение пробы, обмывают три раза водой по 8—10 см<sup>3</sup>. К раствору в перегонной колбе добавляют 2 г сернокислого гидразина, 0,5 г бромистого калия и закрывают колбу пробкой, снабженной насадкой (с брызгоуловителем) и капельной воронкой. Насадку соединяют с водяным холодильником. Конец холодильника соединяют с приемником, в который предварительно наливают 30 см<sup>3</sup> воды и 10 см<sup>3</sup> раствора пероксида водорода. Контрольный приемник должен содержать 40—50 см<sup>3</sup> воды. Уровень воды в контрольном приемнике должен быть на 10—20 мм выше конца трубки.

В перегонную колбу через капельную воронку вводят  $100 \text{ см}^3$  соляной кислоты, раствор перемешивают и нагревают до кипения. Температуру кипения поддерживают в течение всего времени отгонки. Дистилляция считается законченной, когда отгоняются  $^2/_3$  объема жидкости.

Дистиллят из приемников переливают в мерную колбу вместимостью 250 см<sup>3</sup>, обмывают стенки приемников водой, доводят объем раствора до метки водой и перемешивают. Затем отбирают 2—20 см<sup>3</sup> раствора, содержащего 0,005—0,04 мг мышьяка, помещают в стакан вместимостью 100 см<sup>3</sup>, прибавляют 10 см<sup>3</sup> азотной кислоты и выпаривают досуха. Сухой остаток нагревают в течение 1 ч при 120—130 °C, затем охлаждают и приливают к нему 20 см<sup>3</sup> реактивной смеси и 20 см<sup>3</sup> воды. Раствор нагревают и кипятят 3—5 мин. После охлаждения его переводят в мерную колбу вместимостью 50 см<sup>3</sup>, доводят до метки реактивной смесью и перемешивают.

Измеряют оптическую плотность раствора на фотоэлектроколориметре или спектрофотометре в области длин волн 660—680 нм в кюветах с оптимальной толщиной поглощающего слоя. В качестве раствора сравнения применяют раствор контрольного опыта, проведенный через все стадии анализа.

Количество мышьяка устанавливают по градуировочному графику.

3.2. При определении мышьяка экстракционно-фотометрическим способом навеску цинкового концентрата 0,5 г (при массовой доле мышьяка от 0,05 до 0,1 %) или 0,1 г (при больших массовых долях мышьяка) растворяют в 20 см³ азотной кислоты. Прибавляют 20 см³ серной кислоты, разбавленной 1:1, и осторожно выпаривают до паров серной кислоты. Стенки колбы обмывают водой и выпаривание до паров серной кислоты повторяют. Раствор переводят в мерную колбу вместимостью 100 см³, доводят до метки водой. Из осветленной части раствора берут аликвотную часть, содержащую 0,005—0,04 мг мышьяка, и переносят в делительную воронку. Прибавляют по каплям треххлористый титан до сиреневого цвета и дают избыток 0,2 см³. Прибавляют трехкратный объем очищенной соляной кислоты, 20 см³ четыреххлористого углерода и встряхивают в течение 2 мин. Дают отстояться и сливают органический слой в другую делительную воронку. Экстракцию с 20 см³ четыреххлористого углерода повторяют и присоединяют органический слой к первому. Объединенные экстракты промывают 10 см³ раствора соляной кислоты 9 моль/дм³, встряхивая 15—20 с. Промытый экстракт сливают в другую делительную воронку, где встряхивают с 10 см³ воды. При этом мышьяк переходит в водный слой. Реэкстракцию мышьяка с 10 см³ воды повторяют. Объединенные реэкстракты сливают в коническую колбу вместимостью 100 см³.

Добавляют по каплям раствор марганцовокислого калия до розовой окраски.

Через 5 мин прибавляют 2 см $^3$  раствора молибденовокислого аммония и нагревают до кипения. Добавляют по каплям раствор сернокислого гидразина концентрации 1,5 г/дм $^3$  до обесцвечивания розовой окраски, затем 4 см $^3$  раствора гидразина концентрации 0,07 г/дм $^3$  и кипятят 5 мин. Охлаждают, переносят в мерную колбу вместимостью 50 см $^3$ , разбавляют водой до метки и перемешивают.

Измеряют оптическую плотность раствора, как описано в п. 3.1.

3.1. 3.2. (Измененная редакция, Изм. № 1, 2).

3.3. Для построения градуировочного графика при дистилляционно-фотометрическом способе в стаканы вместимостью по 100 см<sup>3</sup> отмеривают микробюреткой 0; 1; 2; 3; 4 и 5 см<sup>3</sup> стандартного раствора Б, что соответствует 0; 0,01; 0,02; 0,03; 0,04 и 0,05 мг мышьяка. Прибавляют по 10 см<sup>3</sup> азотной кислоты, выпаривают содержимое стаканов досуха и выдерживают в течение 1 ч при 120—130 °C. Затем поступают так же, как указано в п. 3.1. В качестве раствора сравнения применяют раствор, не содержащий стандартного раствора Б, проведенный через все стадии.

По полученным значениям оптических плотностей растворов и соответствующим им массовым долям мышьяка строят градуировочный график.

3.4. Для построения градуировочного графика при экстракционно-фотометрическом способе в конические колбы вместимостью по 100 см<sup>3</sup> отмеривают микробюреткой 0; 1; 2; 3; 4 и 5 см<sup>3</sup> стандартного раствора Б, что соответствует 0; 0,01; 0,02; 0,03; 0,04 и 0,05 мг мышьяка, разбавляют

до 20 см<sup>3</sup> водой, прибавляют по каплям раствор марганцовокислого калия до розовой окраски. Через 5 мин прибавляют 20 см<sup>3</sup> реактивной смеси и далее анализ продолжают, как указано в п. 3.2.

По полученным значениям оптических плотностей растворов и соответствующим им массовым долям мышьяка строят градуировочный график.

(Измененная редакция, Изм. № 1).

### 4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю мышьяка (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{V_1 \cdot m \cdot 1000} ,$$

где  $m_1$  — количество мышьяка, найденное по градуировочному графику, мг;

 $\dot{V}$ — объем исходного раствора пробы, см<sup>3</sup>;

 $V_1$  — объем аликвотной части раствора, см<sup>3</sup>;

m — масса навески концентрата, г.

# (Измененная редакция, Изм. № 1).

4.2. Абсолютные значения разностей результатов двух параллельных определений (показатель сходимости) и результатов двух анализов (показатель воспроизводимости) с доверительной вероятностью P=0.95 не должны превышать значений допускаемых расхождений, указанных в таблице.

| Массовая доля мышьяка, % | Допускаемое расхождение параллельных определений, % | Допускаемое расхождение результатов анализа, % |  |
|--------------------------|-----------------------------------------------------|------------------------------------------------|--|
| От 0,030 до 0,060 включ. | 0,010                                               | 0,015                                          |  |
| Св. 0,060 » 0,10 »       | 0,02                                                | 0,03                                           |  |
| » 0,10 » 0,30 »          | 0,03                                                | 0,04                                           |  |
| » 0,30 » 0,50 »          | 0,04                                                | 0,05                                           |  |
| » 0,50 » 0,70 »          | 0,05                                                | 0,06                                           |  |

(Измененная редакция, Изм. № 2).

### ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

### **РАЗРАБОТЧИКИ**

- М.Г. Саюн, К.Ф. Гладышева, В.И. Лысенко, Л.И. Максай, Н.А. Романенко, В.А. Колесникова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.09.78 № 2584
- 3. B3AMEH FOCT 14048.5-68
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

| Обозначение НТД,<br>на который дана ссылка                                                                                           | Номер пункта                                           | Обозначение НТД,<br>на который дана ссылка                                                                                            | Номер пункта                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| FOCT 12.1.005—84<br>FOCT 12.1.016—79<br>FOCT 1770—74<br>FOCT 1973—77<br>FOCT 3118—77<br>FOCT 3765—78<br>FOCT 4160—74<br>FOCT 4232—74 | 1a.1<br>1a.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1<br>2.1 | ГОСТ 4328—77<br>ГОСТ 10929—76<br>ГОСТ 14048.2—78<br>ГОСТ 20288—74<br>ГОСТ 20490—75<br>ГОСТ 24104—88<br>ГОСТ 25336—82<br>ГОСТ 25366—82 | 2.1<br>2.1<br>1.2<br>2.1<br>2.1<br>2.1<br>2.1<br>1a.1 |
| ΓΟCT 4232—77<br>ΓΟCT 4233—77<br>ΓΟCT 4238—77                                                                                         | 2.1<br>2.1<br>2.1                                      | FOCT 27329—87                                                                                                                         | 1.1                                                   |

- 5. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 6. ПЕРЕИЗДАНИЕ (март 1999 г.) с Изменениями № 1 и 2, утвержденными в мае 1984 г., январе 1991 г. (ИУС 8—84, 6—91)

Редактор В.Н. Копысов Технический редактор О.Н.Власова Корректор Р.А. Ментова Компьютерная верстка В.И. Грищенко

Изд. лиц. № 021007 от 10.08.95.

8.95. Сдано в набор 22.03.99. Уч.-изд. л. 0,60. Тираж 125 экз.

Подписано в печать 08.04.99. C2537. Зак. 322.

Усл. печ. л. 0,93.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6. Плр № 080102