ФЕРРОБОР

МЕТОДЫ ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

Издание официальное

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

РАЗРАБОТЧИКИ

- И.К. Майборода, В.В. Мирошниченко
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24.08.78 № 2330
- 3. Стандарт полностью соответствует СТ СЭВ 2206-80
- 4. B3AMEH FOCT 14021.8-68
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта	
ГОСТ 61—75	2.2, 3.2	ГОСТ 5712—78	2.2	
ГОСТ 2053—77	3.2	ГОСТ 9656—75	2.2	
ГОСТ 3117—78	2.2, 3.2	ГОСТ 10484—78	2.2	
ΓOCT 3118—77	2.2, 3.2	ΓΟCT 18300—87	2.2, 3.2	
ΓΟCT 3760—79	2.2	ГОСТ 22180—76	2,2	
ΓOCT 4204—77	2.2	ΓΟCT 25207—85	1.1	
ΓOCT 4233—77	3.2	ГОСТ 28473—90	1.1	
ΓΟCT 4328—77	3.2	ТУ 6-09-01-755-88	2.2	
ΓΟCT 4461—77	2.2	ТУ 6-09-5404-88	3.2	
Γ OCT 4463 —76	2.2			

- Ограничение срока действия снято по протоколу № 4—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4—94)
- 7. ПЕРЕИЗДАНИЕ (март 1999 г.) с Изменениями № 1, 2, утвержденными в августе 1981 г., мае 1989 г. (ИУС 11—81, 8—89)

Редактор В.П. Огурцов Технический редактор В.Н. Прусакова Корректор Н.Л. Шнайдер Компьютерная верстка Л.А. Круговой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 07.04.99. Подписано в печать 21.04.99. Усл. печ. л. 0,93. Уч.-изд. л. 0,83. Тираж 133 экз. С2650. Зак. 1014.

межгосударственный стандарт

ФЕРРОБОР

Методы определения алюминия

ГОСТ 14021.8—78

Ferroboron.

Methods for the determination of alluminium

ОКСТУ 0809

Дата введения 01.01.80

Настоящий стандарт устанавливает гравиметрический криолитовый (при массовой доле алюминия от 0,3 до 15 %) и титриметрический трилонометрический (при массовой доле алюминия от 0,5 до 15 %) методы определения алюминия в ферроборе, применяющемся для легирования сталей и сплавов.

(Измененная редакция, Изм. № 2).

1. ОБШИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ 28473.

(Измененная редакция, Изм. № 2).

1.2. Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц 0,16 мм по ГОСТ 25207.

(Введен дополнительно, Изм. № 2).

2. ГРАВИМЕТРИЧЕСКИЙ КРИОЛИТОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

2.1. Сущность метода

Метод основан на отделении алюминия от мешающих элементов фторидом натрия из слабокислого раствора, растворении осадка криолита алюминия в смеси борной и соляной кислот и осаждении алюминия ортооксихинолином. Алюминий образует с ортооксихинолином труднорастворимое внутрикомплексное соединение состава Al $(C_6H_6ON)_3$, которое при прокаливании превращается в окись алюминия.

(Измененная редакция, Изм. № 1).

2.2. Реактивы и растворы

Кислота соляная по ГОСТ 3118.

Кислота азотная по ГОСТ 4461.

Кислота серная по ГОСТ 4204, разбавленная 1:100 и 1:1.

Кислота фтористоводородная по ГОСТ 10484.

Аммиак водный по ГОСТ 3760, раствор с массовой долей 25 %.

Кислота шавелевая по ГОСТ 22180.

Аммоний лимоннокислый двузамещенный по ТУ 6—09—01—755—88, раствор с массовой долей 40 %.

Аммоний щавелевокислый по ГОСТ 5712.

Кислота уксусная по ГОСТ 61, раствор с массовой долей 80 %.

Натрий фтористый по ГОСТ 4463, растворы с массовой долей 3,5 и 0,5 %.

Кислота борная по ГОСТ 9656.

Аммоний уксуснокислый по ГОСТ 3117, растворы с массовой долей 20 и 25 %.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1978 © ИПК Издательство стандартов, 1999 Переиздание с Изменениями Спирт этиловый по ГОСТ 18300.

Натрий пиросернокислый.

Раствор комплексообразователя готовят следующим образом: к 1000 см³ лимоннокислого двузамещенного раствора аммония прибавляют 1000 см³ насыщенного при комнатной температуре раствора шавелевокислого аммония и перемешивают.

Смесь борной и соляной кислот готовят следующим образом: к 300 см³ насыщенного при комнатной температуре раствора борной кислоты прибавляют 50 см³ соляной кислоты, 1200 см³ воды и перемешивают.

8-оксихинолин, раствор с массовой долей 5 %; готовят следующим образом: 50 г ортооксихинолина растворяют в 50 см³ раствора уксусной кислоты, раствор вливают в 950 см³ воды, нагретой до 60 °C, перемешивают, охлаждают и фильтруют.

Промывная жидкость; готовят следующим образом: к 1000 см³ теплой воды добавляют 10 см³ раствора уксуснокислого аммония с массовой долей 25 % и две капли раствора аммиака.

Кислота хлорная, раствор с массовой долей 57 %. Метиловый оранжевый, раствор с массовой долей 0,1 %.

Индикатор универсальный, бумага.

2.3. Проведение анализа

Величину навески ферробора определяют в зависимости от массовой доли алюминия по табл. 1.

	Таблица 1	
Массовая доля алюминия, %	Масса навески, г	
До 1,0	1,0	
Св. 1.0 до 3.0	0,5	
» 3,0 » 15,0	0,25	

Навеску ферробора помещают в платиновую чашку, смачивают водой, добавляют $20~{\rm cm}^3$ раствора азотной кислоты, разбавленной 1:1, нагревают от 3 до $5~{\rm мин}$, затем после растворения основной массы навески добавляют от $10~{\rm дo}~15~{\rm cm}^3$ раствора фтористоводородной кислоты, $10~{\rm cm}^3$ горячего раствора хлорной кислоты, нагревают до появления густых паров хлорной

кислоты. Стенки чашки обмывают водой и выпаривают досуха. В охлажденную чашку приливают 10 см^3 соляной кислоты, нагревают до растворения солей, затем приливают от 50 до 60 см^3 горячей воды. Содержимое чашки переводят в стакан вместимостью от 300 до 400 см^3 и нагревают раствор до кипения. Осадок фильтруют на фильтр средней плотности и промывают его 6-8 раз горячим раствором серной кислоты 1:100. Фильтрат сохраняют.

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют и прокаливают при температуре от 700 до 800 °C. Прибавляют 2 г пиросернокислого натрия и сплавляют от 3 до 5 мин при температуре от 700 до 750 °C. Тигель охлаждают, плав выщелачивают в 50 см³ горячей воды и, не фильтруя, растворы объединяют.

Охлажденный раствор объемом около 150 см³ нейтрализуют аммиаком по универсальной индикаторной бумаге до рН от 4 до 5 и добавляют 14 капель серной кислоты, разбавленной 1:1.

Раствор охлаждают, приливают 80 см^3 раствора комплексообразователя, перемешивают около 2 мин, приливают 80 см^3 раствора фторида натрия с массовой долей 3,5 %, энергично перемешивают 2-3 мин, после чего выпавшему осадку криолита дают отстояться 20-30 мин.

Осадок криолита отфильтровывают на один плотный фильтр с добавлением небольщого количества фильтробумажной массы. Осадок промывают от 10 до 15 раз раствором фтористого натрия с массовой долей 0,5 % и растворяют на фильтре от 70 до 80 см³ кипящей смеси соляной и борной кислот. Раствор собирают в стакан, в котором проводилось осаждение. Фильтр промывают 5—6 раз горячей водой, собирая промывные воды в тот же стакан.

Через 20 мин осадок криолита-алюминия (при малом содержании алюминия осадок почти незаметен вследствие близких коэффициентов преломления у раствора и кристаллов осадка) отфильтровывают на два фильтра «синяя лента». Осадок промывают 10—15 раз раствором фтористого натрия с массовой долей 0,5 % и растворяют на фильтре 70—80 см³ кипящей смеси борной и соляной кислот. Раствор собирают в стакан, в котором происходило осаждение. Фильтр промывают 5—6 раз горячей водой, собирая промывные воды в тот же стакан.

К полученному раствору прибавляют 2—3 капли раствора метилового оранжевого, раствор аммиака до перехода окраски раствора из красной в желтую, а затем по каплям добавляют соляную кислоту до перехода окраски в розовый цвет и в избыток пять капель.

К солянокислому раствору приливают $10~{\rm cm^3}$ раствора 8-оксихинолина и $10~{\rm cm^3}$ раствора уксуснокислого аммония с массовой долей 20~%. После перемешивания и появления мути прибавляют еще $25~{\rm cm^3}$ уксуснокислого аммония и $5~{\rm cm^3}$ раствора аммиака (после прибавления каждого

реактива раствор перемешивают). Содержимое стакана нагревают до 60-70 °C и выдерживают при этой температуре в течение 10-15 мин до коагуляции осадка оксихинолята алюминия. Осадку дают отстояться в теплом месте в течение 30 мин.

Осадок оксихинолята алюминия отфильтровывают на два беззольных фильтра «белая лента» и промывают 10—12 раз промывной жидкостью. Фильтр с осадком помещают в предварительно прокаленный до постоянной массы фарфоровый тигель. На фильтр с осадком насыпают 2—3 г безводной щавелевой кислоты, высущивают, озоляют при температуре не выше 400 °C и прокаливают при 1100—1200 °C до постоянной массы.

- 2.2, 2.3. (Измененная редакция, Изм. № 1, 2).
- 2.4. Обработка результатов
- 2.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{[(m_1 - m_2) - (m_3 - m_4)] \cdot 0,5292 \cdot 100}{m_5},$$

где m_1 — масса тигля с осадком окиси алюминия, г;

 m_2 — масса пустого тигля, г;

 m_3 — масса тигля с осадком контрольного опыта, г;

 m_{Δ} — масса пустого тигля для контрольного опыта, г;

0,5292 — коэффициент пересчета окиси алюминия на алюминий;

 m_5 — масса навески, г.

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 3.

(Измененная редакция, Изм. № 1).

3. ТИТРИМЕТРИЧЕСКИЙ ТРИЛОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ АЛЮМИНИЯ

3.1. Сущность метода

Метод основан на отделении алюминия от железа сплавлением пробы со щелочью; небольшое количество марганца и никеля связывают сульфидом натрия. К алюминиевому раствору добавляют избыточное количество трилона Б и нейтрализуют раствор до рН 5—6. Избыток трилона Б оттитровывают уксуснокислым цинком в присутствии индикатора ксиленолового оранжевого или дитизона до резкого перехода окраски раствора из желтой в малиново-красную. Трилонат алюминия разрушают добавлением фтористого натрия. При нагревании алюминий переходит в более прочное фтористое соединение. Освободившийся трилон Б оттитровывают уксуснокислым цинком.

3.2. Реактивы и растворы

Кислота уксусная по ГОСТ 61.

Натрия гидроокись по ГОСТ 4328, растворы с массовой долей 3,5 и 25 %.

Натрий сернистый по ГОСТ 2053, раствор с массовой долей 5 %.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Аммоний уксуснокислый по ГОСТ 3117.

Натрий хлористый по ГОСТ 4233.

Дитизон (дифенилтиокарбазон) спиртовой раствор с массовой долей 0,04 % (хранят в темном месте не более 2—3 сут).

Конго красный, водный раствор с массовой долей 0,1 %.

Бумага конго.

Алюминий металлический особой чистоты.

Натрия пероксид.

Спирт этиловый по ГОСТ 18300.

Железо металлическое ТУ 6-09-5404-88.

Натрий фтористый, раствор с массовой долей 3.5 %.

Буферный уксуснокислый раствор; готовят следующим образом: 500 г уксуснокислого аммония растворяют в 1000 см³ воды, добавляют 20 см³ ледяной уксусной кислоты и перемешивают.

Ксиленоловый оранжевый, готовят следующим образом: 0,1 г индикатора растирают с 10 г хлористого натрия.

Массовую концентрацию раствора уксуснокислого цинка устанавливают по стандартному раствору алюминия следующим образом: берут навески металлического железа, не содержащего

алюминий, в зависимости от его содержания в пробе, помещают в коническую колбу вместимостью 250 см^3 , приливают 25 см^3 стандартного раствора алюминия, 30 см^3 раствора соляной кислоты, разбавленной 1:1, окисляют раствор несколькими каплями азотной кислоты до прекращения вспенивания раствора, раствор выпаривают до объема 10 см^3 , приливают от 50 до 60 см^3 воды и нагревают до растворения солей, нейтрализуют раствором гидрата окиси натрия с массовой долей 25% и далее анализ проводят, как указано в пп. 3.3.1 и 3.3.2. Одновременно проводят контрольный опыт на загрязнение реактивов. Массовую концентрацию раствора уксуснокислого цинка (C), выраженную в граммах алюминия, вычисляют по формуле

$$C = \frac{C_1 V}{V_1 - V_2},$$

где C_1 — массовая концентрация стандартного раствора алюминия, г/см³;

V — объем стандартного раствора алюминия, см³;

 V_1 — объем раствора уксуснокислого цинка, израсходованный на титрование ЭДТА, выделившегося после прибавления раствора фтористого натрия, см³;

 V_2 — объем раствора уксуснокислого цинка, израсходованный на титрование ЭДТА, выделившегося после прибавления раствора фтористого натрия при проведении контрольного опыта, см³.

Стандартный раствор алюминия готовят следующим образом: 0,5 г металлического алюминия растворяют в 20 см^3 соляной кислоты, разбавленной 1:1. Если необходимо раствор фильтруют в мерную колбу вместимостью 1000 см^3 и доводят водой до метки.

1 см³ раствора содержит 0,0005 г алюминия.

Трилон Б, раствор 0,0125 моль/дм³, готовят следующим образом: 4,65 г трилона Б растворяют в 250—300 см³ воды. Раствор отфильтровывают в мерную колбу вместимостью 1000 см³, доводят до метки водой и перемешивают. Массовую концентрацию раствора трилона Б устанавливают по стандартному образцу ферробора, который проводят через весь ход анализа, или по металлическому алюминию особой чистоты.

Для установки массовой концентрации раствора трилона Б отбирают по 10 см³ стандартного раствора алюминия в три конические колбы вместимостью по 250 см³, добавляют по 50 см³ воды, по 5 см³ раствора гидроокиси натрия с массовой долей 10 %, по 20 см³ раствора трилона Б и нейтрализуют соляной кислотой, разбавленной 1 : 1, по конго красному до перехода окраски раствора из красной в сине-фиолетовую.

К нейтрализованному раствору приливают 20 см³ уксуснокислого буферного раствора, кипятят 2—3 мин, охлаждают, добавляют 2 см³ дитизона или 0,2—0,3 г ксиленолового оранжевого и титруют уксуснокислым цинком до резкого перехода окраски раствора из желтой в малиново-красную.

Массовую концентрацию раствора трилона Б (C), выраженную в граммах алюминия, вычисляют по формуле

$$C = \frac{C_1 v}{(v_1 - v_2) K},$$

где C_1 — титр стандартного раствора алюминия, 0,0005 г/см³;

v — количество стандартного раствора алюминия, см³;

 v_1 — количество раствора трилона Б, взятое с избытком, см³;

 v_2 — количество уксуснокислого цинка, израсходованное на обратное титрование избытка раствора трилона Б, см³;

К — соотношение между раствором трилона Б и уксуснокислым цинком.

Для установления соотношения K в три конические колбы вместимостью по 250 см³ вливают из бюретки по 10 см³ раствора трилона Б, по 50 см³ воды, по 5 см³ раствора гидроокиси натрия с массовой долей 10 %, нейтрализуют раствор соляной кислотой, разбавленной 1 : 1, по конго красному до перехода окраски раствора из красной в сине-фиолетовую, добавляют 20 см³ уксусно-кислого буфера, 2 см³ дитизона или 0,2—0,3 г смеси ксиленолового оранжевого и титруют уксусно-кислым цинком до резкого перехода окраски раствора из желтой в малиново-красную.

Соотношение между растворами трилона Б и уксуснокислого цинка (К) вычисляют по формуле

$$K = \frac{v}{v_1},$$

где v — количество раствора трилона E, взятое для титрования, E

 v_1 — количество уксуснокислого цинка, см³.

(Измененная редакция, Изм. № 1, 2).

3.3. Подготовка к анализу

3.3.1. При растворении ферробора хлорной кислотой массу навески, в зависимости от содержания алюминия определяют по табл. 1, помещают в платиновую чашку, смачивают водой, прибавляют 20 см^3 раствора азотной кислоты, разбавленной 1:1, нагревают от 3 до 5 мин, затем прибавляют раствор фтористоводородной кислоты от 10 до 15 см^3 , после растворения основной массы навески добавляют 10 см^3 горячего раствора хлорной кислоты и выпаривают до появления густых паров.

Стенки чашки обмывают водой и упаривают досуха. В охлажденную чашку приливают 10 см³ соляной кислоты, нагревают до растворения солей, затем приливают от 50 до 60 см³ горячей воды. Содержимое чашки помещают в стакан вместимостью от 300 до 400 см³, чашку хорошо обмывают водой. Содержимое стакана нагревают до кипения. Осадок отфильтровывают на фильтр средней плотности и промывают его от 6 до 8 раз горячим раствором соляной кислоты, разбавленной 1 : 100. Фильтрат сохраняют.

Фильтр с осадком помещают в платиновый тигель, высущивают, озоляют и прокаливают при температуре от 700 до 800 °C. Прибавляют 2 г пиросернокислого натрия и сплавляют в течение 10 мин при температуре от 700 до 750 °C. Тигель охлаждают, плав выщелачивают в 50 см³ горячей воды и, не фильтруя, растворы объединяют.

Раствор выпаривают до объема 100 см³, нейтрализуют раствором гидроокиси натрия с массовой долей 25 % по бумаге Конго при перемешивании до перехода окраски бумаги в красный цвет. Затем тонкой струей при энергичном перемешивании приливают в избыток 30 см³ кипящего раствора гидроокиси натрия с массовой долей 25 %. Приливают 0,5 см³ раствора сернистокислого натрия. Раствор кипятят от 2 до 3 мин и охлаждают. Содержимое стакана переносят в мерную колбу вместимостью 250 см³, доливают до метки водой и хорошо перемешивают. Раствор фильтруют в сухую колбу через сухой фильтр, отбрасывая первые порции фильтрата. Аликвотную часть фильтрата и объем добавляемого раствора трилона Б определяют по табл. 2, дальше анализ ведут в соответствии с п. 3.3.2.

3.3.2. Разложение ферробора сплавлением с пероксидом натрия

Навеску ферробора помещают в никелевый тигель, в котором находится 8—10 г гидроокиси натрия (предварительно расплавленного и охлажденного). Сверху навеску покрывают 0,5 г пероксида натрия. Содержимое тигля помещают в часть муфельной печи температурой около 200 °C и выдерживают при этой температуре до расплавления щелочи. Затем продвигают тигель в более горячую часть муфельной печи и сплавляют при 650—700 °C в течение 5 мин, периодически перемешивая плав круговым движением тигля. Содержимое тигля охлаждают, помещают в стакан вместимостью 400—500 см³, накрывают часовым стеклом и выщелачивают в 100 см³ раствора гидроокиси натрия с массовой долей 3,5 % при нагревании. Тигель обмывают горячей водой. Содержимое стакана нагревают до кипения, прибавляют пять капель этилового спирта и 0,5 см³ раствора сернистого натрия. Раствор с осадком переводят в мерную колбу вместимостью 250 см³, охлаждают, доводят до метки водой, перемешивают и оставляют на 10—15 мин, затем отфильтровывают на фильтр «синяя лента» в сухую колбу. Первые порции фильтрата отбрасывают. Аликвотную часть фильтрата и количество добавляемого раствора трилона Б определяют в зависимости от содержания алюминия по табл. 2.

Таблица 2

Массовая доля алюминия, %	Аликвотная часть, см ³	Количество раствора трилона Б, см ³	
От 0,5 до 2,0	100	20	
Св. 2,0 » 5,0	100	30	
» 5,0 » 10,0	50	25	
» 10,0 » 15,0	50	35	

Взятую аликвотную часть фильтрата помещают в коническую колбу вместимостью 250 см³, из бюретки прибавляют необходимое количество раствора трилона Б, раствор нейтрализуют соляной кислотой, разбавленной 1 : 1, по конго красному до перехода окраски раствора из красной в сине-фиолетовую, приливают 20 см³ уксуснокислого буферного раствора и кипятят 2—3 мин. Затем раствор охлаждают и добавляют 0,2—0,3 г ксиленолового оранжевого или 2 см³ дитизона. Избыток раствора трилона Б оттитровывают раствором уксуснокислого цинка до резкого перехода окраски раствора из желтой в малиново-красную. Добавляют 80 см³ раствора фтористого натрия, нагревают до перехода окраски раствора из розовой в желтую. Раствор охлаждают, добавляют 0,2—0,3 г ксиленолового оранжевого или 2 см³ дитизона. Освободившийся трилон Б из трилоната алюминия оттитровывают раствором уксуснокислого цинка. Через весь ход анализа проводят контрольный опыт.

- 3.3.1, 3.3.2. (Измененная редакция, Изм. № 1, 2).
- 3.4. Обработка результатов
- 3.4.1. Массовую долю алюминия (X) в процентах вычисляют по формуле

$$X = \frac{(V - V_1) C 100}{m}$$
,

- где V объем раствора уксуснокислого цинка, израсходованный на титрование раствора трилона Б, выделившегося после прибавления раствора фтористого натрия, см³;
 - V_1 объем раствора уксуснокислого цинка, израсходованный на титрование раствора трилона Б, выделившегося после прибавления раствора фтористого натрия при проведении контрольного опыта, см³:
 - C концентрация раствора уксуснокислого цинка, выраженная в г/см 3 алюминия;
 - т масса навески, соответствующая аликвотной части навески пробы, г.

(Измененная редакция, Изм. № 1).

3.4.2. Нормы точности и нормативы контроля точности при определении массовой доли алюминия приведены в табл. 3.

Таблица 3

%

Массовая доля алюминия	Погрешность результатов анализа	Допускаемое расхождение			
		результатов двух анализов	двух параллельных определений	трех параллельных определений	результатов анализа стандартного образца и аттестованного значения
От 0,3 до 1,0 включ.	0,05	0,06	0,05	0,06	0,03
CB. 1,0 * 2,0 *	0,07	0,08	0,07	0,08	0,04
* 2,0 * 5,0 *	0,11	0,14	0,12	0,14	0,07
* 5.0 * 10.0 *	0,15	0,19	0,16	0,20	0,10
* 10,0 * 15,0 *	0,22	0,28	0,23	0,28	0,14

(Измененная редакция, Изм. № 2).