

# ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

#### РЕПРОГРАФИЯ, МИКРОГРАФИЯ

# АППАРАТЫ ЧИТАЛЬНЫЕ И ЧИТАЛЬНО-КОПИРОВАЛЬНЫЕ

МЕТОДЫ ИЗМЕРЕНИЯ ЯРКОСТИ ЭКРАНОВ И КОНТРАСТА ИЗОБРАЖЕНИЯ НА ЭКРАНАХ

ΓΟCT 13.1.511-90 (CT C9B 6856-89)

Издание официальное

# ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Репрография. Микрография

#### АППАРАТЫ ЧИТАЛЬНЫЕ И ЧИТАЛЬНО-**КОПИРОВАЛЬНЫЕ**

**FOCT** 13.1.511 - 90

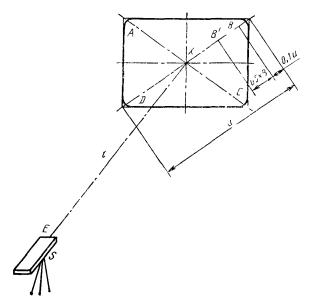
Методы измерения яркости экранов и контраста изображения на экранах

(CT C3B 6856-89)

Reprography Micrography. Readers and readerprinters. Methods for measuring the screen luminance and contrast of image projected onto the screen OKII 42 6226

Дата введения 01.01.92

Настоящий стандарт распрестраняется на читальные и читально-копировальные аппараты и устанавливает методы измерения яркости и контраста изображения на просветных и отражающих экранах, встроенных в аппараты.


#### 1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Измерение яркости проводят от точки измерения E, расположенной перпендикулярно к экрану на установленном расстоянии l, до центра экрана X (черт. 1).

Для экранов с диагональю до 380 мм расстояние от точки из-

мерения E до центра экрана X должно быть 380 мм. Для экранов с диагональю более 380 мм расстояние от точки измерения E до центра экрана X должно быть равно длине диагонали экрана.

1.2. При измерении яркости вогнутого экрана перпендикуляр мысленно проводят к тангенциальной плоскости в центре экрана.



Черт. 1

## 2 ТРЕБОВАНИЯ К ИЗМЕРИТЕЛЬНОМУ ПРИБОРУ

2.1. Яркссть экрана измеряют яркомером или фотометром, установленным на прочном штативе с возможностью поворота оси в направлении измеряемых точек экрана.

Примечание. В качестве яркомера можно использовать специализированный прибор, конструкция которого приведена в приложении.

- 2.2. Угол поля зрения яркомера или фотометра должен быть от 0.5 до  $2.5^\circ$ , преимущественное значение угла поля зрения должно составлять  $1^\circ$ .
- 2.3. Погрешность измерительного прибора не должна быть более  $\pm 10\,\%.$

#### 3. МЕТОД ИЗМЕРЕНИЯ ЯРКОСТИ

- 3.1. Для обеспечения стабильности осветительной системы аппарат следует включить не менее чем на 15 мин до начала измерений.
- 3.2. Во время измерений допустимое отклонение напряжения питания аппарата должно быть не более  $\pm 1\,\%$ .
- 3.3. Оптическая система аппарата должна быть сфокусирована.

- 3.4. Окружающее освещение, попадающее на экран, должно быть не более 10 лк.
- 3 5. Центром поворота яркомера или фотометра в область точек A, B, C и D является точка S, размещенная на прямой XE на расстоянии, равном 75 мм за центром E входного зрачка яркомера или фотометра.

3.6. Измерение яркости осуществляется в центре (точка X) и в углах экрана (точки A, B, C, D) в соответствии с черт. 1. Точки A, B, C и D размещены на диагоналях экрана и на расстояниях, равных десяти процентам длины диагонали от углов экрана.

3.7. Если углы экрана закруглены, следует определить их по-

ложение в точках пересечения сторон экрана.

3 8. На экранах формата A2 и более или на экранах аппаратов, для контроля качества которых требуется больше данных о распределении яркости, дополнительные точки A', B', C', D' в которых проводят измерения, располагаются на диагоналях экрана посередине отрезков XA, XB, XC, XD.

3.9. При измерении яркости отражающих экранов аппаратов, не позволяющих разместить яркомер или фотометр в соответствии с пп. 1.1, 1.2, их размещают в месте, используемом наблюдателем

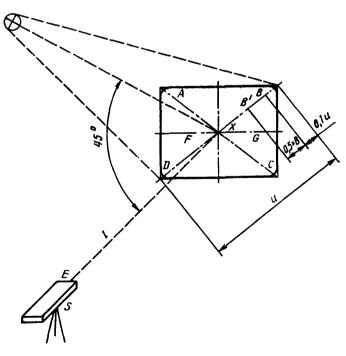
при чтении.

Положение яркомера или фотометра необходимо отметить в протоколе.

Примечание Результаты измерения, проведенного в соответствии с п. 39, можно сравнивать только при оценке аппаратов одного вида.

### 4. МЕТОД ИЗМЕРЕНИЯ КОНТРАСТА

- 4.1. Контрастом изображения является отношение яркостей светлого участка экрана и участка, затемненного маской.
- 4.2. Маска, используемая для определения контраста, должна быть в форме прямоугольника, размерами больше площади кадрового окна. Толщина материала маски не должна превышать 0,18 мм. Все четыре кромки маски должны быть чистыми и гладкими. Используют, например, черную пластмассовую пленку, черную металлическую фольгу и т. п.
- 4.3. Измерение контраста осуществляется в точках F и G в соответствии с черт. 2. Точки должны быть размещены на центральной горизонтали посередине расстояния между центром экрана X и краями экрана.
- 4.4. Измерение контраста изображения на экране осуществляют при соблюдении требований пп. 3.1, 3.2 и 3.3.


Внешнее освещение обеспечивают вольфрамовой электролампой, размещенной на прямой, проходящей через центр экрана Xперпендикулярно к его центральной горизонтали и отклоненной на 45° от перпендикулярной плесыссти экрана в соответствии с черт. 2.

4.5. Источник света с цветовой температурой от 2800 до 3200 К размещают на расстоянии не менее 2 м от центра экрана X; источник должен сбеспечивать освещенность экрана (540±20) лк. Измерение освещенности ссуществляется перпендикулярно к падающему свету вблизи центра экрана X так, чтобы фотоэлемент люксметра не находился в тени частей испытываемого аппарата. Освещенность любой части экрана, создаваемая другими источниками света в помещении, должна быть не более 10 лк.

При необходимости разрешается изменить положение источника света так, чтобы исключить прямое попадание света в яркомер (фотометр) или затенение тех частей экрана, на которых измеряется контраст.

Источник света должен обеспечивать освещение всей площади экрана.

4.6. Яркомер или фотометр размещают в точке E в соответствии с черт. 2.



Черт. 2

4.7. Маска, соответствующая требованиям п. 4.2, размещается в кадровом окне так, чтобы фокусирсванное изображение кромки находилось на вертикали в середине между точками X и F и левая часть экрана стала затененной. Яркость измеряется в точках F и G. Измеренные величины обозначаются  $F_D$  и  $G_L$ .

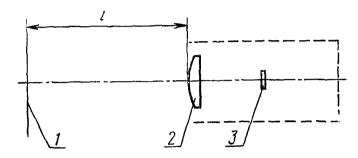
Положение маски изменяют так, чтобы фокусированное изображение кромки находилось в середине между точками X и G при затенении правой части экрана. Яркость измеряется в точках F

и G. Измеренные величины обозначают  $F_L$  и  $G_D$ .

4.8. Контраст изображения на экране (K) вычисляется по формуле

$$K = \frac{F_L + G_L}{F_D + G_D} : 1,$$

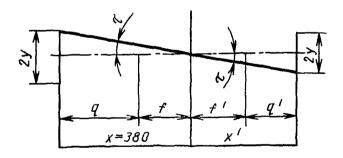
где  $F_L$  — яркость экрана в точке F, измеренная во время отсутствия затенения точки F изображением маски;


 $G_L$  — яркость экрана в точке G, измеренная во время отсутствия затенения точки G изображением маски;

 $F_D$  — яркость экрана в точке F, измеренная во время затенения точки F изображением маски;

 $G_D$  — яркость экрана в точке G, измеренная во время затенения точки G изображением маски.

## КОНСТРУКЦИЯ СПЕЦИАЛИЗИРОВАННОГО АППАРАТА ДЛЯ ИЗМЕРЕНИЯ ЯРКОСТИ


1. Схема измерения яркости (черт. 3).



1 — экран испытываемого аппарата; 2 — объектив или линза, 3 — элемент, корригированный на спектральную чувствительность глаза человека  $(v_{(\lambda)})$ 

Черт. 3

2. Расчет параметров — общие отношения (при условии, что входной зрачок образован оправным кольцом объектива) — черт. 4.



#### абсолютные величины:

$$x=q+f=380; x'=f'+q'-$$
 расстояние плоскости изображения от объектива;  $=\frac{f'^2}{q}$ ,  $f=f'$ 

$$2\tau$$
 — угол поля зрения;  $tg \tau = \frac{y}{x} = \frac{y'}{x'}$ ;  $m$  — увеличение;  $m = \frac{y}{y'} = \frac{f'}{q'} = \frac{q}{f}$  Черт. 4

Пример.

f=150 мм; x=f+q=380 мм; диаметр чувствительного элемента 2y'=5 мм; q=130 мм, x=f+q=380 мм; диаметр чувс q=x-f=230 мм,  $q'=-f^2=97.8$  мм; x'=f'+q'=248 мм— расстояние изображения:  $2\tau=1.2^\circ-$  угол поля эрения; 2y=7.7 мм— измеряемая площадь экрана.

Рекомендуется относительное отверстие не более 1:4.

3. Калибровка аппаратуры

Калибровка осуществляется с помощью эталона отражения (совершенной диффузио-отражающей поверхности) с известным коэффициентом отражения о. Яркость (в) эталона определяется по формуле

$$\beta = \frac{E \cdot p}{\pi}$$
,

где E — освещенность эталона, о - коэффициент отражения.

#### информационные данные

- РАЗРАБОТАН И ВНЕСЕН НИИрепрографии РАЗРАБОТЧИКИ
  - А. Т. Дорожкин (руководитель темы); Н. Н. Минский
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 31.10.90 № 2766
- 3. Срок первой проверки 1997 г., вернодичность проверки — 5 лет
- 4. Стандарт соответствует ИСО 7565, СТ СЭВ 6856-89
- **5. ВЗАМЕН** ГОСТ 13.1.501—74 (в части приложения 4)

# Редактор *М. Е. Искандарян*Технический редактор *О. Н. Никитина*Корректор *А. М. Трофимова*

Сдано в наб. 30 11 90 Подп в печ 22 01 91 0,75 усл. п л 0,75 усл. кр-отт. 0,39 уч-изд л. Тир 5000

|                               | Единица      |                |         |  |  |  |  |
|-------------------------------|--------------|----------------|---------|--|--|--|--|
| Величина                      | Наименование | Обозначение    |         |  |  |  |  |
|                               | Tonachorana  | менсдународное | русское |  |  |  |  |
| основные единицы си           |              |                |         |  |  |  |  |
| Длина                         | метр         | m              | м       |  |  |  |  |
| Macca                         | килограмм kg |                | Kr      |  |  |  |  |
| Время                         | секунда      | s              | c       |  |  |  |  |
| Сила электрического тока      | ампер        | A              | A       |  |  |  |  |
| Термодинамическая температура | кельвин      | K              | K       |  |  |  |  |
| Количество вещества           | моль         | mol            | моль    |  |  |  |  |
| Сила света                    | кандела      | cd             | кд      |  |  |  |  |
| дополните.                    | Льные ед     | ,<br>Киницы си | I       |  |  |  |  |
| Плоский угол                  | радиан       | rad            | рад     |  |  |  |  |
| Телесный угол                 | стерадиан    | sr             | ср      |  |  |  |  |

# ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

|                              | Единица    |                    |            | Выражение через                      |  |
|------------------------------|------------|--------------------|------------|--------------------------------------|--|
| Величина                     | Наименова- | Обозначение        |            | основные и до-                       |  |
| ocin anne                    | ние<br>Ние | междуна-<br>родное | русское    | попинтельные<br>единицы СИ           |  |
| Частота                      | герц       | Hz                 | Гц         | c-1                                  |  |
| Сила                         | ньютон     | N                  | н          | M-KF C-2                             |  |
| Давление                     | паскаль    | Pa                 | Па         | M <sup>-1</sup> ⋅ Kr C <sup>-2</sup> |  |
| Энергия                      | джоуль     | J                  | Дж         | M2 KT C-2                            |  |
| Мощность                     | ватт       | W                  | Вт         | M2 · KF C-3                          |  |
| Количество электричества     | кулон      | С                  | Кл         | c A                                  |  |
| Электрическое напряжение     | вольт      | V                  | В          | M2·KF C-5·A-1                        |  |
| Электрическая емкость        | фарад      | F                  | Φ          | M-2Kr-1. C4.A2                       |  |
| Электрическое сопротивление  | ОМ         | ω                  | OM         | M2 · Kr · C →8 · A →8                |  |
| Электрическая проводимость   | сименс     | S                  | См         | M-4KF-1.C A 2                        |  |
| Поток магнитной индукции     | вебер      | Wb                 | <b>B</b> 6 | M2 . KT. C-2-A-1                     |  |
| Магнитная индукция           | тесла      | Т                  | Тл         | Kr c-2 A-1                           |  |
| <b>Индуктивность</b>         | генри      | Н                  | Гн         | M2.KT.C-2.A-2                        |  |
| Световой поток               | люмен      | lm                 | лм         | кд - ср                              |  |
| Освещениость                 | люкс       | l x                | лĸ         | м-€ - кд - ср                        |  |
| Активность радионуклида      | беккерель  | Bq                 | 5ĸ         | c-1                                  |  |
| Поглощенная доза ионизирую-  | грэй       | Gy                 | Гр         | M2 · C-2                             |  |
| щего излучения               |            | -                  | ,          |                                      |  |
| Эквивалентная доза изпучения | зиверт     | Sv                 | 3=         | W <sub>5</sub> ⋅ C <sub>-5</sub>     |  |