ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система стандартов безопасности труда

ТРАНСФОРМАТОРЫ СИЛОВЫЕ И РЕАКТОРЫ ЭЛЕКТРИЧЕСКИЕ Требования безопасности

Occupation safety standards system Power transformers and teactors Safety requirements ΓΟCT 12.2.007.2-75*

Постановлением Государственного комитета стандартов Совета Министров СССР от 10 сентября 1975 г. № 2368 срок введения установлен

c 01.01.78

Проверен в 1983 г. Постановлением Госстандарта от 11.05.83 № 2191 срок действия продлен

до 01.01.88

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на силовые трансформаторы (в том числе автотрансформаторы) и электрические реакторы, предназначенные для работы в электрических устройствах и сетях переменного тока частоты 50 и 60 Гц.

Стандарт устанавливает требования безопасности к конструкции силовых трансформаторов и реакторов.

Стандарт не распространяется на бетонные реакторы.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Трансформаторы и реакторы должны соответствовать требованиям настоящего стандарта и ГОСТ 12.2.007.0—75.
 - 2. ТРЕБОВАНИЯ К СУХИМ ОДНОФАЗНЫМ ТРАНСФОРМАТОРАМ МОЩНОСТЬЮ до 4 кВ·А ВКЛЮЧИТЕЛЬНО И ТРЕХФАЗНЫМ МОЩНОСТЬЮ до 5 кВ·А ВКЛЮЧИТЕЛЬНО ОБЩЕГО НАЗНАЧЕНИЯ НА НАПРЯЖЕНИЕ до 1000 В
- 2.1. Трансформаторы, кроме встроенных, должны выполняться класса защиты I или II по ГОСТ 12.2.007.0—75 и иметь степень

Издание официальное

Перепечатка воспрещена

* Переиздание (сентябрь 1984 г.) с Изменением № 1, утвержденным в мае 1983 г. (ИУС 8—83). защиты не ниже IP20 по ГОСТ 14254—80. Стационарные трансформаторы допускается изготовлять со степенью защиты IP00.

- 2.2. В трансформаторах класса защиты II должна быть исключена возможность электрического соединения защитных вводных втулок и металлических защитных оболочек наружных присоединительных проводов с доступными для прикосновения металлическими частями трансформаторов.
- 2.3. Трансформаторы, снабженные оболочками, могут иметь отверстия для доступа к токоведущим частям, если это необходимо для эксплуатации трансформаторов. Эти отверстия должны быть постоянно закрыты и открываться специальным ключом или иметь блокировку, не допускающую включения трансформатора при открытом отверстии.
- 2.4. Все доступные для прикосновения токопроводящие детали, кроме частей, находящихся под напряжением, в трансформаторах класса защиты I должны быть соединены с элементами, предназначенными для заземления.

Место вывода нейтрали трехфазных трансформаторов обозначается буквой N.

Штепсельные вилки с заземляющим контактом, применяемые для трансформаторов, должны быть по ГОСТ 7396—76.

- 2.5. Минимальные воздушные зазоры и пути утечки тока по изоляции м ж у различными частьми трансформатора должны соответствовать указанным в таблице.
- 2.6. При необходимости иметь в кожухе трансформатора отверстия, которые осгаются открытыми при работе (например, вентиляционные отверстия), их следует выполнять по ГОСТ 14254—80.
- 2.7. Трансформаторы, рассчитанные на включение в сети с разными номинальными напряжениями, должны иметь указатель положения переключателя напряжения либо маркировку зажимов, указывающую напряжения соответствующих сетей.
- 2.8. Кроме технических данных, которые указываются в стапдартах или технических условиях на конкретные виды, серии или типы трансформаторов, маркировкой должно предусматриваться:
- а) обозначение положений включения и регулирования для встроенных устройств регулирования;
 - б) класс защиты трансформатора по ГОСТ 12 2.007.0—75;
- в) ток плавкой вставки предохранителя (только для трансформаторов, условно стойких к короткому замыканию);
 - г) степень защиты по ГОСТ 12.2.007.0—75.

	Пути утечки и воздушные зазоры		Пути утечки, мм. не менее Воздушные зазоры, мм, не менее														
		Класс защиты по ГОСТ 12.2 007 0—75	Номинальное напряжение, В														
			До 42		Св 42 до 250		Св 250 до 380		Св 380 до 660		Св 660 до 1000		i I	Св. 42	CB 250	CB 380	CB. 660
			а	б	а	б	a	б	а	б	а	б	42 A	до 250	до 380	до 660	до 1000
	1. Между токоведущими частями одной обмотки с разным потенциалом	1, 11	1	2	2	3	3	4	6	10	10	14	1	2	3	6	8
	2. Между токоведущими частями первичной цети и доступными токопроводящими частями	11 I	3	2 4	2 5	3 8	2 6	10	6 10	10 14	10 20	14 28	1 5	2 6	3 8	6 10	8 20
	3. Между токоведущими частями вторичной цени и доступными токопроводящими частями	II I	1 1	. 2	2 3	3 4	3 4	6	6 8	10 12	10 14	14 20	3	2 5	3 6	6 8	8 14
	4. Между токоведущими частями первичной и вторичней целей	1 11	2 3	3 4	3 5	4 8	4 6	6 10	8 10	12 14	14 20	20 28	2 5	3 6	4 8	6 10	10 20
	5. Между токоведущими частями разных вторичных цепей	I, II	1	2	2	3	3	4	6	10	10	14	1	2	3	6	8
	6. Между токопроводящими частями, разделенными промежуточной защитной изоляцией, которые в случае повреждения могут находиться под напряжением	II	3	4	5	8	6	10	10	14	20	28	5	6	8	10	20

Примечания:

1. Указанные в таблице значения не относятся к внутреннему построению обмоток, а также изоляционным расстояниям между обмотками и магнитопроводом

2. Пути утечки, указанные в гртфах а, относятся к неорганическим изоляционным материалам (например, керамические материалы, стекло), а пути утечки, указанные в графах б — к органическим материалам (например, гетинакс, текстолит на основе фенольных смол).

3. В части изоляционных расстояний вся обмотка автотрансформатора рассматривается как входная цепь.

3. ТРЕБОВАНИЯ К ОДНОФАЗНЫМ ТРАНСФОРМАТОРАМ МОЩНОСТЬЮ СВЫШЕ 4 кВ·А, ТРЕХФАЗНЫМ МОЩНОСТЬЮ СВЫШЕ 5 кВ·А И ЭЛЕКТРИЧЕСКИМ РЕАКТОРАМ

- 3.1. Трансформаторы и реакторы, для которых стандартами или техническими условиями предусмотрено наличие устройств защиты и сигнализации или встроенных трансформаторов тока, должны снабжаться коробкой зажимов и проводкой от этих устройств до коробки зажимов. В коробке зажимов должны быть предусмотрены специальные зажимы, позволяющие закорачивать вторичные цепи трансформаторов тока.
- 3.2. В коробке зажимов должно предусматриваться наличиеэлектрической схемы соединений и необходимой маркировки зажимов, наносимых, например, на специальной табличке.

При наличии в трансформаторах или реакторах встроенных трансформаторов тока, на корпусе коробки зажимов должна быть надпись: «Внимание! Опасно! На зажимах разомкнутой обмотки напряжение».

- 3.3. Трансформаторы и реакторы с выпуклой фасонной крышкой должны иметь приварные упоры, позволяющие стоять на крышке, и приспособления для закрепления средств, обеспечивающих безопасность при выполнении работ на крышке при монтаже, ремонте и осмотре.
- 3.4. Трансформаторы и реакторы, имеющие высоту от уровня головки рельс до крышки бака 3 м или более, должны снабжаться лестницей с уклоном не более 75°. Местоположение лестницы должно обеспечивать безопасный доступ к газовому реле при работающем трансформаторе (реакторе).

У лестницы должна быть площадка шириной не менее 30 см, совмещенная с лестницей или прикрепленная к баку, позволяющая обслуживать газовое реле двумя руками. Лестница должна иметь трубчатые перила диаметром 20—40 мм.

3.5. В масляных трансформаторах и реакторах должны быть предусмотрегы меры, уменьшающие до нормативной величины опасность возникновения пожара при аварии путем:

направления выхлопа масла из предохранительной трубы (уст: ройства) в сторону от токоведущих частей, шкафов управления и конструкций;

автоматического перекрытия трубопровода от расширителя с баку при аварийном отключении трансформаторов и реакторов мошностью от 100 MB·A и более.

(Измененная редакция, Изм. № 1).

3.6. Внешние токоведущие части переключающих устройств трансформаторов и реакторов, находящихся под напряжением свыше 1000 В, должны быть окрашены в красный цвет.

- 3.7. Трансформаторы и реакторы должны снабжаться элементами для заземления, расположенными в доступном месте нижней части бака или остова (если бак отсутствует).
- 3.8. Масляные трансформаторы и реакторы мощностью 1 МВ·А и более, имеющие расширитель, должны снабжаться газовым реле, реагирующим на повреждения внутри бака, сспровождающееся выделением газа.
- 3.9. Масляные трансформаторы и реакторы мощностью $1 \ MB \cdot A$ и более с расширителем должны быть снабжены не менее чем одним защитным устройством, предупреждающим повреждения бака при внезапном повышении внутреннего давления более 50 кПа ($\approx 0.5 \ \mathrm{krc/cm^2}$).

Масляные трансформаторы, трансформаторы с жидким диэлектриком с азотной подушкои и реакторы без расширителя должны быть снабжены защитным устроиством, срабатывающим при повышении внутреннего давления более 75 кПа ($\approx 0.75~\rm krc/cm^2$).

Защитное устройство должно обеспечивать выброс масла вниз. Масло не должно попадать на лестницу. Зона выброса масла не должна захватывать места расположения приборов, требующих обслуживания при эксплуатации.

- 3.10. Указатели уровня масла, газовые реле, кран для отбора пробы масла масляных трансформаторов и реакторов и другие приборы должны быть расположены таким образом, чтобы были обеспечены удобные и безопасные условия для доступа к ним и наблюдения за ними без снятия напряжения.
- 3.11. Степень защиты оболочки приводного механизма переключающего устройства трансформатора или реактора должна выбираться по ГОСТ 14254—80.

На части переключающего устройства, погруженные в трансформаторное масло, степени защиты не устанавливаются.

Корпус приводного механизма переключающего устройства должен быть снабжен элементом для заземления.