

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

АРМАТУРА ФОНТАННАЯ И НАГНЕТАТЕЛЬНАЯ

ТИПОВЫЕ СХЕМЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КОНСТРУКЦИИ

ΓΟCT 13846-89 (CT CЭВ 4354-83)

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

АРМАТУРА ФОНТАННАЯ И НАГНЕТАТЕЛЬНАЯ

Типовые схемы, основные параметры и технические требования к конструкции

ΓΟCT 13846—89

Gush and injection well equipment,
Standard schemes, basic parameters and technical requirements for construction

(CT C9B 4354-83)

ОКП 36 5513, 36 6514, 36 6666

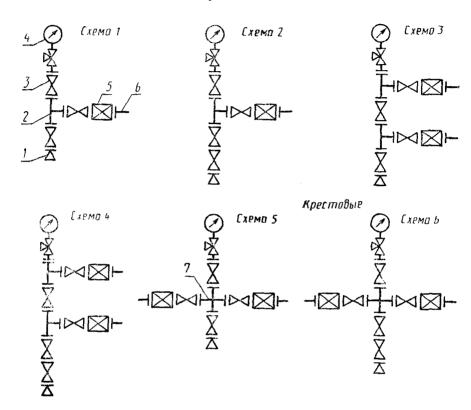
Срок действия с 01.01.90 до 01.01.95

Настоящий стандарт распространяется на устьевую фонтанную и нагнетательную арматуру, состоящую из устьевой елки и трубной обвязки, независимо от области применения по климатическо-

му району и рабочей среде.

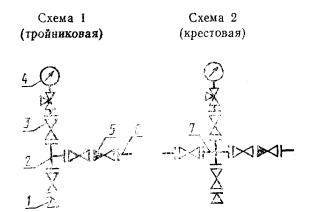
Настоящий стандарт не распространяется на устьевую арматуру с параллельным подвешиванием скважинных трубопроводов; для добычи или нагнетания теплоносителя, а также устанавливаемую на скважины с подводным расположением устья.

1. ТИПОВЫЕ СХЕМЫ И ОСНОВНЫЕ ПАРАМЕТРЫ


1.1. Типовые схемы фонтанных елок должны соответствовать приведенным на черт. 1, нагнетательных елок — на черт. 2.

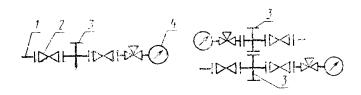
1.2. Типовые схемы трубных обвязок фонтанных и нагнетательных арматур должны соответствовать приведенным на черт. 3.

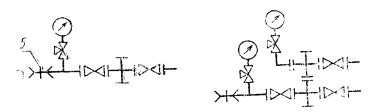
1.3. Типовые схемы устьевых арматур должны составляться сочетанием типовых схем устьевых елок с трубными обвязками.


Типовые схемы фонтанных елок

Тройниковые

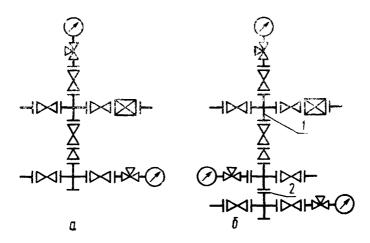
1 — переводник к трубной головке;
 2 — тройник;
 3 — запорное устройство;
 5 — дроссель;
 6 — ответный фланец;
 7 — крестовина
 Черт. І


Типовые схемы нагнетательных елок

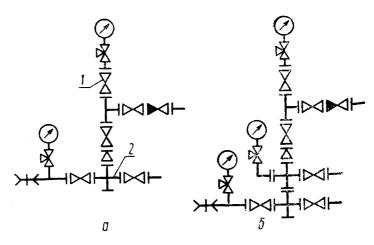

1—переводник к трубной головке; 2—тройник; 3—запорное устройство; 4—манометр с запорноразрядным устройством; 5—обратный клапан; 6— ответный фланец; 7— крестовина

Черт. 2

Типовые схемы трубных обвязок фонтанных арматур



нагнетательных арматур



1-ответный фланец; 2-запорное устройство; 3-трубная головка; 4-манометр с запорно-разрядным устройством; 5-быстросборное соединение

Примеры типовых схем фонтанных арматур приведены на черт. 4, нагнетательных арматур — на черт. 5.

1-фонтанная елка (черт. 1); 2-трубная обвязка (черт. 3) Черт. 4

I—нагнетательная елка (черт. 2); 2—трубная обвязка (черт. 3) Черт. 5

1.4. Основные параметры фонтанных арматур должны соответствовать указанным в табл. 1.

Таблина 1

	Условный проход, мы				
ство ла елки	боковых отводов елки	боковых отво- дов трубной головки	Рабочее давление, МПа		
50	50	50	14, 21, 35, 70, 105		
65	50, 65		14, 21, 33, 73, 103		
80_	50, 65, 80		14, 21, 35, 70, 105, 140		
100	65, 80, 100	50, 65	14, 21, 33, 70, 103, 140		
150	100		21		

1.5. Основные параметры нагнетательных арматур должны соответствовать указанным в табл. 2.

Таблина 2

	Условный проход, мм			
Рабочее давление, МПа	боковых отво- дов трубной головки	боковых отводов елки	ствола б он	
14, 21, 35	50	50	50	
14, 21, 33		50, 65	65	
21, 35	50, 65	65, 80	80	

1.6. Условные обозначения устьевых елок и арматур должны состоять из наименования, шифра, построенного по схеме жения 1, и обозначения нормативно-технического документа поставку.

Примеры условных обозначений

Фонтанной арматуры с подвешиванием скважинного трубопровода в трубной головке, с фонтанной елкой по типовой схеме 6, с автоматическим управлением, с условным проходом ствола 80 мм и боковых отводов 65 мм, на рабочее давление 70 МПа: Арматура фонтанная АФ6А-80/65×70 ГОСТ 13846—89

Елки с подвешиванием скважинного трубопровода в переводнике к трубной головке (катушке - трубодержателе), выполненной по типовой схеме 2, с ручным управлением, с условным проходом ствола 65 мм, боковых отводов 50 мм, на рабочее давление 35 МПа, коррозионностойкого исполнения К2:

Елка фонтанная $E\Phi K2-65/50\times35K2$ ΓOCT 13846—89

Нагнетательной арматуры с подвешиванием скважинного трубопровода в переводнике к трубной головке, выполненной по типовой схеме 1, с ручным управлением, с условным проходом ствола и боковых отводов 65 мм, на рабочее давление 21 МПа:

Арматура нагнетательная $A\hat{H}K1-65\times21$ ГОСТ 13846-89

То же, с двумя трубными головками по черт. 4б:

Арматура нагнетательная АНК1a—65×21 ГОСТ 13846—89 Нагнетательной елки с теми же параметрами и назначением:

Елка нагнетательная $EHK1-65\times21\ \hat{\Gamma}OCT\ 13846-89$

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К КОНСГРУКЦИИ

2.1. Условные проходы присоединительных фланцев устьевых арматур приведены в приложении 2.

2.2. Конструкция устьевой арматуры должна обеспечивать полную герметичность по отношению к окружающей среде.

2.3. Конструкция корпусных деталей устьевой арматуры должна обеспечивать возможность их опрессовки пробным давлением, приведенным в табл. 3.

						Табл	ица З
Рабо чее давл Р _р , МПа	ение	14	21	35	70	105	140
Пробное д Рир, МПа	цавление		2 P _p			1,5 P _p	

2.4. Соосность отверстий составных частей устьевой ры, образующих стволовый проход, должна обеспечивать беспрепятственное прохождение оборудования, приборов и приспособлений, спускаемых в скважину.

2.5. Конструкция трубной обвязки должна обеспечивать можность подвешивания скважинных трубопроводов в трубной головки, контроля давления и управления потоком скважинной среды в затрубном (межтрубном) пространстве.

Допускается подвешивать скважинный трубопровод в перевод-

нике к трубной головке.

2.6. Проссель в фонтанной арматуре должен быть регулируе-

Допускается применять по требованию потребителя нерегулируемые дроссели.

- 2.7. Допускается конструктивно объединять, не изменяя типовой схемы, устьевой арматуры, несколько составных частей в один блок.
- 2.8. Допускается дооборудовать фонтанные арматуры запорными устройствами и обратным клапаном, а елки дросселем.
- 2.9. По требованию потребителя конструкция устьевой арматуры должна обеспечивать возможность:

монтажа елки при избыточном давлении среды в скважинном

трубопроводе;

нагнетания ингибиторов коррозии и гидратообразования в скважинный трубопровод и затрубное пространство в фонтанных скважинах;

измерения давления и температуры скважинной среды в боко-

вых отводах фонтанной елки.

2.10. По требованию потребителя в фонтанную арматуру следует включать:

автоматические предохранительные устройства;

запорные устройства с дистанционным управлением;

устройства, обеспечивающие возможность соединения скважинного оборудования с наземной системой управления;

быстросборное соединение для периодически устанавливаемого

устьевого оборудования (приспособлений).

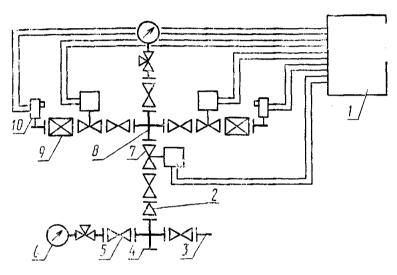
Схема фонтанной арматуры с системой управления приведена

в приложении 3.

- 2.10.1. Пневмопилоты (автоматические предохранительные устройства) должны обеспечивать перекрытие скважинной среды при регламентированном его отклонении от заданного режима эксплуатации скважины.
- 2.10.2. Конструкция запорных устройств с дистанционным управлением должна предусматривать возможность ручного управления ими.

СТРУКТУРНАЯ СХЕМА ШИФРОВ УСТЬЕВЫХ АРМАТУР И ЕЛОК

	X	X	X	X	X/X x	X	X	X
Обозначение изделия (АФ — арматура фонтанная, ЕФ — елка фонтанная АН — арматура нагнетательная, ЕН — елка нагнетательная	,							
Обозначение способа подвешивания скважинного трубопровода (в трубной головке не обозначается, в переводнике к трубной головке — к)								
Обозначение типовой схемы елки (черт. 2). Для арматур по черт. 46 и 56 к но ру схемы добавляют а		<u>-</u>						
Обозначение системы управления запными устройствами (с ручным управнием не обозначается, с дистанционных Д, с автоматическим — А, с дистанциным и автоматическим — В)	вле- и —							
Условный проход ствола елки, мм								
Условный проход боковых отволов (при совпадении с условным проходом указывается)								
Рабочее давление, МПа								
Исполнение изделия в зависимости от применения (скважинной среды) в сос с приложением 4	услответс	овий твии						
Обозначение модификации, модернизац необходимости)	ии	ngn)					,	


ПРИЛОЖЕНИЕ **2** Обязательное

УСЛОВНЫЕ ПРОХОДЫ ПРИСОЕДИНИТЕЛЬНЫХ ФЛАНЦЕВ ФОНТАННОЙ И НАГНЕТАТЕЛЬНОЙ АРМАТУРЫ

		Условный	Условный проход, мм			
Условный проход ствола, мм	Рабочее давление, МПа	верхнего фланца трубной головки	нижнего фланца трубной головки			
EO CE OO	14		180*, 280			
50, 65, 80	21, 35	_ 180				
50, 65	50, 65 70, i 05		280			
80	80 70, 105, 140					
100	100 14, 21, 35, 70, 105, 140					
150	21	280	350			

^{*} Менее предпочтительный условный проход.

ПРИМЕР ТИПОВОЙ СХЕМЫ ФОНТАННОЙ АРМАТУРЫ С СИСТЕМОЙ УПРАВЛЕНИЯ

1—станция управления; 2—переводник к трубной головке; 3—ответный фланец; 4—трубная головка; 5—запорное устройство с ручным управлением; 6—манометр с запорно-разрядным устройством; 7—запорное устройство с дистанционным управлением; 6—крестовина; 9—регулируемый дроссель; 19—пневмопилот (автоматическое предохранительное устройство)

Примечание. На схеме не приведены датчики давления, температуры, загазованности и др.

ПРИЛОЖЕНИЕ **4** Обязательное

ОБОЗНАЧЕНИЕ КОРРОЗИОННО-СТОЙКОГО ИСПОЛНЕНИЯ АРМАТУР И ЕЛОК

Обозначение исполнения	Скважинная среда— нефть и газ с объемным содержанием
K1	СО2 до 6%
K2	СО ₂ и H ₂ S до 6%
К3	CO ₂ и H ₂ S до 25%

информационные данные

1. РАЗРАБОТАН И ВНЕСЕН Министерством химического и нефтяного машиностроения СССР

исполнители

- Р. Д. Джабаров, канд. техн. наук; А. Г. Дозорцев, канд. техн. наук (руководитель темы); Т. К. Велиев, канд. техн. наук (руководитель темы); С. М. Осипова; Л. Г. Шаронова
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 24.02.89 № 332
- 3. Срок проверки 01.10.93. Периодичность проверки 5 лет.
- 4. Стандарт полностью соответствует СТ СЭВ 4354-83
- 5. B3AMEH ΓΟCT 13846-84

Редактор О. К. Абашкова Технический редактор О. Н. Никитина Корректор В. И. Варенцова

Сдано в наб. 23.03,89 Поди. в печ. 26.05.89 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,57 уч.-изд. л. Тир. 10 000

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лялин пер., 6. Зак. 344

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

		Единица	Выражение чераз	
Реличина	Наименова-	Обозн	эчение	основные и до-
	ние	междуна- родное	русское	полиительн ые единицы СИ
Частота	герц	Hz	រី ដុ	c-1
Сила	ньютон	N	н	M · 167 · C ⁻²
Давление	паскаль	Pa	Па	M-1 - KT - C-2
Энергия	джоуль	J	Дж	M ² ·KΓ·C ⁻²
Мощность	BOTT	W	Вт	M ² · K Г · C ⁻³
Количество электричества	кулон	С	Кл	c·A
Элехтрическое напряжение	вольт	V	В	M2·KF·C-3·A-1
Электрическая емкость	фарад	F	Φ	M ⁻² Kr ⁻¹ ⋅C ⁴ ⋅A ²
Электрическое сопротивление	OM	Ω	OM	M2 · KT · C3 · A-2
Электрическая проводимость	сименс	S	CM	M-2Kr-1.c3.A2
Поток магнитной индукции	вебер	Wb	B 6	M2 · KT · C-2·A-1
Магнитная индукция	тесла	T	Tn	кг·с ⁻² • А ⁻¹
Индуктивность	генри	Н	Гн	M2 · Kr · c -2 · A-2
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	1x	лĸ	м-2 ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bq	Бĸ	c-1
Поглощенная доза монизирую-	грэй	Gy	Гр	M ² ⋅ C ⁻²
щего излучения Эквивалентная доза излучения	зиверт	Sv	3 _B	W ₅ · c− ₅