Союзводоканалироект Госстроя СССР

Пособие

по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации

(к СНиП 2.04.02-84 и СНиП 2.04.03-85)

Государственный ордена Трудового Красного Знамени проектный институт Союзводоканалпроект Госстроя СССР

Пособие

по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации (к СНиП 2.04.02-84 и СНиП 2.04.03-85)

Утверждено приказом Союзводоканалнииприекта Госстроя СССР от 08 08 86г №233 Рекомендовано к изданию решением технического совета Союзводоканалироекта Госстроя СССР.

Пособие по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации. К СНиП 2.04.02—84 и СНиП 2.04.03—85 / Союзводоканалпроект. — М.: Стройиздат, 1989. — 80 с.

Содержит указания по определению толщин стенок стальных подземных трубопроводов наружных сетей водоснабжения и канализации в зависимости от расчетного внутреннего давления, прочностных характериотик сталей труб и условий прокладки трубопроводов.

Даны примеры расчета, сортамента стальных труб и указания по опре-

делению внешних нагрузок на подземные трубопроводы.

Для инженерно-технических, научных работников проектных и научноисследовательских организаций, а также для преподавателей и студентов средних и высших учебных заведений и аспирантов.

Табл. 16, ил. 8.

Разработано Союзводоканалпроектом (инж. Л. П. Хлюпин) и ВНИИ ВОДГЕО (канд. техн. наук В. И. Готовцев).

Все замечания и пожелания по содержанию Пособия направлять в Союзводоканал проект по адресу: 117941, ГСП-1, Москва, просп. Вернадского, д. 29.

1. ОБШИЕ ПОЛОЖЕНИЯ

1.1. Пособие по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации составлено к СНиП 2.04.02—84 Водоснабжение. Наружные сети и сооружения и СНиП 2.04.03—85 Канализация. Наружные сети и сооружения.

Пособие распространяется на проектирование подземных трубопроводов диаметром от 159 до 1620 мм, прокладываемых в грунтах с расчетным сопротивлением не менее 100 кПа, транспортирующих воду, бытовые и промышленные сточные воды при расчетном внутреннем

давлении, как правило, до 3 МПа.

Применение стальных труб для указанных трубопроводов допускается в условиях, определенных п. 8.21 СНиП 2.04.02—84.

1.2. В трубопроводах следует применять стальные сварные трубы рационального сортамента по стандартам и техническим условиям, указанным в прил. 1. Допускается по предложению заказчика применять трубы по ТУ, указанным в прил. 2.

Для изготовления фасонных частей методом гнутья должны применяться только беспювные трубы. Для фасонных частей, изготовляемых методом сварки, могут применяться те же трубы, что и для линейной

части трубопровода.

1.3. С целью уменьшения расчетных толщин стенок трубопроводов в проектах рекомендуется предусматривать мероприятия, направленные на снижение воздействия внешних нагрузок на трубы: отрывку траншей предусматривать по возможности с вертикальными стенками и минимально допустимой пириной по дну; укладку труб предусматривать на спрофилированное по форме трубы грунтовое основание или с контролируемым уплотнением грунта засыпки.

1.4. Трубопроводы должны подразделяться на отдельные участки по степени ответственности. Классы по степени ответственности опреде-

ляются п. 8.22 СНиП 2.04.02-84.

1.5. Определение толщин стенок труб производится на основании двух раздельных расчетов:

статического расчета на прочность, деформацию и устойчивость на воздействие внешней нагрузки с учетом образования вакуума; расчета на внутреннее давление при отсутствии внешней нагрузки.

Расчетные приведенные внешние нагрузки определяются по прил. 3 для следующих нагрузок: давление грунта и грунтовой воды; временных нагрузок на поверхности земли; веса транспортируемой жидкости.

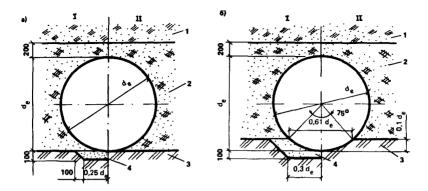


Рис. 1. Способы опирания труб на основание a — плоское грунтовое основание: b — спрофилированное грунтовое основание: b — сперофилированное грунтовое основание с углом охвата b і — с песчаной подушкой; b — без песчаной подушки; b — засыпка местным грунтом с нормальной или повышенной степенью уплотнения; b — естественный грунт; b — подушка из песчаного грунта

Расчетное внутреннее давление для стальных трубопроводов подземной прокладки принимается равным наибольшему возможному по условиям эксплуатации давлению на различных участках (при наиболее невыгодном режиме работы) без учета его повышения при гидравлическом ударе.

1.6. Порядок определения толщин стенок, выбора марок, групп и категорий сталей по данному Пособию.

Исходными данными для расчета являются: диаметр трубопровода d_e ; класс по степени ответственности; расчетное внутреннее давление p; глубина заложения (до верха труб) h; характеристика грунтов засыпки (условная группа грунтов определяется по табл. 1 прил. 3).

Для расчета весь трубопровод должен быть разбит на отдельные участки, для которых все перечисленные данные постоянны.

По разд. 2 производится выбор марки, группы и категории стали труб и на основании этого выбора по разд. 3 устанавливается или вычисляется значение расчетного сопротивления стали R_y . Толщина стенки труб принимается большей из двух значений, полученных расчетом на внешние нагрузки и внутреннее давление, с учетом сортаментов труб, приведенных в прил. 1 и 2.

Выбор толщины стенки при расчете на внешние нагрузки, как правило, производится по таблицам, приведенным в разд. 6. Каждая из таблиц для заданного диаметра трубопровода, класса по степени ответственности и типа грунта засыпки дает соотношения между: толщиной стенки; расчетным сопротивлением стали R_y ; глубиной заложения h и способом укладки труб (тип основания и степень уплотнения грунтов засыпки — рис. 1).

Пример пользования таблицами дан в прил. 4.

Если исходные данные не удовлетворяют следующим данным: h=1-6 м; $R_{\mathcal{Y}}=150-400$ МПа; временная нагрузка — НГ-60; укладка труб в насыпи или траншее с откосами, необходимо проводить индивидуальный расчет, включающий в себя: определение расчетных приведенных внешних нагрузок по прил. 3 и определение толщины стенки по расчету на прочность, деформацию и устойчивость по формулам разд. 4.

Пример такого расчета дан в прил. 4.

Выбор толщины стенки при расчете на внутреннее давление производится по графикам разд. 5 или по формуле (6) разд. 4. Эти графики показывают соотношения между величинами: d_{e} ; t; p; R_{y} и позволяют определить любое из них при известных остальных величинах.

Пример пользования графиками дан в прил. 4.

1.7. Внешняя и внутренняя поверхность труб должна защищаться от коррозии. Выбор методов защиты необходимо производить в соответствии с указаниями п. п. 8.32—8.34 СНиП 2.04.02—84. При применении труб с толщиной стенки до 4 мм независимо от коррозионной активности транспортируемой жидкости рекомендуется предусматривать защитные покрытия внутренней поверхности труб.

2. РЕКОМЕНДАЦИИ ПО ВЫБОРУ МАРОК, ГРУПП И КАТЕГОРИЙ СТАЛЕЙ ТРУБ

- 2.1. При выборе марки, группы и категорий стали следует учитывать поведение сталей и их свариваемость при низких температурах наружного воздуха, а также возможность экономии стали за счет применения высокопрочных тонкостенных труб.
- 2.2. Для наружных сетей водоснабжения и канализации рекомендуется, как правило, применять следующие марки сталей:
- для районов с расчетной температурой наружного воздуха $t_e \ge -40^{\circ}$ С; углеродистую по ГОСТ 380–71* ВСт3; низколегированную по ГОСТ 19282—73* типа 17Г1С;

для районов с расчетной температурой наружного воздуха $t_e < -40^{\circ}\mathrm{C}$; низколегированную по ГОСТ 19282—73* — типа 17Г1С; углеродистую конструкционную по ГОСТ 1050—74**—10; 15; 20.

При применении труб в районах с $t_e < -40^{\circ}$ С в заказе стали должно быть оговорено минимальное значение ударной вязкости 30 Дж/см² (3 кгс·м/см²) при температуре -20° С.

В районах с $t_e \geqslant -40^{\circ}\mathrm{C}$ низколегированную сталь следует применять, если это приводит к более экономичным решениям: снижение расхода стали или снижение трудозатрат (за счет ослабления требований по укладке труб).

Углеродистые стали могут применяться следующих степеней раскисления: спокойная (сп) — в любых условиях; полуспокойная (пс) — в районах с $t_e \ge -20^{\circ}$ С для всех диаметров, в районах с $t_e \ge -40^{\circ}$ С для диаметров труб не более 1020 мм; кипящая (кп) — в районах с $t_e \ge -10^{\circ}$ С и при толщине стенки не более 8 мм.

2.3. Допускается применение труб из сталей других марок, групп и категорий в соответствии с табл. 1 и другими материалами настоящего Пособия.

При выборе группы углеродистой стали (кроме основной рекомендуемой группы В по ГОСТ 380—71* следует руководствоваться следующим: стали группы А могут применяться в трубопроводах 2 и 3 класса по степени ответственности с расчетным внутренним давлением не более 1,5 МПа в районах с $t_e \ge -10^{\circ}$ С; стали группы Б могут применяться в трубопроводах 2 и 3 класса по степени ответственности в районах с $t_e \ge -10^{\circ}$ С; стали группы Д могут применяться в трубопроводах 3 класса по степени ответственности при расчетном внутреннем давлении не более 1,5 МПа в районах с $t_e \ge -10^{\circ}$ С.

Нормативный	d_e , MM	Класс по		Расчетная температура наружного воздуха, ^о С										
документ		степени ответст- венности трубо- провода	$t_e \geqslant -10$	t _e ≥-20	$t_e \ge -30$	$t_e \geqslant -40$	t _e <-40							
ГОСТ 10705-80*, сортамент по ГОСТ 10704-76*	До 530	2 и 3	БСт3кп (<8), СТ3кп3 (<8), БСт3пс (>8), СТ3пс3 (>8)	ВСт3пс2	ВСт3пс3, 20сп	ВСт3сп, 20сп	10сп, 15сп, 20сп							
ГОСТ 10706—76*, сортамент по ГОСТ 10704—76*	426–1620	1-3	ВСт3кп2 (<8), ВСт3пс2 (>8)	BCT3nc2 (<10), BCT3cn2 (>10)	ВСт3сп3-4	ВСт3еп4								
FOCT 8696-74*	До 1620	1-3	ВСт3 категории 2-3, ВСт3кп (<8), типа 17Г1С	ВСт3 катего- рии 2-3	Типа 17Г1С, ВСт3сп3	Типа 17Г1С	Типа 17Г1С							
ТУ 102-39-84	_	2 и 3	БСт3 (<5), Ст3кп (<8), Ст3пс3 (>8)	СТ3пс3 (>8)	ВСт3пс2	ВСт3сп2								
ТУ 14-3-377-75	219-426	1 и 2	ВСт3сп	ВСт3сп	ВСт3сп, 20сп	ВСт3сп, 20сп	20еп							
ТУ 14-3-1209-83	530-1420	1 и 2	ВСт2пс, ВСт3пс 1_4	ВСт3пс2, типа 17 Г1С	ВСт3сп3, типа 17Г1С	ВСт3сп 3-4, типа 17Г1С	Типа 17Г1С							
Ty 14-3-684-77	14-3-684-77 530-1420 1 и 2 BCτ3πc2, BCτ3çu2		•	BCT3nc2 (<10), BCT3cn2	20, типа 17Г1С,	Типа 17Г1С, 20.	Типа 17Г1С, 20сп.							
~				(>10), типа 17Г1С	K45, K52	K45, K52	K45, K52							

Нормативный документ	d_e , MM	Класс по	[Расчетная температура наружного воздуха, ^о С										
		степени ответст- венности трубо- провода	$t_e \geqslant -10$	t _e ≥ -20	$t_e \geqslant -30$	$t_e \ge -40$	$t_e < -40$							
TY 14-3-943-80	219-530	1 и 2	BCT3nc2, BCT3cn2, BCT3nc3	BCT3HC2 (<10), BCT3CH2 (>10), BCT3HC3 (<10)	ВСт3пс3, ВСт3сп3 (по требованию)	ВСт3сп3 (по требованию)	-							
ТУ 14-3-721-78	820-1220	1-3				17Γ1C, 17Γ2CΦ	17Γ1C, 17Γ2CΦ							

П р и м е ч а н и я: 1. Трубы по ТУ 102-39-84, не имеющие внутреннего защитного покрытия, могут применяться для временных трубопроводов, а также для транспортирования воды, подвергнутой стабилизационной обработке.

2. Для трубопроводов, сооружаемых в районах с расчетной температурой ниже —40°С, следует, как правило, применять трубы из низколегированных марок сталей типа 17Г1С.

3. В скобках указаны толщины стенок труб, мм.

3. ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ СТАЛЕЙ И ТРУБ

3.1. Расчетное сопротивление материала труб определяется формулой

$$R_{y} = R_{yn} / \gamma_{m} , \qquad (1)$$

где R_{yn} — нормативное сопротивление растяжению металла труб, равное минимальному значению предела текучести G_y , нормируемого стандартами и техническими условиями на изготовление труб; γ_m — коэффициент надежности по материалу; для прямошовных и спиральношовных труб из низколегированной и углеродистой стали — равный 1,1.

- 3.2. Для труб групп A и B (с нормируемым пределом текучести) расчетное сопротивление R_{ν} следует принимать по формуле (1).
- 3.3. Для труб групп Б и Д (без нормируемого предела текучести) величина расчетного сопротивления R_{ν} должна быть не более величин допускаемых напряжений R_{adm} , которые принимаются для вычисления величины заводского испытательного гидравлического давления по ГОСТ 3845—75*.

В случае, если величина $R_{\mathcal{Y}}$ оказывается больше R_{adm} , то за расчетное сопротивление принимают величину

$$R_{y,1} = 0.65 p_1 (d_e - t) / 2 t$$
 , (2)

где p_1 — величина заводского испытательного давления; t — толщина стенки трубы.

3.4. Прочностные показатели труб, гарантируемые стандартами на их изготовление, приведены в табл. 2—4.

Табпица 2

Термически об по ГОСТ	бработанные Г 10705-80*	Термически обработанные трубы по ГОСТ 10705-80*				
Марки стали	Временное сопротив- ление Су, МПа (не менее)	Предел те- кучести о _у , МПа (не менее)	Марки стали	Временное сопротив- ление $G_{\mathcal{U}}$, МПа (не менее)		
08, 08 пс, 10кп	314	196	08пс, 08кп, 08, 10пс, 10, Ст2кп, ВСт2кп	314		
10, 10пс, 15, 15кп, 15пс, 20кп, Ст2пс, Ст2кп, Ст2пс, ВСт2сп, ВСт2пс, ВСт2кп	333	206	Ст2сн, Ст2пс, ВСт2сп, ВСт2пс, 15пс, 15кп, 20, 20пс, 20кп	333		
ВСт3пс, ВСт3сп, ВСт3кп	372	225	Ст2сп, Ст3пс, Ст3кп, ВСт3кп, ВСт3сп, ВСт3пс	353		
Ст4сп, Ст4пс, ВСт4сп, ВСт4пс, ВСт4кп, 20, 20пс	412	245	Ст4сп, Ст4пс, Ст4кп, ВСт4пс, ВСт4сп, ВСт4кп	402		

 Π р и м е ч а н и е. Показатель $\sigma_{\!\scriptscriptstyle U}$ для труб диаметром 203—530 мм включительно, прошедших термообработку сварного соединения, аналогичен показателю $\sigma_{\!\scriptscriptstyle U}$ для термически необработанных труб.

ГОСТ и диа- метр труб,	Группы	Марки, виды сталей по степени раскисления и кате	Требования ГОСТ по велич испытательного		Прочностные характеристики сталей труб
ММ		Гории	обязательные	по заказу или по требованию потреби- теля	Cranen Tpyo
ГОСТ 8696—74*, d _e от 159 до 1620	A	Ст2, Ст3, категория 3 с нор- мированием механических свойств	$p_1 = 200 t R_{adm} / (d_e - 2t)$ при $R_{adm} = 0.85 \sigma_y$	_	См. табл. 4
1020	В	ВСт2 категория 2, ВСт3 категорий 2—5 низколегированные (17Г1С и др.) по химическому составу и с нормированием механических свойств	То же	По требованию при $R_{adm} = 0.9 \sigma_y$	**
	Б	БСт2, БСт3 категорий 1, 2; по химическому составу	То же, при $R_{adm} = 180$ МПа; p_1 не более 3,5 МПа	_	Не нормиро- ваны
	Д	Не нормированы	"		"
ГОСТ 10705—80*, d _e до 530	A	Ст2, Ст3, Ст4 всех степеней раскисления, категорий 1—3 с нормированием механических свойств	$p_1 \geqslant$ 6 МПа для d_e до 102 мм; $p_1 \geqslant$ 3 МПа для $d_e =$ 102 мм и более; $p_1 \geqslant$ \geqslant 2 МПа для d_e от 402 до 530 мм при толщине 4—5,5 мм	По требованию потребителя $p_1 = 200 t R_{adm} / (d_e - 2 t)$ при $R_{adm} = 0.4 G_u$ или $R_{adm} = 0.9 G_v$, но p_1 не более 20 МПа	См. табл. 3
	Б	БСт2, БСт3, БСт4 08, 10, 15, 20 всех степеней раскисления с нормированием химического состава	То же	He confee 20 mila	Не нормиро- ваны
	В	ВСт2, ВСт3, ВСт4 (категорий 1, 2) всех степеней раскисле- ния: ВСт3сп и ВСт3пс катего- рий 3—6 08, 10, 15, 20 всех степеней раскисления с нор-		То же, что и для группы А	См. табл. 3

	д	мированием механических свойств и химического состава Не нормированы	,,		Не нормированы. Для групп А и В предел текучести труб без термической обработки определяется по согласованию с потребителем, а термически не обработанных труб по требованию потребителя
ГОСТ 10706—76 * , <i>d_e</i> от 426 до 1620	A	Ст2 и Ст3 всех степеней рас- кисления категории 1 и 3 с нормированием механиче- ских свойств. Допускается изготовлять трубы из низко- легированной стали	$p_1 = 200 t R_{adm} / (d_e - 2 t)$ при $R_{adm} = 0.5 \sigma_u$	По заказу потребителя $R_{adm} = 0.85 \sigma_y$	См. табл. 4
	Б	Стали те же, что и для груп- пы А категории 1 и 2, но с нормированием химиче- ского состава	$p_1 \geqslant 2.5$ МПа; а для труб 920х7; 1020х8; 1120х8; 1120х9; 1220х9; 1220х10; 1320х9; 1320х10; 1320х11; 1420х10; 1420х11, величина $p_1 = 2$ МПа	-	Не нормиро- ваны
	В	Стали те же, что и для груп- пы А, категорий 1—4, но с нормированием механиче- ских свойств и химического состава	$p_1 = 200 t R_{adm} / (d_e - 2 t)$ при $R_{adm} = 0.9 \sigma_y$	-	См. табл. 4
	Д	Не нормированы	p_1 , то же, что и для группы Б	_	Не нормиро- ваны

ГОСТ или ТУ	Марки сталей	$\sigma_{\!\scriptscriptstyle \mathcal{U}}$, МПа	σ_y , МПа
ГОСТ 10706-76*	Ст2кп, ВСт2кп Ст2пс, Ст2сп, ВСт2пс, ВСт2сп Ст3кп, ВСт3кп Ст3пс, Ст3сп, ВСт3пс, ВСт3сп	324 333 363 373	216 225 235 245
ГОСТ 8696—74*	ВСт2кп, Ст2кп ВСт2сп, ВСт2пс, Ст2сп, Ст2пс ВСт3сп, ВСт3пс, Ст3сп, Ст3пс ВСт3кп, Ст3кп 17ГС при толщине стенки 5—9 мм (по клас- су К52)	324 334 372 363 510	216 225 245 235 353
ТУ 14-3-377-75	ВСт3сп 10 20	372 333 412	235 206 245
TY 143-684-77	BCτ3πc, BCτ3cπ 20 K34 K38 K45 K52	372 412 333 372 441 510 588	245 245 206 235 294 353 412
ТУ 14-3-943-80	ВСт3пс, ВСт3сп 10сп	372 333	225 206
TY 14-3-1209-83	Ст2 Ст3 09Г2ФБ, 10Г2Ф 14ХГС, 12Г2С	324 372 441 421	216 245 372 294

4. РАСЧЕТ ТРУБ НА ПРОЧНОСТЬ, ДЕФОРМАЦИЮ И УСТОЙЧИВОСТЬ

4.1. Толщину стенки труб t_1 , мм, при расчете на прочность от воздействия внешних нагрузок на опорожненный трубопровод следует определять по формуле

$$t_1 = \sqrt{\frac{F_{red} \ d_e \ \xi}{0,00105 \ R_y \ m}} \quad , \tag{3}$$

где F_{red} — расчетная приведенная внешняя нагрузка на трубопровод, определяемая по прил. З как сумма от всех действующих нагрузок в их наиболее опасном сочетании, кН/м; ζ — коэффициент, учитывающий совместное действие отпора грунта и внешнего давления; определяется по п. 4.2.; m — общий коэффициент, характеризующий работу трубопроводов, равный $m = m_1 / \gamma$; m_1 — коэффициент, учитывающий кратковременность испытания, которому подвергаются трубы после их изготовления, принимаемый равным 0,9; γ — коэффициент надежности, учитывающий класс участка трубопровода по степени ответственности, принимаемый равным равным степени ответственности, принимаемый равным работу принимаемый равным степени ответственности, принимаемым равным степени ответственности, принимаемым равным степени ответственности, принимаемым равным степени ответственности ответственности.

ным: 1- для участков трубопроводов 1 класса по степени ответственности, 0.95- для участков трубопроводов 2 класса, 0.9- для участков трубопроводов 3 класса; R_y- расчетное сопротивление стали, определяемое в соответствии с разд. 3 данного Пособия, МПа; d_e- наружный диаметр трубы, м.

4.2. Значение коэффициента у следует определять по формуле

$$\zeta = (0,1 B + B_t) / (1,1 B + B_t - p_v - p_w) , \qquad (4)$$

- где B; B_t параметры, характеризующие жесткость грунта и трубы, определяются согласно прил. 3 данного Пособия, МПа; p_{ν} величина вакуума в трубопроводе, принимаемая равной до 0,8 МПа; (значение задается технологическими отделами), МПа; p_{w} величина внешнего гидростатического давления, учитываемого при прокладке трубопроводов ниже уровня грунтовых вод, МПа.
- **4.3.** Толщину трубы t_2 , мм, при расчете на деформацию (укорочение вертикального диаметра на 3% от воздействия суммарной приведенной внешней нагрузки следует определять по формуле

$$t_2 = 1,47 \sqrt[3]{10 \, F_{red} \, d_e^2 \, \zeta} \quad . \tag{5}$$

4.4. Расчет толщины стенки трубы t_3 , мм, от воздействия внутреннего гидравлического давления при отсутствии внешней нагрузки следует производить по формуле

$$t_3 = 500 \, p \, d_e / (m \, R_v + p) \quad , \tag{6}$$

где p — расчетное внутреннее давление, МПа.

4.5. Дополнительным является расчет на устойчивость круглой формы поперечного сечения трубопровода при образовании в ней вакуума, про-изводимый исходя из неравенства

$$\frac{F_{red}}{1000 \ d_{\rho} \ \beta} - + p_{v} + p_{w} \le 1.2 \sqrt{B B_{t}} \ , \tag{7}$$

где β – коэффициент приведения внешних нагрузок (см. прил. 3).

4.6. За расчетную толщину стенки подземного трубопровода следует принимать наибольшее значение толщины стенки, определенное по формулам (3), (5), (6) и проверенное по формуле (7).

- 4.7. По формуле (6) построены графики выбора толщин стенок в зависимости от расчетного внутреннего давления (см. разд. 5), позволяющие без проведения расчетов определять соотношения между величинами: d_e ; p; t; R_V для d_e от 325 до 1620 мм.
- 4.8. По формулам (3), (4) и (7) построены таблицы допустимых глубин заложения труб h в зависимости от толщины стенки и других параметров (см. разд. 6).

По таблицам можно без проведения расчетов определять соотношения между величинами: t и h для следующих наиболее часто встречающихся условий: d_e — от 377 до 1620 мм; h — от 1 до 6 м; R_y — от 150 до 400 МПа; основание под трубы грунтовое плоское и спрофилированное

Наруж-				•	Голщина	стенки t, м	м, при за	сыпке гр	унтом			
ный диаметр d _e , мм	песка	ми (кром тых)	ие пылева-	песь	сами пыл	еватыми	супес	сями, суг	линками		глин	ой
					Глубин	на заложени	ия, м, (до	верха тр	уб)			
	1-1,5	2,5	3,5	1-1,5	2,5	3,5	1-1,5	2,5	3,5	1-1,5	2,5	3,5
					Тру	бопроводы	1 класса					
273 325 377 426 530 630 720 820 920 1020 1220 1420 1620	мально	3/— 3/— 3/— 3/— 4/— 5/— 6/— 6/— 7/— 8/7 9/8 12/10 14/12 ———— е основан й степены рунтов за	о уплот-		и уплотн	4/- 5/- 6/4 7/5 8/6 10/7 -/8 -/9 -/10 -/11 -/14 13/11 15/12 					4/— 5/3 6/4 7/5 9/6 8/6 9/6 10/7 11/8 12/9 —/11 —/13 —/14	5/3 6/4 -/5 -/6 -/8 9/7 11/8 12/9 -/10 -/11 -/13 -/16 -/-

Трубопроводы 2 класса

273 325	3/- 3/-	3/ <u>-</u> 3/-	3/- 3/-	3/ <u>-</u> 3/	3/ 4/	4/ <u>-</u> 5/	3/- 3/- 3/- 4/	4/ <u>-</u> 5/ <u>-</u>	5/ 6/	3/ - 4/ -	4/ 5/3	5/3 6/4
377	3/—	3/—	4/-	4/_	5/3	6/4	3/-	4/3	5/4	5 <i> </i>	6/4	-/5
426	3/—	3/—	4/3	4/_	5/4	7/5	4/	5/4	6/4	6/4	7/5	-/6

530 630 720 820 920 1020 1220 1420 1620	4/- 4/- 5/- 5/- 6/- 7/- 8/- 9/- 11/-	4/ 5/ 5/ 6/ 7/ 8/7 9/8 11/10 13/12	5/4 6/5 7/6 8/7 9/7 10/8 12/10 14/12 17/14	5/- 6/5 7/6 8/7 10/8 11/8 -/10 9/- 10/-	6/5 8/6 9/7 10/7 -/8 -/9 -/11 10/- 11/-	8/6 9/7 -/8 -/8 -/9 -/11 -/13 12/11 14/12	4/- 5/- 6/- 7/6 8/7 9/8 10/9	5/4 6/5 7/6 8/7 9/8 10/9 13/10 10/9 12/11	7/5 8/6 10/7 12/8 13/9 -/10 -/12 12/10 15/13	7/5 6/5 7/- 8/- 9/7 10/8 12/10 15/11 17/13	8/6 7/6 8/6 9/7 10/8 12/9 -/11 -/13 -/14	-/7 9/7 10/7 11/8 -/9 -/10 -/12 -/15 -/17	_
<u></u>	мально	ре основан й степены грунтов за	ю уплот-	Плоско щенны тов зас	м уплотне	ие с повы- нием грун	Профил	пированно уплотнени	е основан я грунтов	ие (75°) засыпки	с повыше	нной сто	
					Тру	бопроводы	3 класс	a					
273 325 377 426 530 630 720 820 920 1020 1220 1420 1620	3/- 3/- 3/- 3/- 4/- 4/- 5/- 5/- 6/- 8/- 9/- 10/-	3/- 3/- 3/- 4/- 5/- 5/- 6/- 7/- 7/- 9/8 10/- 12/-	3/- 3/- 4/- 4/3 5/4 5/- 6/- 7/- 8/- 9/8 11/10 13/12 16/14	3/- 3/- 4/- 4/- 5/- 6/5 7/6 8/6 9/7 10/7 -/10 9/- 10/-	3/ 4/- 5/3 5/4 6/5 8/6 9/7 9/7 11/8 -/9 -/11	4/- 5/- 6/4 6/5 8/6 9/7 11/8 -/8 -/9 -/10 -/13 11/- 13/12	3/- 3/- 4/- 4/- 5/- 6/- 6/- 7/- 8/- 10/9	4/- 5/- 4/3 5/4 5/4 6/5 7/5 8/6 9/7 10/8 12/9 11/-	5/- 6/- 5/4 6/4 7/5 8/6 9/7 11/8 12/9 -/10 -/12 12/10 14/13	3/- 4/- 5/- 6/4 7/5 6/5 7/- 7/- 8/7 9/7 11/10 14/11 15/13	4/- 5/3 6/4 7/5 8/6 7/6 8/6 9/7 10/8 11/9 -/11 -/13 -/14	5/3 /4 -/5 -/6 -/7 8/7 10/7 11/8 -/9 -/10 -/12 -/14 -/16	
_	мально	ое основаной степень образования общественных примеров заправления в примеров заправления	ю уплот-		м уплотн	ние с повы- ением грун						енной сте-	

П р и м е ч а н и я: 1. Толщины стенок, мм, указаны: перед чертой для стали ВСт3, после черты для стали 17Г1С. 2. Таблица составлена для трубопроводов при временной нагрузке не более НГ-60 и внутреннем давлении до 3 МПа.

(750) с нормальной или повышенной степенью уплотнения грунтов засыпки; временная нагрузка на поверхности земли — НГ-60.

4.9. Примеры расчета труб по формулам и подбора толщин стенок

по графикам и таблицам даны в прил. 4.

4.10. Для наиболее часто встречающихся условий укладки, рекомендуемых марок сталей и сортамента в табл. 5 приведены расчетные величины толщин стенок. Эта таблица является сокращенным вариантом таблиц разд. 6.

5. ГРАФИКИ ВЫБОРА ТОЛЩИНЫ СТЕНКИ ТРУБ ПО РАСЧЕТНОМУ ВНУТРЕННЕМУ ДАВЛЕНИЮ

5.1. Выбор толщин стенок t производится по графикам, приведенным на рис. 2—4 соответственно для трубопроводов 1—3 класса по степени ответственности.

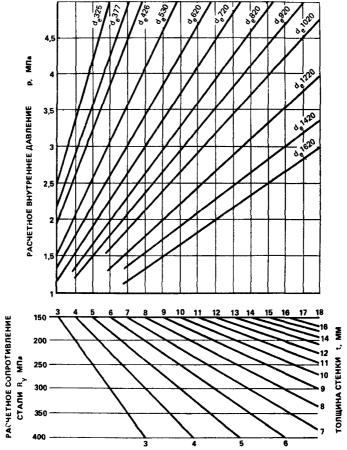


Рис. 2. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 1-го класса по степени ответственности

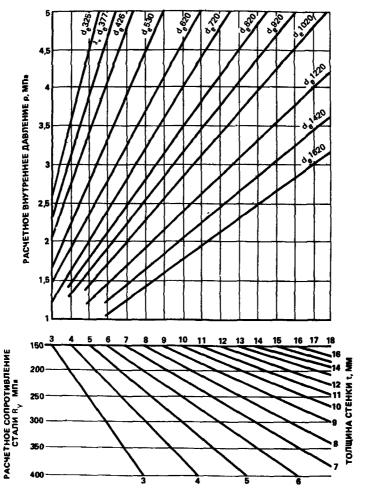


Рис. 3. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 2-го класса по степени ответственности

- 5.2. Графики показывают соотношения между d_e ; t; p; $R_{\mathcal{Y}}$ и позволяют определить любое при заданных остальных величинах.
- 5.3. Графики построены по формуле (6) разд. 4. Пример пользования графиками дан в прил. 4.

6. ТАБЛИЦЫ ДОПУСТИМЫХ ГЛУБИН ЗАЛОЖЕНИЯ ТРУБ В ЗАВИСИМОСТИ ОТ УСЛОВИЙ УКЛАДКИ

6.1. Выбор толщины стенки труб при расчете на внешние нагрузки производится по табл. 6. В таблице даны соотношения между t; R_y ; h и способы укладки.

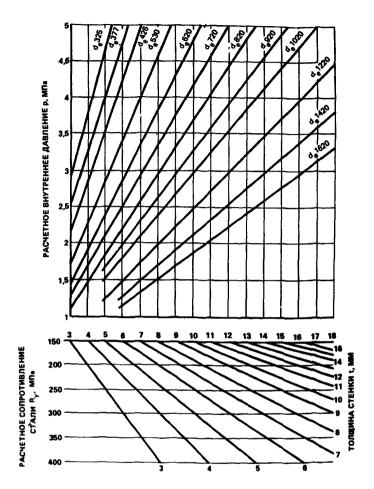


Рис. 4. Графики выбора толщины стенки труб в зависимости от расчетного внутреннего давления и расчетного сопротивления стали для трубопроводов 3-го класса по степени ответственности

6.2. Табл. 6 составлена на основании формул разд. 4 и расчета внешних нагрузок по прил. 3. Примеры пользования таблицей даны в прил. 4.

6.3. При укладке труб на глубину менее 1 м и от 6 до 10 м проводить расчеты по формулам разд. 4. Пример расчета в прил. 4. Окончательно толщина стенки устанавливается с учетом сортамента труб.

Класс трубо-	Толщина стенки			Допу	/стим	eas et	губин	а зал	оже	ия д	о вег	ха т	убы	<i>h</i> , м, пр	и осно	вани	и		
провода	t, MM				шо	ском	I						пр	офилиро	ванно	м (7	50)		
по степени						Степень уплотнени					ия грунтов засыпки								
венности		НО	рмал	ьная			пов	ыше	нная		T -	ној	омал	квная		пов	ьше	нная	
							Расче	тное	conp	отив:	лени	е стал	ıи R _J	,, МПа					
		150 200	250	300	400	150	200	250	300	400	150	200	250	300 40	150	200	250	300	400
	<u>-</u>		J	·	l	a	le 37	7; I	3-1						· -			, «·	
3	3 4 5 6 7 8 9	1 3 2,3 3,7 3 4,3 3,6 4,9 4,2 5,5 4,8 5,4	3,9 5 5,8	3,9	3,9	3,9 4,8 5,4 6	5,7				3,2 3,9 4,6 5,3 5,9	4,8 5,7			6				
2	3 4 5 6 7 8 9	1 2,8 2,1 3,5 2,7 4,1 3,3 4,7 3,9 5,3 4,5 5,2	4,7 5,4 6	3,9 6	3,9	3,6 4,4 5,1 5,7	5,3				3 3,6 4,3 4,9 5,5	4,5 5,4	6		5,7				
1	3 4 5 6 7 8	2,6 1,8 3,2 2,4 3,8 3 4,4 3,6 5 4,2 5,7 4,8	4,4 5,1	3,9 5,6	3,9	3,3 4,1 4,8 5,3 5,7	5	4			2,7 3,4 4 4,6 5,1 5,9	4,2 5 5,8	5,6		5,3		-		

Класс	Толщина	T			Доп	усти	ивя г	луби	на за	тоже	ц жин	ю ве	рха т	рубь	і <i>h</i> , м	, при	осно	вани	IN -		
трубо- провода	стенки t, мм					пле	ског	л						п	офи	пирог	занно	м (7	50)		
по степени ответст								Сте	пень	ymio	тнен	ия гр	и грунтов засыпки								
венности			но	рмал	ьная		Ī	по	выше	нная			но	рмал	квная		1	поп	выше	нная	
								Расч	етно е	con	отив	лени	е ста	ли <i>R</i>	y, MI	Ta					
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
							d	e 37	7 ; Γ:	3-II											
3	3 4 5 6 7 8 9	2 2,8 3,6 4,5	2 2,7 3,4 4,1 5	2,1 3,1 3,9 4,7 5,4	2,1 4 4,8 5,6	2,1 4,3 5,6	2,2 2,8 3,4 4 4,5 5	3,5 4,1 4,7 5,3	4,5 5,5	4,5	4,5	1 2 2,3 3,5 4,3 5,2	2,8 3,6 4,2 4,8 5,6	3,5 4,9 5,6	3,5 5,9	3,5	3,7 4,4 5,1 5,6	5,4			
2	3 4 5 6 7 8 9	1 2,5 3,5 4,4	1,7 2,5 3,3 4 4,8	2,1 2,9 3,6 4,3 5	2,1 3,7 4,3 5	2,1 4,3 5,6	1,8 2,4 3 3,6 4,2 4,8 5,4	3,2 3,9 4,5 5,1 5,7	4,4 5,2 6	4,4	4,4	1,8 2,6 3,4 4,2 5	2,6 3,3 4 4,7 5,4	3,5 4,8 5,5	3,5 5,9	3,5	3,4 4,1 4,8 5,4 6	5 5,9			
1	3 4 5 6 7 8 9	2,3 3,2 4,1	1 2,1 3 3,9 4,7 5,6	2,1 2,9 3,6 4,3 4,9	2,1 3,4 4,2 4,9	2,1 4,3 5,6	1 2,2 2,8 3,4 4,6 5,3	3 3,6 4,2 4,8 5,4	4,1 4,9 5,6	4,4	4,4	1 2,2 3,1 4 4,9 5,8	2,4 3,1 3,8 4,5 5,2	3,5 4,2 4,9 5,6	3,5 5,3 6	3,5	3,1 3,8 4,5 5,1 5,7	4,7 5,5			

 d_e 377; Гз-ІІІ

3	3 4 5 6 7 8 9	2,1 2,5 2,5 3,6 4,6 4,9 1,7 3 3,4 4,8 4,2 5,6 2,1 3,3 4,6 5,4 3,3 4,9 4,1 5,7 4,1 5,6 5,9 2,1 5,8 5,9 2,7 4 4,8 6 5,8 5,8 5,9	3 4,3 4,3 5
2	3 4 5 6 7 8 9	1,4 2,7 2,7 2,7 2,7 2 2 2 1,8 3,2 4, 2 2,5 2,3 3,4 4,9 4,9 1 2,8 3,4 4 2,5 3,9 5, 2 3,1 4,4 1 3,1 4,1 5,2 2,5 3,6 4,6 6 3,2 4,6 5, 2 3,1 4,2 5,7 2,2 3,8 4,9 5,7 2,1 3,6 4,4 5,8 3,9 5,3 1,7 3,1 4,2 5,3 3 4,5 5,6 3,2 4,7 2,7 4,2 5,4 3,8 5,2 4,3 5,4 3,7 5,3 4,6 5,4	3 4,3 4,3 1 9
1	3 4 5 6 7 8 9	1,7 2,5 2,1 3,1 4 4,9 2,4 3,2 4 2,2 3,6 4, 1,8 2,7 4,1 2,8 3,8 4,8 2,3 3,3 4,4 6 2,9 4,3 5, 1,8 3 3,7 5,4 1,9 3,5 4,5 5,5 2 3,3 4,3 5,6 3,6 5 3 4,1 4,7 2,8 4,3 5,3 3 4,4 5,3 4,3 5,6 2,5 4,1 5,2 3,6 5,1 4 5,5 3,4 5,2 3,6 5,1 4 5,5 5,1	4,3 4,3 8 6 5
		d _e 377; Гз- Г У	
3	3 4 5 6 7 8 9	1,5 2,4 2,7 2,1 2,4 2,1 3, 2 3,2 1 2,5 3,4 4,5 1,3 2,6 3,5 4,9 1,5 3,1 4, 1 2,4 3,3 5,7 1 2,4 3,7 4,4 1 2,8 4 4,9 2,6 4,1 5, 1 2,6 3,7 4,6 2,2 3,5 4,8 5,5 2,7 4,3 5,4 3,6 5,2 2,4 3,7 5 3,1 4,6 5,9 3,9 5,5 4,7 3,4 4,9 4,1 5.8 5,1	,2 2,2 2,2 ,2 4 4,4 ,2 5,1

Класс	Толщина				Доп	усти	т кви	луби	на за	ложе	ния д	ю веј	рха т	рубь	і <i>h</i> , м	, при	осно	вани	и		
трубо- провода по степени	стенки t, мм					шо	CKO	л Л						п	юфи	ирон	ванно	м (7	50)		
ответст- венности								Сте	пень	ymio	тнен	ия гр	унто	в зас	ыпкі	a					
Bennocia			но	рмал	ьная			по	выше	нная	: 		но	рмал	квная			поп	энше	нная	
									етное												
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250		400
2	3 4 5 6 7 8	2,2 3,1	1 2,4 3,5 4,6	2,2 3,4 4,7	1,7 3 4,3 5,7	3 4,5	1,9 2,8 3,8	2,2 3,2 4,2 5,3	1 2,3 3,4 4,5 5,6	2,2 3,2 4,2 5,3	2,7 4,5 5,9	1 2,5 3,6 4,8	2,6 3,9 5,2	2,4 3,8 5,1	1,8 3,2 4,6	2,4 4.7	1 2,4 3,5 4,6 5,7	1,8 2,8 3,8 4,9	2,1 3 3,9 4,9	2,2 3,7 4,8	2,2 4,4
1	3 4 5 6 7 8 9	2 2,9	2,2 3,2 4,2	1,8 3,1 4,4 5,7	1 2,8 4,2 5,5	2,8 4,3 5,8	1,5 2,6 3,5	1,8 2,9 4 5,2	2 3 4 5,1	2 2,9 3,8 4,9	2,7 4,5 5,6	2,2 3,5 4,7	2,4 3,6 4,8	2,1 3,4 4,8	1,5 2,9 4,3 5,8	2,3 4,4	2,1 3,1 4,1 5,2	1,4 2,5 3,6 4,7 5,8 5,8	2 2,9 3,8 4,7 5,6	2,2 3,5 4,6	2,2 4,4
							d	e 42	6; Г	3-Ī											
3	3 4 5 6 7 8 9	2,1 2,7 3,2 3,7 4,2 4,7	2,8 3,4 4,6 5,2 5,7	3,2 4,8 5,4 5,9	3,2 5,5	3,2 5,5	3,5 4,5 5,1 5,7	5,2	5,6	5,6	5,6	3,1 3,7 4,3 4,9 5,5 6	4,6 5,4	5	5	5	5,6				

2	3 4 5 6 7 8 9	1,7 2,4 2,9 3,4 3,9 4,4	2,6 3,2 3,8 4,4 4,9 5,4	3,2 4,4 5,1 5,5	3,2 5,5	3,2 5,5	3,3 4,2 4,8 5,3	4,9 6	5,6	5,6	5,6	2,8 3,4 4,6 5,1 5,6	4,3 5,1 5,8	5	5	5	5,2				
1	3 4 5 6 7 8 9	1 2,1 2,6 3,1 3,6 4,1	2,3 2,9 3,5 4,1 4,7 5,3 5,9	3,2 4,1 4,7 5,3 5,8	3,2 5,2 6	3,2 5,5	3 3,8 4,4 5 5,6	4,6 5,7	5,6	5,6	5,6	2,5 3,1 3,7 4,3 4,8 5,3	4 4,7 5,4 6	5	5	5	4,9 6				
							d	e 42	6; Γ	1 I -ε											
3	3 4 5 6 7 8 9	2,2 2,9 3,6	1,5 2,5 3,2 3,9 4,6 5,3	2,8 3,6 4,3 5 5,8	3,3 4,2 5,1 5,9	3,3 5,2	1,6 2,2 2,8 3,4 4,6 5,1	3,1 3,8 4,4 5 5,5	3,4 4,9 5,9	3,4 6	3,4 6	1,7 2,6 3,3 4 4,7 5,4	2,5 3,2 3,9 4,6 5,3	2,8 4,4 5 5,7	2,8 5,1	2,8 5,1	3,3 4,1 4,7 5,3 5,8	4,9 5,8	5,3	5,3	5,3
2	3 4 5 6 7 8 9	1,9 2,6 3,3	2 2,7 3,4 4,1 4,9	2,5 3,3 4 4,7 5,4	3,3 4,1 4,8 5,6	3,3 5,2	2,1 2,7 3,3 3,8 4,3 4,8	2,9 3,6 4,1 4,7 5,2 5,8	3,4 4,6 5,5	3,4	3,4	1 2,1 2,9 3.7 4,4 5,1	2,3 3,1 3,8 4,5 5,2 6	2,8 4,1 4,8 5,4	2,8 5,1 6	2,8 5,1	3,1 3,8 4,4 4,9 5,4	4,6 5,5	5,3	5,3	5,3
1	3 4 5 6 7 8 9	2,4 3,1	1,6 2,4 3,2 4 4,7	2,3 3 3,7 4,4 5,1	3,1 3,8 4,5 5,2	3,3 5,2	2 2,7 3,2 3,7 4,2 4,7	2,6 3,4 4,6 5,6	3,4 4,5 5,2 5,8	3,4 5,8	3,4 6	1,8 2,6 3,3 4 4,8	2,1 2,9 3,6 4,3 5 5,7	2,8 3,8 4,4 5	2,8 4,9 5,6	2,8 5,1	2,6 3,5 4,1 4,6 5,1	4,3 5,2 5,9	5,3	5,3	5,3

Класс трубо-	Толщина стенки	Γ			Допу	стим	(asi r	тубин	1a 3aJ	 южеі	ия д	о вег	ха т	рубы	<i>h</i> , м	, при	осно	вани	и		
провода по степени	t, MM					шо	СКОМ	 (пр	офил	иров	анно	м (7	5°)		
ответст- венности								Сте	пень	ушто	гнени	ия гр	унто	в засі	ыпки	[-
242000			но	рмал	ьная			пов	ыше	нная	. —, —]	но	рмал	ьная			пов	ьше	нная	
			Расчетное сопротивление стали Ry, МПа 200 250 300 400 150 200 250 300 400 150 200 250 3															,			
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
							d	e 42	6; Г	3- I II											
3	3 4 5 6 7 8 9	2,2	1 2,5 3,5 4,5	1,7 2,8 3,9 4,9 5,9	1,5 2,6 3,5 4,5 5,5	1,5 3,3 5,1	1 1,8 2,5 3,2 3,9	1 2,1 2,8 3,5 4,2 4,9 5,7	1,9 3,3 4 4,6 5,2	1,9 3,9 4,8 5,5	1,9 3,9	1,6 2,6 3,6 4,6	1 2,2 3,2 4,2 5,2	2,5 3,5 4,4 5,3	3,1 4,2 5,2	3,1 5,1	1,8 2,5 3,2 3,9 4,6 5,3	3,1 3,8 4,5 5,2 5,9	3,4 5,1 6	3,4 5,9	3,4 5,9
2	3 4 5 6 7 8	1,9 2,8	2,3 3,3 4,2	1 2,4 3,5 4,6 5,6	1,5 2,5 3,4 4,4 5,4	1,5 3,3 4,8	1,4 2,3 3 3,7	1,9 2,6 3,3 4 4,7 5,4	1,9 3 3,7 4,4 5,1 5,8	1,9 3,8 4,5 5,2	1,9 3,9	1 2,4 3,4 4,3	2 3 4 4,9	2,3 3,2 4,1 5	3,1, 4 4,9	3,1 5,1	1 2,1 2,8 3,5 4,2 4,9 5,6	2,9 3,6 4,3 5 5,6	3,4 4,8 5,6	3,4 5,9	3,4 5,9
1	3 4 5 6 7 8	1,4 2,5	2,1 3 3,9	2,2 3,2 4,2 5,2	1 2,2 3,2 4,2 5,2	1,5 3,3 4,5 5,7	1 2,1 2,8 3,4	1,8 2,5 3,1 3,7 4,3 5	1,9 2,7 3,4 4,1 4,8 5,5	1,9 3,4 4,4 5,1 5,8	1,9 3,9	2,2 3,1 4	1,5 2,6 3,7 4,7 5,7	2,1 3,1 4 4,9 5,8	2,9 3,9 4,8 5,7	3,1 5,1	2 2,7 3,4 4,6 5,2	2,6 3,4 4 4,6 5,2	3,4 4,5 5,2 5,8	3,4 5,7	3,4 5,9

						a	le 42	6; Γ	з-ІУ	7										
3	4 5 6 7 8 9	2,4 3	1,3 ,6 2,7 ,7 3,9 ,7 5	2,4 3,6 4,8	2 3,7 5,2	2,3 3,1	1,8 2,7 3,6 4,5	2 3 4 5 6	2 3 4 5 5,9	2 3,7 5,3	1,8 2,8 3,8	2 3,3 4,4 5,5	1,8 3 4,2 5,4	2,6 4 5,3	1 3,4 5,6	1,8 2,8 3,8 4,8	1,8 2,7 3,6 4,5 5,4	2,9 3,8 4,7 5,6	3,4 4,5 5,6	3,4 5,4
2	4 5 6 7 8 9	1 2,2 3	2,5 ,3 3,6 ,5 4,7	2,2 3,5 4,7 5,8	2 3,5 4,9	2,1 2,9	1,4 2,4 3,3 4,3	1,7 2,7 3,7 4,7 5,6	2 2,5 3,5 4,5 5,5	2 3,5 5	1,5 2,6 3,6	1,6 2,9 4,1 5,2	1,5 2,8 4,1 5,3	2,4 3,7 5	3,4 5,2	1,6 2,6 3,5 4,5	1,5 2,4 3,3 4,2 5,1	2,2 3,2 4,2 5,2	3,4 4,3 5,3	3,4 5,4
1	4 5 6 7 8 9	1,9 3	2,3 ,2 3,3 ,2 4,3	2 3,2 4,4 5,5	2 3,3 4,6 5,9	1,7 2,6	2,2 3,1 4	1 2,2 3,2 4,2 5,2	1,7 2,6 3,5 4,4 5,3	3,5 4,7 5,8	2,4 3,3	2,7 3,8 4,9	2,5 3,7 4,9	2,2 3,5 4,7	3,4 4,9	1 2,3 3,3 4,2	1 2,1 3,1 4 5 6	1,9 2,9 3,9 4,9	3,2 4,1 5	3,4 5,4
						á	53 م!	0; Г	'з -Т											
3	4 5 6 7 8 9 10	1 2 2,1 3 2,5 3 2,9 4 3,3 4 3,7 5 4,1 5	9 3,5 ,4 4,7 ,9 5,3 ,4 5,8 ,9	3,5 5,5	3,5 5,5	3,6 4,5 5,5 5,9	5,3	- •			3,1 3,6 4,1 4,6 5 5,4	4,7 5,4 5,9	5,5	5,5	5,5	5,7				
2	4 5 6 7 8 9 10	1,7 3 2,2 3 2,6 4 3 4 3,4 5 3,8 5	7 3,5 ,2 4,4 ,7 4,9 ,2 5,4 ,6 5,8	3,5 5,5	3,5 5,5	3,3 4,2 4,7 5,1 5,5 5,9	5				2,8 3,4 3,9 4,4 4,9 5,3 5,7	4,4 5,1 5,5	5,5	5 ,5	5,5	5,3				

Класс	Толщина	T			Допу	стим	ias ri	уби	1а зал	юже	д кин	о вер	жа т	рубы	<i>h</i> , м	, при	осно	вани	и ———		
трубо- провода	стенки t, мм					mo	ском	i						пр	офил	иров	анно	м (7	50)		
по степени ответст-								Стег	пень	упло	тнени	я гр	унто	в зас	ыпки	[
венности			но	рмал	ьная			пов	ыше	нная			но	рмал	квна			HOE	ыше	ная	
											отив:									,	
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
1	4 5 6 7 8 9	1 1,9 2,3 2,7 3,1 3,5	2,4 3,5 3,5 3,9 4,3 4,7 5,1	3,5 4,1 4,6 5,1 5,5 5,9	3,5 5 5,7	3,5 5,5	3,1 3,9 4,3 4,7 5,1 5,5 5,7	4,7 5,7				2,6 3,1 3,6 4,1 4,6 5,1 5,5	4,1 4,7 5,3 5,8	5,5	5,5	5,5	5				
								d_e 5.	30;]	Гз-II											
3	4 5 6 7 8 9	1 2,3 2,8	1 2,1 2,7 3,3 3,8 4,3	1 2,7 3,4 4 4,6 5,2 5,8	1 3,2 4,1 4,7 5,3	1 3,2 4,8	2,4 2,8 3,2 3,6 4 4,3	3,3 3,8 4,3 4,8 5,2 5,6	4 5,2 5,8	4	4	1,5 2,2 2,8 3,4 4,5	2,6 3,3 3,9 4,5 5,5	3,1 4,3 4,9 5,5	3,1 5,1	3,1 5,1	3,5 4,5 5,5 5,9	5,2 5,9	um auga 440 au	-	
2	4 5 6 7 8 9	2,1 2,6	1,8 2,4 3 3,6 4,1	1 2,4 3 3,6 4,2 4,8 5,4	1 3,2 3,9 4,6 5,2 5,8	1 3,2 4,8	1,5 2,2 2,6 3 3,4 3,8 4,1	3,1 3,6 4,1 4,6 5 5,4 5,8	4 4,8 5,4 5,9	4	4	1 2,6 3,2 3,7 4,2	2,3 3,6 4,2 4,8 5,4 6	3,1 4 4,6 5,2 5,8	3,1 5,1 5,8	3,1 5,1	3,3 3,8 4,3 4,7 5,1 5,5	4,9 5,5			

1	4 5 6 7 8 9	1,8 2,4	1 2,1 2,7 3,3 3,8	1 2,2 2,8 3,4 4 4,6 5,1	1 3 3,7 4,3 4,9 5,5	1 3,2 4,8 5,9	2 2,4 2,8 3,1 3,4 3,7	2,8 3,3 3,8 4,3 4,7 5,1 5,5	3,9 4,5 5,1 5,5 5,9	4 5,7	4	1 2,1 2,7 3,3 3,9	2,1 2,8 3,4 4,6 5,2 5,7	3,1 3,7 4,3 1,9 5,5	3,1 4,8 5,4 6	3,1 5	3 3,5 4 4,5 4,9 5,3 5,7	4,6 5,2 5,8	6		
							6	l _e 53													
3	4 5 6 7 8 9 10	1 2,2	2 2,8 3,5	1 2,3 3,1 3,9 4,7	1 2,4 3,3 4,2 5,1 5,9	1 3 4,5 5,7	1,5 2,1 2,7 3,2	1,3 2,2 2,7 3,2 3,7 4,2 4,7	2,2 3,8 4,4 4,9 5,4	2,2 3,8 4,7 5,3 5,8	2,2 3,8 5,6	2,1 2,9 3,6	2 2,9 3,7 4,5 5,3	2,5 3,3 4,1 4,9 5,6	3 3,9 4,8 5,7	3 4,6	1,8 2,4 3,5 4,5 4,9	3,1 3,7 4,3 4,8 5,3	3,8 4,7 5,2	3.8 5,8	3,8 5,8
2	4 5 6 7 8 9	2	1,7 2,4 3,2	2,1 2,9 3,7 4,4	1 2,2 3,1 4 4,8 5,6	1 3 4,3 5,3	1,8 2,4 2,9	2 2,5 3 3,5 4 4,4	2,2 3 3,6 4,2 4,8 5,3 5,8	2,2 3,8 4 5 5,5	2,2 3,8 5,6	1,9 2,6 3,3	1,6 2,5 3,3 4,1 4,9	2,3 3,1 3,9 4,6 5,3	3 3,9 4,7 5,5	3 4,6	2,1 2,6 3,1 3,6 4,1 4,6	2,9 3,5 4,1 4,7 5,2 5,7	3,8 4,7 5,1 5,9	3,8 5,8	3,8 5,8
1	4 5 6 7 8 9	1,5	1 2,2 3	1,7 2,5 3,3 4,1	2 2,9 3,7 4,5 5,3	1 3 4 5	1 2,2 2,7	1,5 2,3 2,8 3,3 3,7 4,1	2,2 2,8 3,4 4,5 5,5	2,2 3,6 4,2 4,8 5,4 5,9	2,2 3,8 5,6	1 2,3 3,1	1 2,2 3 3,8 4,6	2 2,8 3,5 4,2 4,9	2,8 3,6 4,4 4,9	3 4,6 6	1,9 2,4 2,9 3,4 3,9 4,3	2,7 3,3 3,9 4,4 4,9 5,4	3,8 4,4 5 5,5	3,8 5,5	3,8 5,8

Класс	Толщина стенки	T			Допу	стим	 	пуби	на зал	оже	RNH	ю ве	рха т	рубы	h, M	, при	осно	вани	M ———		
трубо- провода	t, MM					nno	CKON	<u> </u>						пр	офи	ирог	анно	м (7	50)		
по степени ответст-								Сте	пень	ушю	тнен	ия гр	унто	В 38С	ыпки	1					
венности			нор	мал	ьная			по	зыше	нная			но	рмал	квна			поп	выше	квнн	
							·—	Расч	етно е	conp	отив	лени	е ста	пи R	, MI	Ia					
		150 2	00	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
		±				·	a	53 م	0; Г	'з-ТУ											
3	4 5 6 7 8 9	1 2	.,8 2,7	2,1 3 3,8	2 2,8 3,8 4,8	1 3,2 4,4 5,5	1 2,3	1 2,1 2,9 3,6	1 1,9 2,6 3,3 4 4,8	2,1 2,9 3,7 4,5 5,3 6	2,1 3,4 4,7 5,8	2,1 2,9	1,1 2,4 3,3 4,2	1,5 2,6 3,7 4,7 5,7	2,4 3,4 4,5 5,4	3 4,9	1,8 2,5 3,2 3,9	1 2,1 2,8 3,5 4,2 4,9 5,6	2,1 3,1 3.8 4,5 5,2 6	2,1 3,6 4,4 5,2	2,1 3,6 5,1
2	4 5 6 7 8 9	1 2	,6 2,5	1,8 2,7 3,5	1,7 2,6 3,5 4,4	1 3 4 5	2,1	1,8 2,6 3,3	1,3 2,2 3 3,8 4,5	2,1 2,7 3,4 4,1 4,8 5,6	2,1 3,3 4,5 5,4	1,8 2,6	2,2 3,1 4	2,3 3,3 4,3 5,3	2,2 3,3 4,3 5,3	2,9 4,6 5,9	1,4 2,2 2,9 3,6	1,8 2,5 3,2 3,9 4,6 5,2	2,1 2,8 3,5 4,2 4,9 5,6	2,1 3,6 4,4 5,1 5,8	2,1 3,6 5,1
1	4 5 6 7 8 9	1 2	2.3	1,3 2,3 3,3	1 2,4 3,3 4,2	1 2,8 3,9 4,9	1,8	1,5 2,4 3,1	1 2 2,8 3,5 4,2	1,7 2,4 3,1 3,8 4,5 5,3	2,1 3,2 4,2 5,1	1 2,4	2,1 2,9 3,7	2,1 3 4 5	2 3 4 5	2,9 4,3 5,6	1 2 2,7 3,4	1,5 2,2 2,9 3,6 4,3 4,9	2,1 2,8 3,5 4,1 4,7 5,3	2,1 3,4 4,1 4,8 5,3	2,1 3,6 5,1

							(d_e 63	30; 1	Тз-Т											
3	4 5 6 7 8 9 10 11	1 2 2,3 2,6 2,9 3,2 3,5	2,3 3,4 3,8 4,2 4,6 4,9 5,2	2,3 3,9 4,6 5,1 5,6 5,9	2,3 3,9 5,5	2,3 3,9 5,5	3,1 3,8 4,4 4,8 5,2 5,6	4,4 5,3	4,4	4,4	4,4	2,7 3,2 3,7 4,2 4,6 5 5,4 5,8	3,9 4,8 5,4 5,9	3,9 6	3,9 6	3,9 6	5 6				
2	4 5 6 7 8 9 10 11	1,5 2,2 2,5 2,8 3,1 3,3	2,3 2,7 3,1 3,5 3,9 4,3 4,6 4,9	2,3 3,9 4,3 4,7 5,1 5,5 6	2,3 3,9 5,5	2,3 3,9 5,5	2,8 3,6 4,3 4,7 5 5,3 5,6 5,9	4,4 5,3	4,4	4,4	4,4	2,5 2,9 3,3 3,7 4,1 4,5 4,9 5,2	3,9 4,5 5,1 5,6	3,9 6	3,9 6	3,9 6	4,7 5,7				
1	4 5 6 7 8 9 10	1,9 2,3 2,6 2,9 3,1	2,1 2,5 2,9 3,3 3,7 4,1 4,5 4,8	2,3 3,6 4 4,4 4,8 5,2 5,6	2,3 3,9 5,1 5,7	2,3 3,9 5,5	2,6 3,3 4 4,3 4,6 4,9 5,2 5,5	4,1 4,9 5,8	4,4	4,4	4,4	2,7 3,1 3,5 3,9 4,2 4,5 4,8	3,6 4,2 4,7 5,1 5,5 5,9	3,9 5,6	3,9 6	3,9 6	4,3 5,3				
							(d_e 63	30; 1	Гз-ІІ											
3	4 5 6 7 8 9 10 11	1,7 2,3	1 2 2,5 2,9 3,3 3,7	2 2,7 3,2 3,7 4,2 4,7 5,1	2 3,3 4 4,5 5 5,5	2 3,3 4,6 6	2,1 2,4 2,7 3 3,3 3,6 3,9	2,5 3,4 3,8 4,2 4,8 5,2 5,4 5,7	2,5 4,4 5,1 5,6	2,5 4,4 6	2,5 4,4 6	1 1,8 2,3 2,7 3,1 3,5 3,9	2 2,8 3,3 3,8 4,3 4,8 5,2 5,6	2 3,5 4,4 4,9 5,4 5,9	2 3,5 5,2 6	2 3,5 5,2	3 3,6 4,4 4,8 5,2 5,6 5,9	4,2 5,2 5,8	4,2	4,2	4,2

Класс	Толимна	7			Допу	CTUN	лая г	туби	на за	тоже	ния д	о веј	рха т	рубы	<i>h</i> , м	, при	осно	вани	и		
трубо- провода	стенки t, мм					mo	ском	·						пр	офи	иров	анно	м (7	50)		
по степени ответст- венности								Сте	пень	упло	тнени	я гр	унто	B 3ac	ыпки	!					
Bennocia			но	рмал	ьная			пол	ыше	нная			но	рмал	квна			ПОЕ	ьше	нная	
								Расч	тное	сопр	отив	лени	е ста	пи R	, MI	Ia					
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	4 5 6 7 8 9 10	1 2,1	1,5 2,1 2,6 3 3,4	2 2,5 3 3,5 3,9 4,3 4,7	2 3,3 3,9 4,4 4,9 5,4 5,9	2 3,3 4,6 6	1,6 2,1 2,5 2,8 3,1 3,4 3,6	2,5 3,1 3,5 3,9 4,3 4,7 5	2,5 4,4 4,9 5,4 5,9	2,5 4,4 6	2,5 4,4 6	1 2 2,4 2,8 3,2 3,6	2 2,5 3 3,5 4 4,5 4,9 5,3	2 3,5 4,1 4,6 5,1 5,5	2 3,5 5,2 5,7	2 3,5 5,2	2,7 3,3 3,8 4,2 4,6 5,4 5,7	4,2 5 5,5 6	4,2	4,2	4,2
1	4 5 6 7 8 9 10	1,7	1 1,9 2,4 2,8 3,2	1,5 2,2 2,7 3,2 3,6 4 4,4	2 3,1 3,6 4,1 4,6 5,1 5,6	2 3,3 4,6 5,7	1,8 2,2 2,6 2,9 3,1 3,3	2,3 2,8 3.2 3,6 4 4,4 4,7 5	2,5 4 4,5 5 5,5 5,9	2,5 4,4 5,7	2,5 4,4 6	1 1,9 2,4 2,9 3,3	1,5 2,2 2,7 3,2 3,7 4,2 4,6 5	2 3,2 3,8 4,3 4,8 5,3 5,8	2 3,5 4,9 5,4 5,9	2 3,5 5,2	2,5 3,1 3,5 3,9 4,3 4,6 4,9 5,2	3,9 4,7 5,2 5,6	4,2	4,2	4,2
							ť	l _e 63	80; I	Ta-III											
3	4 5 6 7 8			2,1	1,5 2,3 3	1,5 2,8 4,1	1	1,7 2,2 2,7 3,1	2,6 3,3 3,8 4,3	2,6 3,9 4,6 5,1	2,6 3,9 5,5		1,9 2,5	1,8 2,5 3,2 3,9	1,8 3,2 3,9 4,6	1,8 3,2 4,4	1 2 2,4 2,8 3,2	2,6 3,3 3,8 4,3 4,8	2,6 4,2 5,1 5,6 6	2,6 4,2 6	2,6 4,2 6

	9 10 11 1	1 2,2 2,9	2,8 3,4 4	3,7 4,4 5,1	5,2	1,9 2,3 2,7	3,5 3,9 4,2	4,8 5,2 5,6	5,6		1,6 2,4 3	3,1 3,7 4,3	4,6 5,3 6	5,3		3,6 4 4,4	5,2 5,6			
2	4 5 6 7 8 9 10 11	2 2,6	1,8 2,4 3 3,7	1,5 2,2 2,9 3,6 4,2 4,8	1,5 2,8 4,1 4,9 5,7	1,5 2,1 2,5	1 2 2,4 2,8 3,2 3,6 3,9	2,6 3 3,5 4 4,5 4,9 5,3	2,6 3,9 4,5 5,5 5,5	2,6 3,9 5,5	2,1 2,7	1,5 2,2 2,9 3,6 4,2	1,8 2,5 3,2 3,8 4,4 5	1,8 3,2 3,9 4,6 5,3 5,9	1,8 3,2 4,4	1,6 2,2 2,6 3 3,4 3,8 4,1	2,6 3,1 3,6 4,1 4,6 5,1 5,5 5,9	2,6 4,2 4,8 5,3 5,7	2,6 4,2 6	2,6 4,2 6
1	4 5 6 7 8 9 10 11	1,6 2,4	1 2,2 2,8 3,4	1,8 2,5 3,2 3,8 4,4	1,5 2,8 3,8 4.6 5,3	1 2,3	1,6 2,2 2,6 3 3,3 3,6	2,3 2,8 3,3 3,7 4,1 4,5 4,9	2,6 3,7 4,2 4,7 5,1 5,5	2,6 3,9 5,5	1,9 2,5	1 2,1 2,7 3,3 3,9	1 2,1 2,8 3,4 4,6 5,2	1,8 2,9 3,6 4,3 4,9 5,5	1,8 3,2 4,4 5,7	1 2 2,4 2,8 3,2 3,5 3,8	2,3 2,8 3,3 3,8 4,3 4,8 5,2 5,6	2,6 3,9 4,4 5,1	2,6 4,2 5,6	2,6 4,2 6
						d	e 63	0; Г	з-ТУ											
3	5 6 7 8 9 10 11	2,1	1,4 2,4 3,1	1,6 2,4 3,2 4	1 2,7 3,8 4,5 5,7	1,5	1,8 2,4 2,9	1,6 2,2 2,8 3,4 4,1	2 2,7 3,3 3,9 4,5 5,1	2 3,2 4,3 5,3	1 2,2	2,1 2,8 3,5	1 2,3 3,1 3,9 4,8	2,3 3,2 4,1 5 5,9	2,8 4,3 5,7	1 2 2,6 3,1	1,8 2,4 3 3,6 4,1 4,6	2,1 2,8 3,5 4,1 4,7 5,3	2,1 3,4 4,1 4,8 5,6	2,1 3,4 4,7
2	5 6 7 8 9 10 11	1,8	1 2,2 2,9	1 2,2 3 3,7	1 2,7 3,6 4,5 5,4		1,1 2,2 2,7	1 2,1 2,6 3,2 3,8	2 2,6 3,2 3,8 4,3 4,8	2 3 4 5 5,9	1,1	1,8 2,6 3,3	2,1 2,9 3,7 4,5	2,1 3 3,9 4,8 5,6	2,8 4,3 5,3	1,7 2,4 2,9	1,4 2,5 3,1 3,7 4,3	2,1 2,8 3,4 4 4,6 5,2 5,8	2,1 3,4 4,1 4,7 5,3	2,1 3,4 4,7

Класс трубо-	Толщина стенки				Доп	усти	T RBN	пуби	на за	поже	, к ин	ю веј	рха т	рубь	h, м	, при	осно	вани	М		
провода	t, MM					סועו	CKON	1						пp	офи	иров	аннс	м (7	50)		
по степени ответст-								Сте	пень	ymio	тнен	ия гр	унто	в зас	ыпк	 I					
венности			но	рмал	квна]	по	выше	нная			но	рмал	ьная			пов	ыше	нная	
							J	Расч	- —— - етно е	con	отив	лени	е ста	ли R	y, MI	Ia					
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
1	5 6 7 8 9 10	+	1,5	2 2,6	2 2,8 3,5	1 2,5 3,3 4,1 5		2 2,5	1,7 2,3 2,9 3,5	1,6 2,2 2,8 3,4 4 4,5	2 3 4 4,8 5,5	-	1,3 2,3 3	1,8 2,6 3,4 4,2	1,6 2,6 3,5 4,4 5,3	2,8 4 5	1 2,1 2,6	1,6 2,3 2,9 3,5 4,1	1,8 2,4 3 3,6 4,2 4,8 5,4	2,1 3,2 3,9 4,6 5,2 5,8	2,1 3,4 4,7 6
								$d_e 7$	20; 1	Гз-โ											
3	5 6 7 8 9 10 11	1 2 2,3 2,6 2,9 3,1 3,3	2,6 3,4 3,7 4,3 4,6 4,9	2,8 4,3 4,7 5,1 5,5 5,8	2,8 4,3 5,7	2,8 4,3 5,7	3,3 4,5 4,9 5,2 5,5 5,8	4,9 5,9	5,2	5,2	5,2	2.9 3,3 3,7 4 4,3 4,6 4,9 5,2	4,4 4,9 5,4 5,8	4,6	4,6	4,6	5,3				
2	5 6 7 8 9	1,5 2,1 2,4 2,7	2,4 2,8 3,1 3,4 3,7	2,8 3,9 4,3 4,7 5,1 5,4	2,8 4,3 5,5	2,8 4,3 5,7	3 3,7 4,2 4,5 4,8 5,1	4,6 5,5	5,2	5,2	5,2	2,6 3 3,4 3,8 4,1 4,4	4,1 4,6 5,1 5,6 6	4,6	4,6	4,6	4,9 5,9				

	11 12	2,9 3,1	4,3 4,6	5,6			5,4 5,7					4,7 4,9									
1	5 6 7 8 9 10 11 12	1,7 2,2 2,4 2,6 2,8	2,2 2,5 2,9 3,2 3,5 3,8 4,1 4,3	2,8 3,6 4 4,4 4,8 5,2 5,5 5,8	2,8 4,3 5,2 5,7	2,8 4,3 5,7	2,7 3,4 3,9 4,2 4,5 4,8 5,1 5,3	4,1 5,2 5,8	5,2	5,2	5,2	2,4 2,7 3,1 3,4 3,7 4 4,3 4,5	3,8 4,3 4,7 5,1 5,5 5,8	4,6 5,7	4,6	4,6	4,6 5,5				
	_							l_e 72													
3	5 6 7 8 9 10 11 12	1 2,1	1 2 2,4 2,8 3,1 3,4	2,2 2,7 3,1 3,5 3,9 4,3 4,7	2,2 3,4 4 4,5 5 5,5 5,9	2,2 3,4 4,6 5,8	1,5 2,1 2,4 2,7 3 3,2 3,4 3,6	3,1 3,5 3,9 4,2 4,5 4,8 5,1 5,4	3,3 4,8 5,2 5,6	3,3 4,8	3,3 4,8	1.7 2,1 2,5 2,9 3,2 3,5	2,3 2,7 3,1 3,5 3,9 4,3 4,7 5,1	2,5 3,8 4,3 4,8 5,2 5,6	2,5 3,8 5,3 6	2,5 3,8 5,3	3,3 3,7 4,1 4,5 4,8 5,1 5,4 5,7	4,9 5,5 5,9	5,2	5,2	5,2
2	5 6 7 8 9 10 11 12	1,7	1,1 2,1 2,5 2,8 3,1	2 2,4 2,8 3,2 3,6 4 4,4	2,2 3,3 3,8 4,3 4,7 5,1 5,5	2,2 3,4 4,6 5,8	1 1,8 2,1 2,4 2,7 3 3,2 3,4	2,8 3,2 3,6 3,9 4,2 4,5 4,8 5,1	3,3 4,5 4,9 5,2 5,7 6	3,3 4,8 6	3,3 4,8	1 1,8 2,2 2,6 3 3,3	2,1 2,5 2,9 3,3 3,7 4,1 4,5 4,9	2,5 3,6 4,1 4,6 5,1 5,5 5,9	2,5 3,8 5 5,7	2,5 3,8 5,3	3 3,4 3,8 4,1 4,4 4,7 5 5,3	4,6 5,2 5,6 6	5,2	5,2	5,2
1	5 6 7 8 9 10 11 12	1	1,7 2,1 2,5 2,9	1,6 2,2 2,6 3 3,4 3,7	2,2 3,1 3,6 4 4,4 4,8 5,2	2,2 3,4 4,6 5,6	1 1,7 2,2 2,5 2,7 2,9 3,1	2,6 3 3,3 3,6 3,9 4,2 4,5 4,8	3,3 4,2 4,6 5,3 5,6 5,9	3,3 4,8 5,7	3,3 4,8	1 2 2,4 2,7 3	1,7 2,2 2,6 3 3,4 3,8 4,2 4,6	2,5 3,3 3,8 4,3 4,7 5,1 5,5	2,5 3,8 4,9 5,4 5,8	2,5 3,8 5,3	2,8 3,2 3,5 3,8 4,1 4,4 4,7	4,2 4,8 5,2 5,6	5,2	5,2	5,2

		T																IIPU			14001.0	
Класс трубо- провода по степени ответст- венности	Толщина стенки	Допустимая глубина заложения до верха трубы h, м, при основании																				
	t, MM	шоском]`	профилированном (75°)									
		Степень уплотнения грунтов засыпки																				
		нормальная				повышенная				нормальная					T-	повышенная						
		Расчетное сопротивление стали $R_{\mathcal{Y}}$, МПа																				
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	
			J—	<u></u>	J	J	 0	1 ₀ 72	л 20; Г	т— —. `з-III	 -	·		<u></u>	J		J	-				
3	5 6 7 8 9 10 11 12		2 2,5	1,9 2,5 3,1 3,6	1,5 2,3 2,9 3,5 4,1 4,6	1,5 2,7 3,8 4,9 5,7	1 1,7 2,1 2,5	1,7 2,2 2,5 2,8 3,1 3,4 3,8	1 2,8 3,2 3,6 4 4,4 4,8 5,2	1 2,8 4 4,7 5,1 5,5 5,8	1 2,8 4 5,4	1 2,1 2,7	1,8 2,4 3 3,6 4,1	2,2 2,8 3,4 4,5 5,5	2,2 3,2 3,9 4,5 5,1 5,7	2,2 3,2 4,4 5,8	1 2,1 2,4 2,8 3,2 3,5 3,8 4,1	2,9 3,3 3,7 4,1 4,5 4,9 5,3 5,7	3,1 4,6 5,1 5,6 5,9	3,1 4,6	3,1 4,6	
2	5 6 7 8 9 10 11 12		1,6 2,3	1,4 2,2 2,8 3,3	1 2,1 2,6 3,1 3,6	1,5 2,7 3,8 4,6 5,3	1 1,8 2,2	1 2 2,4 2,7 3 3,3 3,6	1 2,6 3 3,4 3,8 4,2 4,6 4,9	1 2,8 4 4,4 4,8 5,2 5,5	1 2,8 4 5,4	1,8	1,4 2,1 2,7 3,3 3,8	2 2,5 3 3,5 4,1 4,7 5,2	2,2 3,1 3,7 4,2 4,7 5,2 5,7	2,2 3,2 4,4 5,8	2,2 2,6 3 3,3 3,6 3.8	2,7 3,1 3,5 3,9 4,3 4,7 5,1 5,5	3,1 4,4 4,8 5,2 5,6	3,1 4,6 5,9	3,1 4,6	
1	5 6 7 8 9			2	1 1,8 2,3 2.8	1,5 2,7 3,6 4,4		1,5 2,1 2,4 2,7	1 2,4 2,8 3,2 3,6 3,9	1 2,8 3,6 4,1 4,6 5	1 2,8 4 5,4		1,8 2,4	1,6 2,1 2,6 3,1 3,6	2,2 2,8 3,4 4 4,6	2,2 3,2 4,4 5,5	1,9 2,3 2,6 2,9	2,5 2,9 3,3 3,7 4,1 4,5	3,1 4 4,6 5 5,4 5,7	3,1 4,6 5,6	3,1 4,6 5,6	

	11 12		2,1	2,6 3,1	3,3 3,8	5,1 5,8	2	3 3,3	4,2 4,5	5,4 5,8		1 2,2	3 3,5	4,1 4,6	5,1		3,2 3,5	4,9 5,3			
							á	l _e 72	0; Γ	'з-ГУ	•										
3	6 7 8 9 10 11 12		1,6	1 2,1 2,8	1 2,3 2,9 3,6	2,5 3,6 4,5 5,3		1,1 2,1 2,6	1,5 2,2 2,7 3,2 3,7	2,1 2,6 3,1 3,6 4,1 4,7	2,1 2,9 3,9 4,9 5,8	1,9	1,8 2,5 3,2	1 2,2 2,9 3,6 4,4	1 2,3 3,1 3,9 4,7 5,5	1 2,5 3,8 4,9	1,8 2,3 2,9	1,8 2,3 2,8 3,3 3,8 4,3	2,5 2,9 3,4 3,9 4,4 4,9 5,5	2,5 3,6 4,1 4,7 5,3	2,5 3,6 4,7
2	6 7 8 9 10 11 12		1	1,8 2,5	2,1 2,7 3,4	2,5 3,3 4,1 5		1,8 2,4	1 2 2,5 3 3,5	1,9 2,4 2,9 3,4 3,9 4,4	2,1 2,9 3,9 4,7 5,5	1,5	1,5 2,3 3	2,2 1,9 2,6 3,3 4,1	1 2,5 2,9 3,7 4,5 5,2	1 3,8 4,8	1 2,1 2,6	1,5 2,5 3,5 4	2,1 2,6 3,1 3,6 4,1 4,6 5,2	2,5 3,5 4,1 4,6 5,1 5,7	2,5 3,6 4,7
1	6 7 8 9 10 11 12			1,4 2,3	1,8 2,4 3,1	2,4 3,1 3,9 4,7		1,5	1,5 2,2 2,7 3,2	1,6 2,1 2,6 3,1 3,6 4,1	2,1 2,9 3,7 4,7 5,3 6		2,1 2,7	1,5 2,4 3,1 3,8	1,8 2,5 3,2 4 4,8	1 2,5 3,8 4,7 5,3	1,8 2,4	1,6 2,2 2,7 3,2 3,7	2 2,5 3,5 4,5 5	2.5 3,2 3,8 4,4 4,9 5,4	2,5 3,6 4,7 5,9
								d_e 8:	20;	Гз-І											
3	5 6 7 8 9 10 11 12 13	1,5 2 2,3 2,5 2,7 2,9 3,1	1,8 2,7 3,1 3,4 4,3 4,5 4,7	1,8 3,1 4,3 4,7 5,1 5,4 5,7	1,8 3,1 4,5 5,7	1,8 3,1 4,5 5,7	2,6 3,5 4 4,4 4,7 5 5,3 5,6		3,6 5,8		3,6 5,8	2,5 2,9 3,3 3,6 3,9 4,2 4,5 4,8 5	3,5 4,4 5 5,3 5,6	3,5 5	3,5 5	3,5 5	4,5 5,6	5,8	5,8	5,8	5,8

 Класс трубо-	Толщина	Ţ			Допу	стим	ая гл	.— тубиі	1a 3a)	оже	 ц кин	о вег	xa T	рубы	<i>h</i> , м	, при	осно	вани	и		
провода по степени	стенки t, мм					пло	ском							пр	офил	иров	анно	м (7	50)		
ответст- венности								Сте	пень	упло	тнені	ия гр	унто	3 a cı	ыпки	[
Биности			но	р ма л:	квна]	пон	выше	нная			но	рмал	квная			noe	ыше	нная	
]	Расче	тно е	∞пр	отив	лени	е ста	и <i>R</i> у	, MΠ	la			,	,	, _
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	5 6 7 8 9 10 11 12 13	1,6 2 2,3 2,5 2,7 2,9	1,8 2,4 2,9 3,2 3,5 3,8 4 4,2 4,4	1,8 3,1 4 4,4 4,7 5 5,3 5,6 5,9	1,8 3,1 4,5 5,3 5,8	1,8 3,1 4,5 5,7	2,4 3,2 3,6 4 4,4 4,8 5,1 5,4 5,7	3,6 4,8 5,5	3,6 5,8	3,6 5,8	3,6 5,8	2,3 2,7 3,1 3,4 3,7 4 4,3 4,5 4,7	3,5 4,1 4,7 5 5,3 5,7	3,5 5	3,5 5	3,5 5	4,2 5,2 5,9	5,8	5,8	5,8	5,8
1	5 6 7 8 9 10 11 12 13	1 2 2,2 2,4 2,6		1,8 3,1 3,7 4,1 4,5 4,8 5,1 5,3 5,5	1,8 3,1 4,3 5 5,5 5,9	1,8 3,1 4,5 5,7	2,1 2,9 3,4 3,8 4,2 4,5 4,8 5,1 5,3	3,5 4,5 5,1 5,6 5,9	3,6 5,8	3,6 5,8		2 2,4 2,8 3,1 3,3 3,6 3,9 4,1 4,3	3,4 3,9 4,3 4,7 5 5,4 5,8 6	3,5 5 5,8	3,5 5	3,5 5	3,8 4,8 5,5	5.7	5,8	5.8	5.8
							Ċ	l _e 82	20; 1	Гз-П											
	5 6 7			2,3	2,4	2,4	1,6 2.1	2,1 3,1 3,5	2,1 3,6 4,8	2,1 3,6	2,1 3,6		1 2,5 2,8	1 2,9 3,9	1 2,9 4,1	1 2,9 4,1	2,7 3,4 3,7	3,7 5 5,5	3,7 5,6	3,7 5,6	3,7 5,6

3	8 9 10 11 12 13 1,6	1 1,8 2,2 2,5 2,8 3,1	2,7 3,1 3,4 3,7 4 4,3	3,5 3,9 4,3 4,7 5,1 5,5	3,5 4,5 5,4	2,4 2,6 2,9 3,1 3,3 3,5	3,8 4,1 4,4 4,7 5 5,2	5,2 5,6 6			1,6 2,1 2,4 2,7 3 3,3	3,1 3,4 3,7 4 4,4 4,8	4,1 4,7 5,1 5 5,9	5,4 6	5,4	4 4,3 4,6 4,9 5,2 5,4	5,9			
2	5 6 7 8 9 10 11 12 13	1 1,9 2,2 2,5 2,9	2,1 2,4 2,7 3 3,3 3,6 4	2,4 3,3 3,7 4,1 4,5 4,9 5,2	2,4 3,5 4,5 5,4	1 1,8 2,1 2,4 2,6 2,8 3 3,2	2,1 2,9 3,2 3,5 3,8 4,1 4,4 4,7 4,9	2,1 3,6 4,5 4,8 5,2 5,6 5,9	2,1 3,6 5	2,1 3,6 5	1,7 2,1 2,4 2,7	1 2,2 2,5 2,9 3,3 3,7 4,1 4,4 4,6	1 2,9 3,7 4 4,4 4,7 5,1 5,5	1 2,9 4,1 5,2 5,6 6	1 2,9 4,1 5,4	2,5 3,1 3,5 3,8 4,1 4,4 4,7 4,9 5,1	3,7 4,7 5,2 5,6 5,9	3,7 5,6	3,7 5,6	3,7 5,6
1	5 6 7 8 9 10 11 12 13	1 1,9 2,3 2,6	1,8 2,2 2,5 2,8 3,1 3,4 3,7	2,4 3,1 3,5 3,8 4,1 4,4 4,8	2,4 3,5 4,5 5,4 5,8	1 1,8 2,1 2,4 2,6 2,8 2,9	2,1 2,6 3 3,3 3,6 3,9 4,1 4,3 4,5	2,1 3,6 4,2 4,5 4,9 5,3 5,5 5,7	2,1 3,6 5 5,7	2,1 3,6 5	1,7 2,1 2,4 2,8	1 2 2,4 2,8 3,1 3,4 3,7 4 4,3	1 2,9 3,4 3,7 4,1 4,4 4,8 5,2 5,7	1 2,9 4,1 4,8 5,3 5,7 6	1 2,9 4,1 5,4	2,3 2,8 3,2 3,5 3,8 4,1 4,3 4,5 4,7	3,6 4,4 4,8 5,2 5,6 6	3,7 5,6	3,7 5,6	3,7 5,6
						C	l _e 82	0; I	3-III											
3	5 6 7 8 9 10 11 12 13	1,5 2,2	1,7 2,3 2,8 3,2	1,6 2,1 2,6 3,1 3,6 4,1	1,6 2,7 3,7 4,7 5,4 6	1 1,7 2,3	1,9 2,2 2,5 2,8 3,1 3,4 3,6	2 2,9 3,3 3,7 4 4,3 4,6 4,9	2 3 4 4,6 4,9 5,2 5,6	2 3 4 5,2	1 1,7 2,3	1,7 2,2 2,7 3,1 3,6	2,3 2,5 2,9 3,3 3,7 4,2 4,9	2,4 3,2 3,7 4,2 4,8 5,4	2,4 3,2 4,3 5,4	1 1,6 2,1 2,4 2,7 3,3 3,6 3,8	2,3 3,4 3,8 4,2 4,6 5,3 5,6	2,3 3,5 4,7 5,1 5,5 5,9	2,3 3,5 4,8	2,3 3,5 4,8

Класс	Толщина]			Допу	стим	IAR F	тубин	 1a 3a)	эжог	п кин	ю вер	ха т	рубы	<i>h</i> , м	, при	осно	вани	и		
трубо- провода по степени	стенки t, мм					Mo	СКОМ							пр	офил	пров	анно	м (7	50)		
ответст- венности							·	Сте	пень	упло	тнен	ия гр	унто	B 3ac	ыпки	i 					
BCHROCIN			нор	мал	ьная		<u> </u>	пов	ььше	нная			ној	рмал	ьная]	пов	ыше	нная	
					. —	,		,	,		,	лени	,	,—-í	. — — –		,	,	,		,
		150 20	00	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	5 6 7 8 9 10 11 12 13	2		2,1 2,6 3	1 2 2,4 2,9 3,4 3,9	1,6 2,7 3,6 4,4 5,1 5,7	1,6 2,1	1,4 2,3 2,6 2,9 3,2 3,4	2 2,7 3 3,3 3,6 3,9 4,2 4,6	2 3 3,9 4,3 4,7 5,1 5,5 5,8	2 3 4 5,2	1 2,1	1 2,1 2,5 2,9 3,4	2,1 2,5 2,9 3,3 3,7 4,1 4,6	2,4 3,2 3,7 4,1 4,6 5,1 5,7	2,4 3,2 4,3 5,4	1 1,8 2,1 2,4 2,7 3 3,3 3,6	2,3 2,8 3,2 3,6 4 4,4 4,7 5 5,3	2,3 3,5 4,4 4,8 5,2 5,5 5,8	2,3 3,5 4,8 6	2,3 3,5 4,8
1	5 6 7 8 9 10 11 12 13		.,5	1,6 2,2 2,7	1,7 2,2 2,6 3,1 3,6	1,6 2,7 3,5 4,1 4,7 5,3	1	1 1,5 2,1 2,4 2,7 2,9 3,1	2 2,5 2,8 3,1 3,4 3,7 4	2 3 3,6 4 4,4 4,8 5,2 5,5	2 3 4 5,2	1,8	1,7 2,2 2,7 3,2	1,8 2,2 2,6 3 3,4 3,8 4,3	2,4 2,9 3,4 3,9 4,4 4,9 5,4	2,4 3,2 4,3 5,4	1 1,8 2,2 2,5 2,8 3,1 3,3	2,3 2,7 3,1 3,4 3,7 4 4,3 4,6 4,9	2,3 3,5 4,1 4,5 4,9 5,3 5,6 5,9	2,3 3,5 4,8 5,6	2,3 3,5 4,8
							ä	le 82	0; I	`з-ТУ	7										
	6 7 8								1	2	2				1	1		1,8	1 2,5 3	1 2,6 3,6	1 2,6 3,6

3	9 10 11 12 13	1,6 2,5 2,3 3,1	2,3 3,3 4 4,7	1,3 1 2,4 1,8 2,9 2,3 3,3	2,4 2,8 2,8 3,8 3,3 4,8 3,8 5,4 4,3	1,2 2,2 1 2,7	1 2 2,6 3,2 3,8	2,2 2,6 2,8 3,7 3,4 5,3 4,1 5,8 4,8	2,1 2,5 1,5 2,9 2,1 3,4 2,5 3,8	3,5 4,1 4,6 3,9 4,6 5,2 4,3 5,1 4,7 5,7 5,2
2	6 7 8 9 10 11 12 13	1,6 1 2,3 2,1 2,9	2,3 3 3,7 4,4	1,7 2,2 1,4 2,6 2,1 3,1	1,9 2 2,3 2,8 2,7 3,8 3 4,5 3,6 5,1 4 5,8	1 1,9 2,5	1,7 2,4 2,9 3,5	1 2 2,6 2,6 3,7 3,2 4,7 3,8 5,5 4,5	1 1,8 2,3 2,7 1,6 3,1 2,3 3,6	1 1 1 2,3 2,6 2,6 2,8 3,4 3,6 3,2 3,9 4,6 3,7 4,4 5,2 4,1 4,9 4,5 5,4 4,9
1	6 7 8 9 10 11 12 13	2,1 1,8 2,7	2,2 2,8 3,4 4	1 2 2,4 1,8 2,8	1,5 2,1 2 2,7 2,4 3,7 2,8 4,2 3,2 4,8 3,7 5,4	1,5 2,3	1 2,1 2,7 3,3	1 1,7 2,6 2,4 3,7 3 4,4 3,6 5,2 4,2	1,5 2,1 2,5 1,1 2,9 2,1 3,3	1 1 1 2,1 2,6 2,6 2,5 3,2 3,6 2,9 3,7 4,6 3,3 4,2 5,2 3,7 4,7 4,1 5,2 4,5 5,7
			d	' _e 920; 1	Гз-І					
3	6 2 7 2 8 1 3 9 1,7 3 10 2,2 3 11 2,5 4 12 2,7 4 13 2,9 4 14 3 4	2,3 2,3 2,3 2,8 3,5 3,5 3,1 4,3 4,5 3,4 4,8 5,5 3,7 5,2 5,4 4,2 5,6 1,4 5,8	2,3 2,9 3,5 3,5 4,5 4,1 5,5 4,4 4,7 5 5,3 5,6 5,8	4,3 4,3 5,3	4,3 4,3	2,6 4 3,1 4,7 3,4 5 3,7 5,3 4 5,6 4,3 4,5 4,7 4,8	4 5,5	4 4 5,5 5,5	4,8 5,7	

Класс	Толщина стенки	7			Допу	 СТИР	1 RGN	 луби	на за	ложе	ц кин	цо ве	pxa 1	грубы	<i>h</i> , N	 1, при	і осн	——— О ван і	1N		
трубо- провода	t, mm					מתו	CKO	1						nı	офи	лиро	ванн	ом (′	75°)		
по степени ответст-								Сте	пень	ymic	тнен	ия гр	унто)B 3ac	ыпк	И					
венности			но	рмал	ьная			по	выш	енная	t 		н	рмал	ьная	:	<u> </u>	по	выш	енная	[
						. – –		Расч	етно	con	ротив	злени	ie cta	ии R	y, Mi	Па					
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	6 7 8 9 10 11 12 13	1 2 2,2 2,4 2,6 2,7	2,3 2,5 2,8 3,1 3,4 3,7 3,9 4,1 4,2	2,3 3,4 4,4 4,8 5,1 5,3 5,5 5,7	2,3 3,4 4,5 5,5 5,8	2,3 3,4 4,5 5,5	2,6 3,3 3,9 4,2 4,5 4,8 5,1 5,3 5,5	4,2 5 5,7 5,9	4,2	4,2	4,2	2,4 2,8 3,2 3,5 3,7 3,9 4,1 4,3 4,5	3,9 4,3 4,7 5,1 5,5 5,8	3,9 5,5	3,9 5,5	3,9 5,5	4,5 5,3		_	-	
1	6 7 8 9 10 11 12 13	1 2 2,2 2,4 2,5	2 2,4 2,7 2,9 3,1 3,3 3,5 3,7 3,9	2,3 3,3 3,7 4 4,3 4,6 4,9 5,2 5,4	2,3 3,3 4,5 5 5,5 5,9	2,3 3,3 4,5 5,5	2,2 3 3,4 3,8 4,1 4,4 4,7 4,9 5,1	3,8 4,5 5,1 5,6 6	4,2	4,2	4,2	2 2,4 2,7 3 3,3 3,6 3,8 4 4,2	3,3 4 4,4 4,7 5 5,3 5,6 5,8	3,9 5,4 5,8	3,9 5,4	3,9 5,4	4,2 5 5,7 6				
							a	l _e 92	0; I	`1 - -E											
	6 7			1	1	1	1,5	2,6 3,2	2,6 3,8	2,6 3,8	2,6 3,8		2 2,5	2 3,1	2 3,1	2 3,1	3 3,4	4,2 4,8	4,2 5,9	4,2 5,9	4,2 5,9

3		8 9 10 11 12 13	1,8 2,1 2,4 2,6 2,8	2,3 2,7 3,1 3,4 3,7 3,9 4,1	2,5 3,4 3,9 4,3 4,6 4,9 5,2	2,5 3,4 4,4 5,2	2,1 2,4 2,6 2,8 3 3,2 3,3	3,5 3,8 4,1 4,3 4,5 4,7 4,9	4,7 5,2 5,5 5,8	4,9	4,9	1 1,6 2,1 2,4 2,7 2,9 3,1	2,8 3,1 3,4 3,7 4 4,3 4,6	3,9 4,4 4,8 5,1 5,4 5,7	4,1 5,2 5,9	4,1 5,2	3,7 4 4,2 4,4 4,6 4,8 5	5,3 5,8			
2	;	6 7 8 9 10 11 12 13	1 1,7 2,1 2,4 2,7	1 2,1 2,4 2,7 3 3,3 3,6 3,8	1 2,5 3,4 3,7 4,1 4,4 4,7 4,9	1 2,5 3,4 4,4 5,2	1 1,6 2,1 2,4 2,6 2,8 3 3,1	2,5 2,9 3,2 3,5 3,8 4 4,2 4,4 4,6	2,5 3,8 4,4 4,8 5,1 5,4 5,7 6	2,5 3,8 4,9 6	2,5 3,8 4,9	1 1,6 2 2,3 2,6 2,8	2 2,4 2,7 3 3,3 3,6 3,9 4,1 4,3	2 3,1 3,6 4 4,4 4,8 5,2 5,5 5,8	2 3,1 4,1 5,1 5,6 5,9	2 3,1 4,1 5,2	2,7 3,1 3,4 3,7 4 4,2 4,4 4,6 4,7	4,2 4,5 4,8 5,1 5,4	4,2 5,9	4,2 5,9	4,2 5,9
1		6 7 8 9 10 11 12 13	1 1,7 2,1 2,4	1 1,7 2,2 2,5 2,8 3,1 3,3 3,5	1 2,5 3 3,4 3,7 4 4,3 4,6	1 2,5 3,4 4,4 5,2 5,7	1 1,5 2 2,3 2,5 2,7 2,8	2,3 2,7 3 3,3 3,6 3,8 4 4,2 4,4	2,5 3,7 4,1 4,4 4,7 5 5,3 5,6 5,8	2,5 3,7 4,9 5,6 6	2,5 3,7 4,9	1 2 2,3 2,5	1,3 2,3 2,6 2,9 3,2 3,5 3,8 4	2 3 3,4 3,8 4,2 4,5 4,8 5,1 5,4	2 3 4,1 4,9 5,3 5,6 5,9	2 3 4,1 5,2	2,5 2,9 3,2 3,4 3,6 3,8 4 4,2 4,4	4 4,4 4,8 5,1 5,4 5,6	4,2 5,9	4,2 5,9	4,2 5,9
							(l _e 92	20; 1	િક-ૉા											
	3	6 7 8 9 10 11 12 13 14	1,8	1,7 2,1 2,5 2,9	1,6 2,2 2,6 3 3,4 3,8	1,6 2,5 3,4 4,3 5	1 1,7 2,1	1,6 2,2 2,5 2,7 2,9 3,1 3,3	2,2 2,8 3,2 3,5 3,8 4,1 4,4 4,7	2,2 3 4 4,6 5 5,3 5,6 5,9	2,2 3 4 5	1 2,1	1,6 2,1 2,5 2,9 3,3	2,2 2,6 3 3,4 3,8 4,2 4,6	2,4 3,2 3,8 4,3 4,8 5,3 5,8	2,4 3,2 4,1 5	1,6 2,4 2,7 2,9 3,1 3,3 3,5	2,6 3,1 3,5 3,8 4,1 4,4 4,7 5,3	2,6 3,7 4,6 5,1 5,6 5,9	2,6 3,7 4,8 6	2,6 3,7 4,8 6

1,5 1,5 1,5 1 2,5 2,7 2,7

7 8

Класс трубо-	Толщина стенки			Допу	стим	ая г	пуби	на за	тоже	п кин	ю вер	уха т	 рубы	<i>h</i> , м	, при	осно	вани			
провода по степени	t, MM				MIO	CKOM	• — — - •						np	офи	иро	занно	м (7	50)		
ответст-							Сте	пень	упло	тнен	ия гр	унто	в зас	ыпки	 I					
венности		но	рмал	ьная			ПО	выше	жная			но	рмал	ьная]	поі	выше	нная	:
							Расч	етное	соп	отив	лени	е ста	пи <i>R</i>	у, МГ	la					
		150 200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	6 7 8 9 10 11 12 13	1,4	1,8 2,3 2,7	1 2 2,4 2,8 3,2 3,6	1,6 2,5 3,4 4,1 4,7 5,3	1,8	1 1,9 2,3 2,5 2,7 2,9 3,1	2,2 2,6 3 3,3 3,6 3,9 4,1 4,4	2,2 3 3,9 4,3 4,6 4,9 5,2 5,5	2,2 3 3,9 5	1,7	1 1,8 2,3 2,7 3,1	2 2,5 3 3,4 3,7 4 4,3	2,4 3,1 3,6 4,1 4,6 5	2,4 3,1 4,1 5,1	1 1,6 2,1 2,4 2,7 2,9 3,1 3,3	2,6 2,9 3,2 3,5 3,8 4,1 4,4 4,7 5	2,6 3,7 4,3 4,6 5,1 5,5 5,8	2,6 3,7 4,8 6	2,6 3,7 4,8 6
1	6 7 8 9 10 11 12 13		1 2,1 2,4	1,6 2,1 2,5 2,9 3,3	1,6 2,5 3,3 3,9 4,4 4,9	1	1,3 1,9 2,2 2,5 2,7 2,9	2,2 2,5 2,8 3,1 3,4 3,6 3,8	2,2 3 3,6 4 4,3 4,6 4,9 5,2	2,2 3 3,9 5	1	1,4 2,1 2,5 2,9	1,6 2,1 2,5 2,9 3,3 3,7	2,4 2,9 3,4 3,9 4,4 4,8 5,1	2,4 3,1 4,1 5,1 5,8	1 1,8 2,2 2,4 2,6 2,8 3	2,3 2,7 3 3,3 3,6 3,9 4,1 4,4 4,7	2,6 3,7 4,2 4,6 4,9 5,2 5,5 5,7	2,6 3,7 4,8 5,7	2,6 3,7 4,8 6

de 920; Гз-**Т**У

3	9 10 11 12 13 14			1	1,7 2,3 2,8	2 2,9 3,6 4,1		1,4 2,1	1 1,9 2,3 2,7 3	2 2,4 2,8 3,2 3,6 3,9	2 2,8 3,6 4,4 5,1 5,7		1,9 2,4	1,8 2,4 3 3,5	1 2,2 2,8 3,4 4,5	1 2,5 3,5 4,5 5,5	1 1,8 2,2	1,8 2,2 2,6 2,9 3,2 3,5	2,9 3,3 3,7 4,1 4,5 4,8	3,5 4 4,5 5 5,5 6	3,5 4,5 5,5
2	7 8 9 10 11 12 13 14			1	1 2,1 2,6	2 2,8 3,4 4		1 1,8	1,5 2,1 2,5 2,8	1,9 2,3 2,7 3 3,3 3,6	1,9 2,8 3,6 4,4 4,9 5,4		1,5 2,2	1,5 2,2 2,7 3,2	2 2,5 3 3,5 4	1 2,5 3,5 4,5 5,3	1 2,1	1 1,9 2,3 2,7 3 3,3	1,5 2,3 2,7 3,1 3,5 3,8 4,1 4,4	1,5 2,7 3,4 3,9 4,4 4,8 5,2 5,6	1,5 2,7 3,4 4,5 5,4
1	7 8 9 10 11 12 13 14			1	1,8 2,4	2 2,6 3,1 3,7		1	1 1,8 2,2 2,5	1,5 2 2,4 2,8 3,1 3,4	1,9 2,8 3,5 4,1 4,5 5,1	-	1 2	1 1,9 2,5 3	1,6 2,3 2,8 3,3 3,8	2,4 3,2 3,8 4,4 5 5,6	1,7	1,5 1,9 2,3 2,7 3,1	1,5 2,1 2,5 2,9 3,3 3,6 3,9 4,2	1,5 2,7 3,2 3,7 4,1 4,5 4,9 5,3	1,5 2,7 3,4 4,5 5,4
							a	le 10	20;	Гз-Т											
3	6 7 8 9 10 11 12 13 14	1 1,5 2 2,3 2,6 2,8	2,4 2,8 3,1 3,3 3,6 3,8 4,1 4,3	1 2,5 3,5 4,2 4,5 4,8 5,2 5,6 5,8	1 2,5 3,8 4,6 5,5	1 2,5 3,8 4,6 5,5	2,6 3,1 3,8 4,1 4,4 4,7 4,9 5,2 5,4	3,3 4,6 5,5 5,9	3,3 5 6,1	3,3 5 6,1	3,3 5 6,1	2,3 2,6 3,1 3,3 3,6 3,8 4,1 4,3 4,5	3,1 4 4,5 4,9 5,3 5,7 6	3,1 4,5 5,6	3,1 4,5 5,6	3,1 4,5 5,6	4,4 5,3 6,1	5,5	5,5	5,5	5,5

Класс	Толщина стенки				Допу	стим	iasi i	туби	ia saj	юже	ния д	о вер	oxa T	рубы	<i>h</i> , м	, при	осно	вани	И		
трую- провода	t, MM					пло	СКОМ	. – – –				 		пр	офил	пров	аннс	м (7	50)		
по степени ответст-								Сте	пень	ушю	тнени	и гр	унто	3 3acı	ыпки	ı ———					
венности			ној	рмал	ная]	пон	ьыше	нная			ној	рмал	ьная			ПОЕ	ыше	нная	
								Расче	тное	conp	отив	лени	е ста	ти <i>R</i> ј	, МГ	la					
]	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	6 7 8 9 10 11 12 13 14	1 1,5 2,1 2,4 2,5	1 2 2,5 2,8 3,1 3,3 3,6 3,8	1 2,5 3,4 3,9 4,2 4,6 4,9 5,2 5,4	1 2,5 3,6 4,6 5,3 5,7	1 2,5 3,6 4,6 5,5 6,3	2,2 2,7 3,4 3,7 4 4,3 4,6 4,8 5	3,3 4,4 5,1 5,5 5,9	3,3 4,9 6	3,3 4,9 6	3,3 4,9 6	2 2,4 2,7 3 3,3 3,6 3,8 4,1 4,2	3 3,8 4,2 4,6 5 5,3 5,6	3 4,4 5,6	3 4,4 5,6	3 4,4 5,6	4 4,7 5,3 6	5,4	5,4	5,4	5,4
1	6 7 8 9 10 11 12 13 14	1 1,5 2,1 2,3	1 1,7 2,2 2,5 2,7 3 3,3 3,5 3,7	1 2,5 3,2 3,6 3,9 4,2 4,5 4,8 5	1 2,5 3,5 4,4 5 5,4 5,8	1 2,5 3,5 4,4 5,4 6,2	2,5 3,4 3,7 4,1 4,3 4,5 4,7	3,3 4 4,6 5,2 5,5 5,8	3,3 4,8 6	3,3 4,8 6	3,3 4,8 6	1,7 2 2,3 2,7 3,2 3,5 3,7 3,9	3 3,6 3,9 4,3 4,7 5 5,3 5,6 5,8	3 4,4 5,3 5,8	3 4,4 5,6	3 4,4 5,6	3,6 4,3 4,9 5,4 5,9	5,4	5,4	5,4	5,4
							d	'e 10	20;	Гз-П	Ī										
	6 7						1	1,4 2,7	1,4 3	1,4 3	1,4 3		2,2	2,4	2,4	2,4	2,6 3,1	3,4 4,6	3,4 4,9	3,4 4,9	3,4 4,9

3	8 9 10 11 12 13 14	1 1,6 1,9 2,2 2,5	1,7 2,3 2,6 2,9 3 3,3 3,6	1,7 2,6 3,4 3,8 4,2 4,5 4,8	1,7 2,6 3,4 4,2 5,1 5,9	1,5 2,3 2,6 2,9 3,1 3,3	3 3,3 3,6 3,9 4,2 4,5 4,7	4 4,7 5,1 5,4 5,7	4 5	4 5	1 1,5 2 2,3 2,6 2,8	2,5 2,8 3,1 3,4 3,7 4 4,3	3,3 4 4,4 4,8 5,1 5,4 5,7	3,3 4,3 5,3 5,9	3,3 4,3 5,3	3,4 3,7 4 4,3 4,6 4,8 5	5 5,4 5,7			
2	6 7 8 9 10 11 12 13	1,8 2,1 2,4	1,7 2,1 2,3 2,5 2,8 3,1 3,4	1,7 2,6 3,1 3,4 3,7 4 4,3	1,7 2,6 3,4 4,2 5,1 5,9	1,6 1,9 2,2 2,5 2,7 2,9	1,4 2,6 2,9 3,2 3,5 3,8 4 4,2 4,4	1,4 3 4 4,4 4,8 5,1 5,4 5,8 6	1,4 3 4 5 5,9	1,4 3 4 5	1 1,5 1,8 2,1 2,4	2 2,3 2,6 2,9 3,2 3,5 3,8 4	2,4 3,3 3,7 4 4,3 4,6 4,9 5,2	2,4 3,3 4,3 5,2 5,5 5,7	2,4 3,3 4,3 5,3	2,4 2,8 3,1 3,4 3,7 4 4,3 4,5 4,7	3,4 4,2 4,7 5,1 5,5 5,8	3,4 4,9	3,4 4,9	3,4 4,9
1	6 7 8 9 10 11 12 13	1 1,9	1 1,7 2,1 2,4 2,7 3 3,3	1,7 2,6 3 3,3 3,6 3,9 4,2	1,7 2,6 3,4 4,2 5 5,5 5,9	1 1,8 2,2 2,5 2,7	1,4 2,3 2,6 2,9 3,2 3,5 3,8 4 4,2	1,4 3 3,7 4,1 4,4 4,7 5 5,3 5,5	1,4 3 4 5 5,6 5,9	1,4 3 4 5	1 1,8 2,1	1,5 2,3 2,6 2,9 3,2 3,5 3,8	2,4 3,1 3,4 3,7 4 4,3 4,6 4,9	2,4 3,3 4,2 4,8 5,2 5,5 5,7	2,4 3,3 4,2 5,4	2,1 2,6 2,9 3,2 3,5 3,8 4,1 4,3 4,5	3,4 4,1 4,5 4,8 5,1 5,4 5,7	3,4 4,9 5,9	3,4 4,9	3,4 4,9
						d	e 10:	20;	Гз-II	Ī										
3	6 7 8 9 10 11 12 13		1 1,8 2,3	1,5 2 2,5 2,9 3,3	1,5 2,4 3,2 4 4,7	1	1 1,8 2,1 2,4 2,7 2,9 3,1	2,4 2,9 3,2 3,5 3,8 4,1 4,4	2,4 3,2 3,8 4,4 4,7 5 5,3	2,4 3,2 3,8 4,9 5,7		1,5 2 2,4 2,8	1 2 2,5 3,5 3,9 4,3	1 2,5 3,2 3,6 4,1 4,5 4,9	1 2,5 3,2 4,1 5,1 5,9	1 1,8 2,1 2,4 2,7 3 3,2 3,4	2 2,8 3,2 3,5 3,8 4,1 4,4 4,7 5	2 3 4 4,8 5,1 5,4 5,7 5,9	2 3 4 5 5,5	2 3 4 5 5,5

Класс трубо-	Толщина стенки			Į	Цопу	стим	ая глу	убиз	ia saj	юже	ния д	ю вер	xa T	рубы	<i>h</i> , м	, при	OCH	вани	И		
провода по степени	t, mm					шо	ском							пр	офи	ирон	занно	м (7	50)		
ответст-								Сте	пенъ	упло	тнен	ия гр	унто	в зас	ышкі	i					
венности]i	норм	аль	ная			ПОЕ	ьше	квин			но	рмал	ьная			ПОІ	ьше	ная	
							P	асче	тное	сопр	отив	лени	еста	пи <i>R</i> у	, МГ	Ia					
		150 20	00 25	50	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	6 7 8 9 10 11 12 13 14		1, 2	,4 ,1	1 1,8 2,2 2,6 3	1,5 2,4 3,2 3,9 4,5		1,3 1,9 2,2 2,4 2,6 2,8	2,3 2,7 3 3,3 3,6 3,9 4,1	2,3 3,2 3,6 4,2 4,5 4,8 5,1	2,3 3,2 3,6 4,8 5,6		1 1,7 2,1 2,5	1 2 2,4 2,9 3,1 3,5 3,9	1 2,3 2,9 3,4 3,9 4,4 4,8	1 2,3 3,2 4,1 5 5,8	1 1,8 2,1 2,4 2,7 2,9 3,1	2 2,6 2,9 3,2 3,5 3,8 4,1 4,4 4,6	2 3 4 4,4 4,8 5,1 5,4 5,7 5,9	2 3 4 5 5,5	2 3 4 5 5,5
1	6 7 8 9 10 11 12 13		1	,7	1 1,9 2,3 2,7	1,5 2,4 3,2 3,7 4,2		1,1 1,8 2,1 2,3 2,5	2,2 2,5 2,8 3,1 3,3 3,5 3,8	2,4 3,1 3,4 3,7 4 4,4 4,8	2,4 3,1 3,4 4,6 5,5		1 1,8 2,2	1 1,7 2,1 2,5 2,9 3,3 3,7	1 2,2 2,8 3,4 3,9 4,3 4,7	1 2,2 3,2 4,1 4,9 5,6	1 1,7 2,1 2,4 2,6 2,8	2 2,4 2,7 3 3,3 3,6 3,9 4,2 4,4	2 3,8 4,1 4,4 4,7 5 5,3 5,6	2 3 4 4,9 5,4	2 3 4 4,9 5,4
							d_e	102	20; 1]з-Т	I										
	7 8																		1 1,8	1 1,8	1 1,8

3	9 10 11 12 13 14				1 1,3 2,1	1,8 2,7 3,4	-	1	1 1,8 2,2 2,5	1 1,8 2,4 2,7 3 3,3	1 1,8 2,6 3,4 4,2 5		1,4	1,6 2,3 2,8	1 2,1 2,6 3,1 3,6	1 2,4 3,4 4,3 5,2	1 1,6	1 1,7 2,1 2,5 2,8 3,1	2,4 2,8 3,2 3,6 3,9 4,2	2,8 3,3 3,8 4,3 4,8 5,3	2,8 3,8 4,5 5
2	7 8 9 10 11 12 13 14	- 45-4-			1 1,8	1,8 2,6 3,2		1	1 1,9 2,3	1 1,7 2,1 2,5 2,9 3,2	1 1,8 2,6 3,3 4 4,6		1	1 1,9 2,4	1 1,7 2,3 2,8 3,3	1 2,4 3,2 4,2 4,9	1	1 1,5 2 2,4 2,8	1 1,7 2,2 2,6 3 3,4 3,7	1 1,7 2,7 3,3 3,7 4,2 4,7 5,1	1 1,7 2,7 3,6 4,2 4,9
1	7 8 9 10 11 12 13 14				1,3	1,8 2,4 2,9		. 10	1 1,5 2,1	1 1,8 2,2 2,5 2,8	1,8 2,6 3,2 3,8 4,3			1,8 2,2	1 2,1 2,6 3,1	1 2,4 3,2 4 4,7		1 1,9 2,2 2,6	1 1,5 1,9 2,3 2,7 3,1 3,5 3,8	1 1,7 2,5 3 3,5 4 4,4 4,8	1 1,7 2,7 3,6 4,2 4,9 5,8
							a	le 12	20;	1 3-1											
3	7 8 9 10 11 12 13 14 15	1,5 1,9 2,2 2,4	2,2 2,6 2,9 3,1 3,3 3,5 3,7 3,9	2,2 3,1 4,3 4,7 4,9 5,1 5,3	2,2 3,1 4 4,7 5,6 5,9	2,2 3,1 4 4,7 5,6	2,2 2,8 3,4 3,7 4,3 4,5 4,7 4,9	2,9 4,3 5,1 5,5 5,8	2,9 4,3 5,9	2,9 4,3 5,9	2,9 4,3 5,9	2,1 2,6 2,9 3,2 3,4 3,6 3,8 4 4,2	2,7 4,4 4,8 5 5,2 5,4 5,7	2,7 4 5,1	2,7 4 5,1	2,7 4 5,1	4 4,8 5,6 5,9	4,9	4,9	4,9	4,9

Класс трубо-	Толщина стенки				Допу	CTUN	ая г	туби	на зал	тоже	ния д	(о веј	рхат	рубы	<i>h</i> , м	, при	осно	вани	ш		
провода по степени	t, MM					пло	ском	1						πŗ	офи	пирог	занно	м (7	50)		
ответст- венности								Сте	пень	упло	тнен	ия гр	унто	в зас	ыпки	1					
венности			но	рмал	ьная		T-	noı	выше	нная]	но	рмал	ьная		T	поі	зыше	квнн	:
							-L	Расч	етное	conp	отив	лени	еста	ти R	y, MI	la					
<u>-</u>		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
2	7 8 9 10 11 12 13 14 15	1 1,8 2,2	2,1 2,4 2,6 2,8 3 3,2 3,4 3,6	2,2 3,1 3,8 4,1 4,4 4,6 4,8 5	2,2 3,1 4 4,7 5,3 5,6 5,9	2,2 3,1 4 4,7 5,6	2 2,6 3,1 3,4 3,7 3,9 4,1 4,3 4,5	2,9 4,1 4,8 5,2 5,6 5,9	2,9 4,3 5,9	2,9 4,3 5,9	2,9 4,3 5,9	1,7 2,3 2,6 2,9 3,1 3,3 3,5 3,7 3,9	2,7 3,8 4,1 4,4 4,7 5 5,3 5,6 5,8	2,7 4 5,1 6	2,7 4 5,1	2,7 4 5,1	3,7 4,5 5,2 5,6 5,9	4,9	4,9	4,9	4,9
1	7 8 9 10 11 12 13 14 15	1 1,8	1,7 2,1 2,3 2,5 2,7 2,9 3,1 3,3	2,2 3,1 3,5 3,7 3,9 4,1 4,3 4,6	2,2 3,1 4 4,7 5 5,3 5,6 5,9	2,2 3,1 4 4,7 5,6	1 2,2 2,8 3,1 3,4 3,6 3,8 4 4,2	2,9 3,8 4,6 5,1 5,5 5,8 6	2,9 4,3 5,9	2,9 4,3 5,9	2,9 4,3 5,9	1 2,1 2,3 2,6 2,8 3 3,2 3,4 3,6	2,7 3,5 3,8 4,1 4,4 4,7 5 5,2 5,4	2,7 4 5,1 5,6 5,8 6	2,7 4 5,1	2,7 4 5,1	3,4 4,1 4,8 5,2 5,6 5,9	4,9	4,9	4,9	4,9
							d	'e 12	20;	Гз-[]											
	7 8								2,5	2,5	2,5			2	2	2	2,3 2,9	2,9 4,3	2,9 4,3	2,9 4,3	2,9 4,3

3	9 10 11 12 13 -14 15	1,7 2,1	1,9 2,3 2,5 2,7 2,9 3,1	1,9 2,6 3,3 3,7 3,9 4,1	1,9 2,6 3,3 4,1 4,8 5,5	1,8 2 2,2 2,4 2,6 2,7	3,1 3,3 3,5 3,7 3,9 4,1 4,3	3,6 4,5 4,8 5,1 5,4 5,6 5,8	3,6 4,5 5,3	3,6 4,5 5,3	1 1,8 2 2,2	2,3 2,6 2,8 3 3,2 3,4 3,6	2,7 3,5 3,9 4,2 4,6 4,8 5	2,7 3,5 4,4 5,3 5,8 6	2,7 3,5 4,4 5,3	3,5 3,7 3,9 4,1 4,3 4,5 4,6	5 5,3 5,5 5,6 5,9	5,7	5,7	5,7
2	7 8 9 10 11 12 13 14 15	1,7	1,5 2 2,3 2,5 2,7 2,9	1,9 2,6 3,2 3,5 3,7 3,9	1,9 2,6 3,3 4,1 4,8 5,5	1,5 1,8 2,1 2,3 2,5	2,3 2,8 3,2 3,4 3,6 3,8 4	2,5 3,6 4,3 4,6 4,9 5,1 5,3 5,5	2,5 3,6 4,5 5,3 5,9	2,5 3,6 4,5 5,3	1 1,6 2	1,7 2,3 2,5 2,5 2,7 3,2 3,4	2 2,7 3,4 3,7 4 4,3 4,5 4,7	2 2,7 3,5 4,4 5,4 5,7 5,9	2 2,7 3,5 4,4 5,3	2,1 2,5 3 3,3 3,5 3,7 3,9 4,1 4,3	2,9 4 4,7 5 5,2 5,4 5,6 5,8	2,9 4,3 5,7	2,9 4,3 5,7	2,9 4,3 5,7
1	7 8 9 10 11 12 13 14 15	1	1,5 2 2,2 2,4 2,6	1,9 2,6 2,9 3,2 3,4 3,6	1,9 2,6 3,3 4,1 4,8 5,4	1,6 2 2,3	2,1 2,5 2,7 2,9 3,1 3,3 3,4 3,5	2,5 3,6 3,9 4,2 4,5 4,7 4,9 5,1	2,5 3,6 4,5 5,3 5,5 5,7 6	2,5 3,6 4,5 5,3	1	2,1 2,3 2,5 2,7 2,9 3,1	2 2,7 3,1 3,4 3,7 4 4,2 4,4	2 2,7 3,5 4,4 4,7 5 5,3 5,6	2 2,7 3,5 4,4 5,3	1,6 2,3 2,7 2,9 3,1 3,3 3,5 3,7 3,9	2,9 3,8 4,3 4,6 4,9 5,2 5,4 5,6 5,8	2,9 4,3 5,7	2,9 4,3 5,7	2,9 4,3 5,7
						d	e 12	20;	Гз-ІІ	I										
3	7 8 9 10 11 12 13 14 15		1,5	1,4 2 2,3 2,5	1,4 2,3 2,9 3,5		1,5 1,8 2,1 2,3 2,4 2,5	1,8 2,7 2,9 3,1 3,3 3,5 3,7	1,8 2,7 3,3 4 4,4 4,6 4,7	1,8 2,7 3,3 4 4,8 5,5		1,8	1,8 2,2 2,4 2,6 2,8 3	1,8 2,5 3,2 3,5 3,8 4,1	1,8 2,5 3,2 3,9 4,6 5,5	1,1 2,1 2,3 2,5 2,7 2,8	1,6 2,6 3,3 3,5 3,7 3,9 4,1 4,2	1,6 2,6 3,5 4,5 4,8 5,1 5,4 5,6 5,7	1,6 2,6 3,5 4,5 5,3	1,6 2,6 3,5 4,5 5,3

Класс трубо-	Толщина стенки				Допу	стим	ая глу	бин	1 a 3a)	юже	ц кин	о вер	оха т	рубы	<i>h</i> , м	, при	осно	вани	ui 		
провода	t, MM					IUIO	ском						Γ	пр	офи	ирон	занно	ом (7	5°)		
по степени ответст-							(Стег	пень	упло	тнени	я гр	унто	в зас	ыпки	 I					
венности			ној	рмал	ьная			пов	ыше	нная			но	рмал	ьная		<u> </u>	пов	выше	нная	
							Pa	асче	тное	сопр	отив	лени	е ста	пи R _э	γ, Μ Γ	la				-	
		150	200	250	300	400	150 2	00	250	300	400	150	200	250	300	400	150	200	250	300	400
2	7 8 9 10 11 12 13 14		-	J	1 1,5 2 2,3	1,4 2,3 2,9 3,5		1 1,8 2,1 2,2	1,8 2,5 2,7 2,9 3,1 3,3 3,4	1,8 2,7 3,3 3,8 4,1 4,3 4,4	1,8 2,7 3,3 4 4,8 5,5		1,1 1,9	1,5 2 2,2 2,4 2,7 2,9	1,8 2,5 3,1 3,4 3,7	1,8 2,5 3,2 3,9 4,6 5,4	1,5 1,8 2,1 2,3 2,4 2,5	1,6 2,5 2,8 3 3,2 3,4 3,6 3,8	1,6 2,6 3,5 4,3 4,5 4,7 5 5,2 5,4	1,6 2,6 3,5 4,5 5,3 6	1,6 2,6 3,5 4,5 5,3
1	7 8 9 10 11 12 13 14 15				1,7 2,1	1,4 2,3 2,9 3,4	1 1 2 2	1 1,7 2 2,1	1,8 2,2 2,4 2,6 2,8 3 3,1	1,8 2,7 3,3 3,6 3,8 4 4,2	1,8 2,7 3,3 4 4,8 5,5	•	1,4	1,3 2 2,2 2,4 2,7	1,8 2,5 2,8 3 3,3 3,6	1,8 2,5 3,2 3,9 4,6 5,3	1 1,7 1,9 2,1 2,3	1,6 2,3 2,5 2,8 3,2 3,4 3,6 3,7	1,6 2,6 3,5 3,9 4,2 4,4 4,6 4,8 5	1,6 2,6 3,5 4,5 5,3 5,6 5,9	1,6 2,6 3,5 4,5 5,3
							d_e	122	20; I	`з-ТУ	7										
	10 11																	1	2,2 2,6	2,2 2,9	2,2 2,9

 3	12 13 14 15					1 2,3			1,5 1,9	1,9 2,2 2,5 2,7	1,9 2,5 3,1 3,9			1 2,1	2 2,3 2,8	2,3 3 3,8		1,5 1,9 2,2 2,4	2,8 3 3,2 3,4	3,5 3,9 4,2 4,5	3,5 4,2 5,1 5,9
 2	10 11 12 13 14 15	-				1 2,3			1 1,5	1,7 2 2,3 2,5	1,9 2,5 3,1 3,8			1,6	1,6 2,1 2,6	2,3 3 3,8		1,5 2 2,2	2 2,4 2,6 2,8 3 3,2	2,2 2,9 3,4 3,6 3,9 4,1	2,2 2,9 3,5 4,2 5,1 5,9
 1	10 11 12 13 14 15					1 2,2	-			1 1,6 2,1 2,3	1,9 2,5 3,1 3,7			1	1 1,8 2,3	2,3 3 3,7		1 1,6 2	1,6 2,1 2,3 2,5 2,7 3	2,2 2,9 3,1 3,3 3,6 3,9	2,2 2,9 3,5 4,2 5,1 5,7
							á	le 14	20;	Гз-І											
3	8 9 10 11 12 13 14 15 16	1 1,8 2,1	2,5 2,7 2,9 3,1 3,3 3,5 3,6	1,8 2,7 3,3 4 4,2 4,4 4,6 4,8	1,8 2,7 3,3 4 4,7 5,4 5,9	1,8 2,7 3,3 4 4,7 5,4	1,9 2,7 3,1 3,5 3,8 4 4,2 4,4 4,6	2,5 4 4,8 5,3 5,8 6	2,5 4 5,2	2,5 4 5,2	2,5 4 5,2	1,7 2,4 2,6 2,8 3,2 3,4 3,6 3,8	2,4 3,6 4,1 4,4 4,7 5 5,3 5,5 5,7	2,4 3,6 4,7 5,5	2,4 3,6 4,7 5,5	2,4 3,6 4,7 5,5	3,7 4,8 5,3 5,8	4,4	4,4	4,4	4,4
2	8 9 10 11 12 13 14 15 16	1,8	1,8 2,1 2,3 2,5 2,7 2,9 3,1 3,3	1,8 2,7 3,3 3,7 3,9 4,1 4,3 4,5	1,8 2,7 3,3 4 4,7 5,3 5,6 5,9	1,8 2,7 3,3 4 4,7 5,4	2,5 2,9 3,2 3,5 3,7 3,9 4,1 4,2	2,5 4 4,5 5,4 5,6 5,8 6	2,5 4 5,2	2,5 4 5,2	2,5 4 5,2	2,2 2,4 2,6 2,8 3,2 3,4 3,6	2,4 3,6 4,2 4,4 4,6 4,8 5 5,2	2,4 3,6 4,7 5,5 5,9	2,4 3,6 4,7 5,5	2,4 3,6 4,7 5,5	3,5 4,4 4,9 5,4 5,9	4,4	4,4	4,4	4,4

Класс	Толщина			Допу	стим	ая г	пубил	ta 3a)	тоже	ния д	ю вер	рха т	рубы	<i>h</i> , м	, при	осно	вани	и		
трубо- провода	стенки t, мм				шо	ском	 i				Γ		пр	офю	пров	анно	м (7	50)		
по степени							Сте	пень	упло	тнені	ия гр	унто	в зас	ыпки	 [
венности		нс	рмал	 ыная		<u> </u>	ПОЕ	ьшие	нная]	но	рмал	ьная		Τ	пов	ьше	нная	- -
						<i>-</i>	Расче	тное	сопр	отив	лени	е ста	ли R	у, МГ	Ia					
		150 200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
1	8 9 10 11 12 13 14 15 16	2 2,1 2,2 2,4 2,6 2,8 3	1,8 2,7 3,2 3,4 3,6 3,8 4 4,2	1,8 2,7 3,3 4 4,6 4,9 5,2 5,5	1,8 2,7 3,3 4 4,7 5,4	2,2 2,6 3,2 3,4 3,6 3,8 3,9	2,5 3,7 4,2 4,6 5 5,2 5,4 5,6 5,8	2,5 4 5,2	2,5 4 5,2	2,5 4 5,2	1,9 2,1 2,3 2,5 2,7 2,9 3,1 3,2	2,4 3,4 3,7 3,9 4,1 4,3 4,5 4,7	2,4 3,6 4,7 5,2 5,5 5,8 6	2,4 3,6 4,7 5,5	2,4 3,6 4,7 5,5	3,2 4,1 4,6 5,1 5,5 5,7 5,9	4,4	4,4	4,4	4,4
						a	l_e 14	20;	Гз-І	I										
3	8 9 10 11 12 13 14 15	1	2 2,2 2,4 2,6 2,8	2 2,6 3,2 3,6 3,8	2 2,6 3,2 3,9 4,5	1 1,5 1,8 2,1 2,3 2,5	2,1 2,7 3	2,1 3 3,8 4,5 4,7 4,9 5,1 5,3	2,1 3 3,8 4,5 5,2	2,1 3 3,8 4,5 5,2	1,5 1,8	2,2 2,4 2,6 2,8 3 3,2 3,4	2,4 3,1 3,6 3,9 4,2 4,4 4,6	2,4 3,1 3,7 4,5 5,3 5,6	2,4 3,1 3,7 4,5 5,3 5,9	2,3 2,6 3 3,2 3,4 3,6 3,8 4 4,2	2,9 3,9 4,6 5,2 5,4 5,6 5,8	2,9 3,9 4,9	2,9 3,9 4,9	2,9 3,9 4,9
							2,1	2,1	2,1	2,1						2,1 2,4	2,9 3,9	2,9 3,9	2,9 3,9	2,9 3,9

2	10 11 12 13 14 15 16	1,2 2 2 2 2,6 2,6 2,2 3,1 3,2 2,4 3,3 3,9 2,5 3,5 4,5	2,5 2,7 2,9 1 3,1 1,6 3,3 2 3,5 2,2 3,7	3 3 3 3,8 3,8 3,8 4,1 4,5 4,5 4,3 5,2 5,2 4,6 5,9 4,8 5 1	2 2,4 2,4 2,4 2,2 3,1 3,1 3,1 2,4 3,4 3,7 3,7 2,6 3,7 4,5 4,5 2,8 3,9 5 5,3 3 4,1 5,3 5,9 3,2 4,3 5,5	2,7 4,3 4,9 4,9 4,9 3 4,7 7 3,2 4,9 6 3,4 5,1 8 3,6 5,3 9 3,8 5,5 4 5,7
1	8 9 10 11 12 13 14 15	2 2 1 2,6 2,6 2 2,8 3,2 2,2 3 3,9 2,4 3,2 4,5	1,8 2,2 2,4 2,6 2,8 3 1 3,2 1,8 3,4	2,1 2,1 2,1 3 3 3 3,6 3,8 3,8 3,8 4,5 4,5 4 5,1 5,1 4,2 5,4 4,4 5,7 4,6 6	1 2,4 2,4 2,4 1,8 3 3,1 3,2 2 3,2 3,7 3,2 2,2 3,4 4,4 4,4 2,4 3,6 4,7 5,2 2,6 3,8 5 5,8 2,8 4 5,2	1,7 2,9 2,9 2,9 2,9 2,9 2,1 3,6 3,9 3,9 3,9 4 2,4 4 4,9 4,9 4,9 4,9 4,9 4,9 4,5 4 3 4,7 1 3,2 4,9 3 3,4 5,1 3,6 5,3
			d_e 1420	0; Гз-ІІІ		
3	9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1,5 1,9 2,1 2,3	2,1 2,1 2,1 2,6 2,6 2,6 2,8 3,3 3,3 3 3,9 3,9 3,2 4,2 4,5 3,4 4,4 5,2	2 2 2 2,2 2,6 2,6 2,4 3,1 3,1 2,6 3,4 3,3 1,8 2,8 3,6 4,3	2,3 2,3 2,3 2,3 2,3 2,8 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,8 3,8 3,8 3,8 1,6 3,2 4,3 4,5 4,5 4,5 2 3,4 4,6 5,2 5,2 3,6 4,9 7 2,4 3,8 5,2 8 2,5 4 5,4
2	9 10 11 12 13 14 15 16	1 1 2,1 1,8 2,6	1,3 1,8 2,1	2,1 2,1 2,1 2,4 2,6 2,6 2,6 3,3 3,3 2,8 3,7 3,9 3 3,9 4,5 3,2 4,1 5,2	1,6 2 2 1,9 2,6 2,6 2,1 2,9 3,1 2,3 3,2 3,7 2,5 3,4 4,3	2,3 2,3 2,3 2,3 2,5 3,1 3,1 3,1 2,7 3,8 3,8 3,8 1 2,9 4 4,5 4,5 5 1,5 3,1 4,3 5,2 5,2 1,9 3,3 4,5 5,8 2,1 3,5 4,8 2,3 3,7 5,1

Класс	Толщина	T			Допу	CTUM	 (1 RB)	туби	- -			lo Bei		 рубы	 h. м		OCHO	 Вани	. —— -		
трубо- провода	стенки t, мм						CKOM									тирон					
по степени ответст								Сте	пень	ушю	тнені	na Lb	унтоі	в зас	ыпки					····	
венности			ној	рмал	ьная		T	ПО	выше	квнн			ној	рмал	квна			пот	зыше	нная	
									етное								·		,	·	, <u>-</u>
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
1	9 10 11 12 13 14 15 16	<u> </u>	'— — ·-	-	1	1 2,1 2,6		1,7	1,9 2,1 2,3 2,5 2,7 2,9	2,1 2,6 3,1 3,4 3,6 3,8	2,1 2,6 3,3 3,9 4,5 5,2			1,3 1,7 2,1 2,3	2 2,5 2,7 2,9 3,1	2 2,6 3,1 3,7 4,3	1,3 1,8 2,1	2 2,3 2,5 2,7 2,9 3,1 3,3 3,4	2,3 3,1 3,6 3,8 4 4,2 4,4 4,6	2,3 3,1 3,8 4,5 5,1 5,4 5,7 6	2,3 3,1 3,8 4,5 5,2
							d_{ϵ}	2 142	20; 1	Гз-1!	I										
3	11 12 13 14 15									1,8 2,1 2,3	1,8 2,4 2,9				1,8 2,2	2,1 2,7		1,3 1,7 2	1,5 2,3 2,5 2,7 2,9 3,1	1,5 2,3 2,9 3,5 3,8 4	1,5 2,3 2,9 3,5 4,1 4,7
2	11 12 13 14 15									1,6 1,9 2,1	1,8 2,4 2,9				1,3 1,9	2,1 2,7		1,1	1,5 2 2,2 2,4 2,6 2,8	1,5 2,3 2,9 3,3 3,5 3,7	1,5 2,3 2,9 3,5 4,1 4,7

1	11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1,3 1,3 1,7 2,3 2,3 2 2,9 2,9 2,2 3,1 3,5 2,4 3,3 4,1 2,6 3,5 4,7
		d_e 1620; Гз-Т	
3	9 10 11 12 13 14 15 16 17 18 1,	1 2,2 2,2 2,2 2,2 1,6 2,4 2,4 2,4 2,4 3,4 4,1 1 1 1 2,3 3,5 3,5 3,5 3,5 2,3 3,4 3,4 3,4 3,4 3,4 4,2 5,8 2,2 2,3 2,3 2,3 2,9 4,6 4,8 4,8 4,8 2,5 3,8 4,2 4,2 4,2 5 2,3 2,8 2,8 2,8 3,2 5 5,8 5,8 5,8 5,8 2,7 4 4,7 4,7 4,7 5,4 2,4 3,3 3,3 3,3 3,4 5,3 2,6 3,6 3,8 3,8 3,6 5,6 2,8 3,9 4,6 4,6 3,8 6 3,4 2,5 5,2 5,3 4 3,4 4,8 3,2 4,5 5,6 4,2 3,5 5,1 3,3 4,7 6 4,4 3,4 4,4 5,7	4,1 4,1 4,1 5,8 5,8 5,8
2	9 10 11 12 13 14 15 16 17	2,2 2,2 2,2 2,2 1 2,4 2,4 2,4 2,4 3,2 4,1 1 1 1 1 2,1 3,5 3,5 3,5 3,5 2,1 3,4 3,4 3,4 3,4 3,9 5,8 1,6 2,3 2,3 2,3 2,7 4,3 4,8 4,8 4,8 2,2 3,7 4,2 4,2 4,2 4,7 1,8 2,8 2,8 2,8 2,9 4,6 5,8 5,8 5,8 2,3 3,9 4,7 4,7 4,7 5 2 3,1 3,3 3,3 3,1 4,9 2,2 3,3 3,8 3,8 3,3 5,2 2,4 3,5 4,3 4,3 3,5 5,5 2,6 3,7 4,8 4,8 3,7 5,7 2,8 4 5,2 3,9 5,8 3,2 4,9 3,3 5,1	4,1 4,1 4,1 5,8 5,8 5,8
1	9 10 11 12 13 14 15 16 17	2,2 2,2 2,2 2,2 2,4 2,4 2,4 2,4 2,4 2,9 4,1 1 1 1,5 3,3 3,5 3,5 3,5 1,5 3 3,4 3,4 3,4 3,6 5,5 2,3 2,3 2,3 2,4 3,9 4,8 4,8 4,8 1,9 3,4 4,2 4,2 4,2 4,3 1 2,7 2,7 2,7 2,6 4,3 5,8 5,8 5,8 2,1 3,6 4,7 4,7 4,7 4,6 1,4 2,9 3,2 3,2 2,8 4,6 1,7 3,1 3,7 3,7 3 4,9 2,3 3,5 4,6 4,8 3,4 5,3 2,3 3,5 4,6 4,8 3,4 5,3 2,6 3,7 5 2,8 3,9 5,3 3,8 5,7 3,1 4,8	4,1 4,1 4,1 5,8 5,8 5,8

Класс трубо-	Толщина	T			Доп	усти	I RBN	луби	на за	ложе	RNH;	то ве	рха т	рубь	. h, N	 1, прі	и осн	вань	ги Пи		
провода	стенки t, мм					пло	CKO	м М				T		n	офи	лиро	ванн	ом (7	(°75		
по степени ответст-								Ст	епень	ywi	тнен	ия гј	унто	в зас	ыпк	и 					
Венности			ној	рмал	квна]	по	выш	енна			НО	рмал	ьная	 [по	выш	енная	
								Pacy	етно	е со п	роти	злені	ie cra	ли <i>R</i>	y, M	Па					
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
											,							•			
							a	e 16	20;	1 3-1	l						_				
3	9 10 11 12 13 14 15 16 17			1 2 2,2 2,4 2,6 2,7	1 2,3 2,9 3,4 3,6 3,7	1 2,3 2,9 3,4 4 4,3	1,6 2 2,2	1,9 2,7 2,9 3 3,2 3,4 3,5 3,6 3,7	1,9 2,8 3,5 4 4,2 4,4 4,6 4,9 5,2	1,9 2,8 3,5 4 4,5 5	1,9 2,8 3,5 4 4,5 5,8	1 1,6 1,8	1,8 2,1 2,3 2,5 2,7 2,9 3,1 3,3	2,2 2,7 3,3 3,7 4 4,3 4,5 4,7	2,2 2,7 3,3 4 4,8 5,4 5,7 5,9	2,2 2,7 3,3 4 4,8 5,5	2 2,5 2,9 3,1 3,3 3,5 3,7 3,8 3,9	2,6 3,7 4,6 4,8 5 5,2 5,4 5,6 5,8 6	2,6 3,7 4,8 5,8	2,6 3,7 4,8 5,8	2,6 3,7 4,8 5,8
2	9 10 11 12 13 14 15 16 17			1,5 2 2,2 2,4 2,5	1 2,3 2,9 3,2 3,4 3,5	1 2,3 2,9 3,4 4 4,3	1,5 1,9	1,9 2,4 2,6 2,8 3,1 3,2 3,3 3,4	1,9 2,8 3,5 3,8 4 4,2 4,4 4,6 4,8	1,9 2,8 3,5 4 4,5 5 5,5 5,9	1,9 2,8 3,5 4 4,5 5		1,4 1,7 2 2,3 2,6 2,8 2,9	2,2 2,7 3,2 3,5 3,7 3,9 4,1 4,3	2,2 2,7 3,3 4 4,8 5,1 5,3 5,5	2,2 2,7 3,3 4 4,8 5,5	1,6 2,3 2,7 2,9 3,1 3,3 3,4 3,5 3,6 3,7	2,6 3,7 4,2 4,5 4,6 4,8 5 5,2 5,4 5,6	2,6 3,7 4,8 5,6	2,6 3,7 4,8 5,6	2,6 3,7 4,8 5,6

	9 10 11 12 13 14 15 16 17	1,5 2 2,1 2,2	1 2,3 2,7 2,9 3,1 3,2	1 2,3 2,9 3,4 4 4,3	1,5 2,1 2,2 2,3 2,4 2,6 2,8 3 3,2	1,9 2,8 3,5 3,7 3,9 4,1 4,3 4,4 4,5	1,9 2,8 3,5 4 4,5 4,8 5,1 5,4 5,7	1,9 2,8 3,5 4 4,5 5	1,7 2,1 2,3 2,5 2,7 2,8	2,2 2,7 2,9 3,2 3,4 3,6 3,8 3,9	2,2 2,7 3,3 4 4,5 4,8 5 5,1	2,2 2,7 3,3 4 4,8 5,5	2 2,2 2,4 2,6 2,8 2,9 3 3,2 3,4	2,6 3,4 3,6 3,8 4 4,2 4,4 4,6 4,9 5,2	2,6 3,7 4,8 5,6 5,9	2,6 3,7 4,8 5,6	2,6. 3,7 4,8 5,6
					d_e 162	20;	Гз-ІІІ										
3	10 11 12 13 14 15 16 17		1,8	1,9 2,4	1,1 1,6 1,9 2,1	2,5 2,7 2,8 3,1 3,2	1 2,2 2,8 3,4 3,8 4 4,3	1 2,2 2,8 3,4 4 4,5 5,1		1,8 2 2,2 2,4 2,6	1 2,2 2,6 3 3,2 3,5	1 2,2 2,6 3,1 3,6 4,1	1,5 1,9 2,1 2,3 2,4	2 2,5 2,7 2,9 3,1 3,3 3,5 3,7 3,8	2 2,6 3,3 3,9 4,3 4,6 4,8 5 5,2	2 2,6 3,3 4 4,7 5,4	2 2,6 3,3 4 4,7 5,4
2	10 11 12 13 14 15 16 17		1	1,9	1,5 1,8	1 2,1 2,3 2,5 2,7 2,9 3,1	1 2,2 2,8 3,4 3,6 3,8 4	1 2,2 2,8 3,4 4 4,5 5,1		1,1 1,6 1,9 2,1 2,3	2,2 2,6 2,8 3 3,2	2,2 2,6 3,1 3,6 4,1	1,3 1,6 1,9 2,2	2 2,2 2,4 2,6 2,8 3 3,2 3,4 3,6	2 2,6 3,3 3,8 4 4,2 4,4 4,6 4,8	2 2,6 3,3 4 4,7 5,4 5,7 5,9	2 2,6 3,3 4 4,7 5,4
1	10 11 12 13 14 15			_ _ _		1 1,7 2,1 2,3 2,5	1 2,2 2,8 3,1 3,3	1 2,2 2,8 3,4 4		1 1,5	2,2 2,5 2,8	2,2 2,6 3,1	1	1,7 2 2,2 2,4 2,6 2,8 3	2 2,6 3,3 3,6 3,8 4 4,2	2 2,6 3,3 4 4,7 5,1 5,4	2 2,6 3,3 4 4;7 5,4

Класс	Толщина	 			Допу	CTUM	iasi Ita	туби	на за	ложе	ния д	о вег	ха т	рубы	. <i>h</i> , м	, при	осно	Ван	IN 		
трубо- провода	стенки t, мм					IIIO	СКОМ	- -						np	офил	про	ванно	ом (7	50)		
по степени ответст	Ì							Сте	пень	ymio	тнені	и гр	унто	в зас	ыпкі	1					
венности			HO]	рмал	квна		I	IIOI	выш	енная			НО	рмал	квная			ПО	выше	нная	i
											отив										
		150	200	250	300	400	150	200	250	300	400	150	200	250	300	400	150	200	250	300	400
	17 18					1,9 2,4		1	2,7 2,9	3,5 3,7	4, 5 5			1,8 2	3 3,2	3,6 4	1,5 1,8	3,2 3,6	4,4 4,6	5,6 5,8	
							d_e	1620); Γ	з-1У											
3	13 14 15 16 17									2	1,7 2,3				1,4 2	2		1 1,5	2,7	1,9 2,5 3 3,5 3,7	1,9 2,5 3 3,5
	18									2,2	2,7				2	2,5		1,7	2,8 	4 	4,5
3	13 14 15 16 17 18									1 1,6 1,8	1,7 2,3 2,7				1 1,7	² 2,3		1	1,6 2 2,2 2,4 2,5 2,6	1,9 2,5 3 3,2 3,4 3,5	1,9 2,5 3 3,5 4 4,5
1	13 14 15 16 17 18	alah dagan yanga dalah d								1 1,3	1,7 2,3 2,7				1	2 2,5			2.1	2,5 2,8 3 3,1	1,9 2,5 3 3,5 4 4,5

СОРТАМЕНТ СТАЛЬНЫХ СВАРНЫХ ТРУБ, РЕКОМЕНДУЕМЫХ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ

Диа	метр, мм			Трубы по		
условный З	наружный	FOCT 10705-80*	ГОСТ 10706-76*	гост	8696-74 *	ТУ 102-39-84
u	d_e			Голщина стенки, г	мм	<u> </u>
		из углеродистых сталей по ГОСТ 380-71* и ГОСТ 1050-74*	из углеродистой стали по ГОСТ 280-71*	стали по	из низколегированной стали по ГОСТ 19282-73*	из углеродистой стали по ГОСТ 380-71*
150 200 250 300 350 400 500	159 219 273 325 377 426 530	4-5 4-5 4-5,5 4-5,5 (4; 5)6 (4; 5)6 (5-5,5); 6; 6,5		(3) 4 (3) 4-5 (3) 4-5 (3) 4-5 (3) 4-6 (3) 4-7 5-7	(3); 3,5; 4 (3; 3,5); 4 (3; 3,5); 4 (3; 3,5); 4 (3; 3,5); 4–5 (3; 3,5); 4–6 4–5	4-4,5 4-4,5 4-4,5 4-4,5 4-4,5 4-4,5
600 700 800	630- 720 820	_ _ _	(6); 7-9 (5-7); 8-9 (6; 7) 8-9 8-10	6-7 6-8 7-9	5-6 5-7 6-8	_ _ _
900 1000 1200 1400	920 1020 1220 1420	- - -	8-10 9-11 10-12	8-10 (6; 7) 9-11 (8) (8; 9); 10-12 (8-10); 11-13	7-10 7-10 8-11	
1600	1620	_	_	15-18	15-16	_

П р и м е ч а н и е. В скобках указаны толщины стенок, которые в настоящее время не освоены заводами. Применение труб с такими толщинами стенок допускается только по согласованию с Минчерметом СССР.

СТАЛЬНЫЕ СВАРНЫЕ ТРУБЫ, ВЫПУСКАЕМЫЕ ПО НОМЕНКЛАТУРНОМУ КАТАЛОГУ ПРОДУКЦИИ МИНЧЕРМЕТА СССР, РЕКОМЕНДУЕМЫЕ ДЛЯ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ И КАНАЛИЗАЦИИ

Технические условия	Диаметры, (толщина стенок), мм	Марка сталей, испытательное гидравлическое давление p_1
ТУ 14-3-377-75 на электро- сварные прямошовные трубы	219-325 (6, 7, 8); 426 (6-10)	ВСт3сп по ГОСТ 380-71* 10, 20 по ГОСТ 1050-74* р ₁ определяется величиной 0,95 о _у
ТУ 14-3-1209-83 на электро- сварные прямощовные трубы	530, 630 (7-12) 720 (8-12) 1220 (10-16) 1420 (10-17,5)	ВСт2, ВСт3 категории 1-4, 14ХГС, 12Г2С, 09Г2ФБ, 10Г2Ф, 10Г2ФБ, Х70
ТУ 14-3-684-77 на электро- сварные спиральношовные трубы общего назначения (с термообработкой и без нее)	530, 630 (6-9) 720 (6-10), 820 (8-12), 1020 (9-12), 1220 (10-12), 1420 (11-14)	ВСт3пс2, ВСт3сп2 по ГОСТ 380-71*; 20 по ГОСТ 1050-74*; 17Г1С, 17Г2СФ, 16ГФР по ГОСТ 19282-73; классы К45, К52, К60
ТУ 14-3-943-80 на сварные прямошовные трубы (с термообработкой и без нее)	219-530 по ГОСТ 10705-80 (6, 7, 8)	ВСт3пс2, ВСт3сп2, ВСт3пс3 (по требованию ВСт3сп3) по ГОСТ 380-71*; 10сп2, 10пс2 по ГОСТ 1050-74*

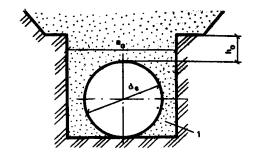
приложение 3

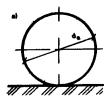
ОПРЕДЕЛЕНИЕ НАГРУЗОК НА ПОДЗЕМНЫЕ ТРУБОПРОВОДЫ

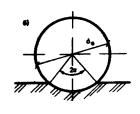
Общие указания

По данному приложению для подземных трубопроводов из стальных, чугунных, асбестоцементных, железобетонных, керамических, полиэтиленовых и других труб определяются нагрузки от: давления грунта и грунтовой воды; временных нагрузок на поверхности земли; собственного веса труб; веса транспортируемой жидкости.

В особых грунтовых или природных условиях (например. просадочные грунты, сейсмичность выше 7 баллов и др.) должны дополнительно учитываться нагрузки, вызываемые деформациями грунтов или земной поверхности.


В зависимости от продолжительности действия в соответствии со СНиП 2.01.07— 85 нагрузки подразделяются на постоянные, временные длительные, кратковременные и особые:


к постоянным нагрузкам относятся: собственный вес труб, давление грунта и грунтовой воды;


к временным длительным нагрузкам относятся, вес транспортируемой жидкости, внутреннее рабочее давление в трубопроводе, давление от транспортных на-

Рас. 1. Укладка труб в узкую просезь

1 – подбивка из песчаного или суглинистого грунта

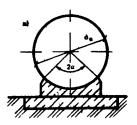


Рис. 2. Способы опирания трубопроводов a — на плоское грунтовое основание; δ — на грунтовое спрофилированное основание с углом охвата 2a; a — на бетонный фундамент

грузок в местах, предназначенных для проезда или давление от временных длительных нагрузок, расположенных на поверхности земли, температурные воздействия;

к кратковременным нагрузкам относятся: давление от транспортных нагрузок в местах, не предназначенных для движения, испытательное внутреннее давление;

к особым нагрузкам относятся: внутреннее давление жидкости при гидравлическом ударе, атмосферное давление при образовании в трубопроводе вакуума, сейсмическая нагрузка.

Расчет трубопроводов должен производиться на наиболее опасные сочетания нагрузок (принимаемые по СНиП 2.01.07-85), возникающие в стадиях хранения, транспортировки, монтажа, испытания и эксплуатации труб.

При расчете внешних нагрузок следует иметь в виду, что на их величину оказывают существенное влияние следующие факторы: условия укладки труб (в траншею, насыпь или узкую прорезь — рис. 1); способы опирания труб на основание (плоское грунтовое, грунтовое профилированное по форме трубы или на бетонный фундамент — рис. 2); степень уплотнения грунтов засынки (нормальная, повышенная или плотная, достигаемая намывом); глубина заложения, определяемая высотой засынки над верхом трубопровода.

При засыпке трубопровода должно производиться послойное уплотнение с обеспечением коэффициента уплотнения не менее 0,85 — при нормальной степени уплотнения и не менее 0,93 — при повышенной степени уплотнения грунтов засыпки.

Наиболее высокая степень уплотнения грунта достигается гидронамывом.

Для обеспечения расчетной работы трубы уплотнение грунта должно производиться на высоту не менее, чем на 20 см выше трубы.

Грунты засыпки трубопровода по степени их воздействия на напряженное состояние труб подразделяются на условные группы в соответствии с табл. 1.

Таблица 1

Условные группы	Грунт
Гэ-Г	Пески (кроме пылеватых)
Гз-II	Пески пылеватые
Гэ-М	Супеси, суглинки
Гэ-ТУ	Глины

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ ДАВЛЕНИЯ ГРУНТА И ГРУНТОВОЙ ВОДЫ

Схема нагрузок, действующих на подземные трубопроводы, приведена на рис. 3 и 4.

Равнодействующая нормативной вертикальной нагрузки на единицу длины трубопровода от давления грунта G_n , кH/м, определяется по формулам:

при укладке в траншее

$$G_{1n} = \gamma_n h b \alpha_1 \psi ; (1)$$

при укладке в насыпи

$$G_{2n} = \gamma_n h d_e a_2 \quad ; \tag{2}$$

при укладке в прорези

$$G_{3n} = \gamma_n h b_0 a_3 \quad . \tag{3}$$

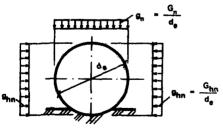


Рис. 3. Схема нагрузок на трубопровод от давления грунта и нагрузок, передающихся через грунт

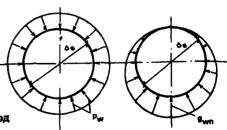


Рис. 4. Схема нагрузок на трубопровод от давления грунтовой воды

Если при укладке труб в траншее и расчете по формуле (1), произведение $b \, a_1 \, \psi$ окажется больше, чем произведение $d_e \, a_2$ в формуле (2), определенные для одних и тех же грунтов основания и способа опирания трубопровода, то вместо формулы (1) следует пользоваться формулой (2).

Где h — глубина заложения до верха трубопровода, м; d_{ℓ} — наружный диаметр трубопровода, м; γ_n — нормативное значение удельного веса грунта засыпки, принимаемое по табл. 2, кН/м³.

Таблица 2

Условная группа грунтов	группа ная плот- ный удель грунтов ность грун- ный вес		Нормативный модуль деформации грунтов Е, МПа, при степени уплотнения				
засынки	$TOB \rho_n$, T/M	оп, грунтов уп, нормально		повышенной	плотной (при намыве)		
Гз-Г	1,7	16,7	7	14	21,5		
Гз-П	1,7	16,7	3,9	7,4	9,8		
Гз-Ш	1,8	17,7	2,2	4,4	-		
Гз-ТУ	1,9	18,6	1,2	2,4	_		

b — ширина траншен на уровне верха трубопровода, м; a_1 — коэффициент, зависящий от отношения h/b_m и от вида грунта засыпки, принимаемый по табл. 3; b_m — ширина траншен на уровне середины расстояния между поверхностью земли и верхом трубопровода, м; b_0 — ширина прорези, м; ψ — коэффициент, учитывающим разгрузку трубы грунтом, находящимся в пазухах между стенками траншен и трубопроводом, определяемый по формуле (4), причем, если коэффициент ψ окажется меньше величины d_e/b , то в формуле (2) принимается $\psi = d_e/b$

$$\psi = \frac{1}{B} - \frac{1}{B - d} - \frac{1}{K d_e}, \qquad (4)$$

 a_2 — коэффициент, зависящий от вида грунта основания и от способа опирания трубопровода, определяемый:

для жестких труб (кроме стальных, полиэтиленовых и других гибких труб) при отношении $h/d_e \ge 2.5$ — по табл. 4, при $0.5 \le h/d_e < 2.5$ в формуле (2), вместо a_2 подставляется величина a_{21} , определяемая по формуле (5), причем, величина a_{22} , входящая в эту формулу определяется по табл. 4.

$$a_{21} = 1.04 \left[a_2 - 0.04 - (a_2 - 1) \left(\frac{de}{2h} \right)^2 \right].$$
 (5)

При $h/d_e < 0.5$ коэффициент a_{21} принимаем равным 1;

для гибких труб коэффициент a_2 определяется по формуле (6), причем, если окажется, что $B_t \leq B$, то в формуле (2) принимается $a_2 = 1$.

$$a_2 = -\frac{3(B_t + B)}{2(B_t + 2B)} - \tag{6}$$

 a_3 — коэффициент, принимаемый в зависимости от величины отношения h_0 / d_e , где h_0 — величина заглубления в прорезь верха трубопровода (см. рис. 1).

$h_0/d_e\ldots 0$	0,1	0,3	0,5	0,7	1
$\alpha_3 \dots 1$	0.83	0.71	0,63	0,57	0.52

 $B=0.125\ E-$ параметр, характеризующий жесткость грунта засыпки, МПа; B_t- параметр, характеризующий жесткость трубопровода, МПа, определяемый по формуле

$$B_t = \frac{2E_d}{1 - v^2} \left(-\frac{t}{d_m} \right)^3 , \qquad (7)$$

где E — модуль деформации грунта засыпки, принимаемый по табл. 2, МПа; E_a — модуль деформации, МПа; ν — коэффициент Пуассона материала трубопровода; t — толщина стенки трубопровода, м; d_m — средний диаметр поперечного сечения трубопровода, м; k d_e — часть вертикального наружного диаметра трубопровода, находящегося выше плоскости основания. м.

Таблина 3

h/b_m	Коэфф	Коэффициент a_1 в зависимости от грунтов засыпки						
	Гз-1	Гэ-П, Гэ-П	Гэ-ІУ					
0	1	1	1					
0,1	ō,9 8 1	ō,9 8 4	0,986					
$0,\bar{2}$	0,962	0,868	0,974					
0,3	0,944	0,952	0,961					
0,4	0,928	0,937	0,948					
0,4 0,5	0,91	0,923	0,936					
0.6	0,896	0,91	0,925					
0,6 0,7	0,881	0,896	0,913					
8,0	0,867	0,883	0,902					
0,9	0,852	0,872	0,891					
1	0,839	0,862	0,882					
1,1	0,826	0,849	0,873					
1,2	0,816	0,84	0,865					
1,2 1,3	0,806	0,831	0,857					
1,4	0,796	0,823	0,849					
1,5	0,787	0,816	0,842					
1,6	0,778	0,809	0,835					
1,7	0,765	0,79	0,815					
1,8	0,75	0,775	0,8					
1.9	0,735	0,765	0,79					
2,	0,725	0,75	0,78					
3	0,63	0,66	0,69					
4	0,555	0,585	0,62					
5	0,49	0,52	0,56					
6	0,435	0,47	0,505					
7	0,39	0,425	0,46					
1,9 2 3 4 5 6 7 8	0,35	0,385	0,425					
ğ	0,315	0,35	0,39					
10	0,29	0,32	0,35					
15	0,195	0,22	0,255					

Расчетные вертикальные нагрузки от давления грунта получаются путем умножения нормативных на коэффициент надежности по нагрузке $\gamma_f = 1,15$.

Равнодействующая нормативной горизонтальной нагрузки G_{hn} , к $H/{\tt M}^3$, по всей

высоте трубопровода от бокового давления грунта с каждой стороны определяется по формулам

при укладке в траншее

$$G_{1hn} = \gamma_n h d_e a_1 \lambda_1.; \tag{8}$$

при укладке в насыпи

$$G_{2hn} = \gamma_n \left(h + \frac{d_e}{2} \right) d_e \lambda_2 \quad , \tag{9}$$

где λ_1, λ_2 — коэффициенты, принимаемые по табл. 5.

При укладке трубопровода в прорези боковое давление грунта не учитывается. Расчетные горизонтальные нагрузки от давления грунта получаются путем умножения нормативных нагрузок на коэффициент надежности по нагрузке $\gamma_f = 0.9$.

Таблица 4

Грунты основания	Коэффициент a_2 при отношении $h/d_e > 2,5$ и укладке труб на ненарушенный грунт с					
	плоским основанием		ом охв ом охв	опиранием на бетонный фундамент с $2\alpha = 120^{\circ}$		
Скальные, глинистые (очень прочные)	1,6	1,6	1,6	1,6	1,6	
Пески гравелистые, крупные, средней крупности и мелкие плотные. Глинистые грунты прочные	1,4	1,43	1,45	1,47	1,5	
Пески гравелистые, крупные, средней крупности и мелкие средней плотности. Пески пылеватые плотные; глинистые грунты средней плотности	1,25	1,28	1,3	1,35	1,4	
Пески гравелистые, крупные, средней крупности и мелкие рыхлые. Пески пыпеватые средней плотности; глинистые грунты слабые	1,1	1,15	1,2	1,25	1,3	
Пески пылеватые рыхлые; грунты текучие	1	1	1	1,05	1,1	

П р и м е ч а н и е. При устройстве под трубопроводом свайного основания принимается $a_2 = 1.6$ независимо от вида грунта основания.

Для всех грунтов, кроме глин, при заложении трубопроводов ниже постоянного уровня грунтовых вод, следует учитывать уменьшение удельного веса грунта, находящегося ниже этого уровня. Кроме того, отдельно учитывается давление грунтовых вод на трубопровод.

Условные группы	Коэ	Коэффициенты $\lambda_1; \lambda_2; \eta$ при степени уплотнения засыпки							
грунтов засыпки		норм	————— Й	повышенной и плотной с помощью намыва					
		При укладке труб в							
	Т	траншее насыпи		траншее		насыпи			
	$\overline{\lambda_1}$	η	λ_2	η	$\overline{\lambda_1}$	η	λ_2	$\overline{\eta}$	
Гз-І	0,1	0,95	0,3	0,86	0,3	0,86	0,5	0,78	
Гэ-И, Гз-И	0,05	0,97	0,2	0,9	0,25	0,88	0,4	0,82	
Гз-ТУ	0	1	0,1	0,95	0,2	0,9	0,3	0,86	

Нормативное значение удельного веса взвешенного в воде грунта γ_{swn} , $\kappa H/m^3$, следует определять по формуле

$$\gamma_{swn} = 17 / (1 + \epsilon) , \qquad (10)$$

где ϵ – коэффициент пористости грунта.

Нормативное давление грунтовой воды на трубопровод учитывается в виде двух составляющих (см. рис. 4):

равномерной нагрузки p_W , к H/m^2 , равной напору над трубой, и определяется по формуле

$$p_{w} = 9.8 h_{w}$$
; (11)

неравномерной нагрузки g_{wn} , к H/m^2 , которая у лотка трубы определяется по формуле

$$g_{wn} = 9.8 d_e$$
. (12)

Равнодействующая этой нагрузки G_{wn} , кН/м, направлена вертикально вверх и определяется по формуле

$$G_{wn} = 7.7 d_e^2 . {13}$$

где h_W — высота столба грунтовой воды над верхом трубопровода, м.

Расчетные нагрузки от давления грунтовой воды получаются путем умножения нормативных нагрузок на коэффициент надежности по нагрузке, который принимается равный: $\gamma_f = 1,1$ — для равномерной части нагрузки и при расчете на всплытие для неравномерной части; $\gamma_f = 0,9$ — при расчете на прочность и деформацию для неравномерной части нагрузки.

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ ВОЗДЕЙСТВИЯ ТРАНСПОРТНЫХ СРЕДСТВ И РАВНОМЕРНО РАСПРЕДЕЛЕННОЙ НАГРУЗКИ НА ПОВЕРХНОСТИ ЗАСЫПКИ

Временные нагрузки от подвижных транспортных средств следует принимать: для трубопроводов, прокладаваемых под автомобильными дорогами — нагрузку от колонн автомобилей H-30 или колесную нагрузку НК-80 (по большему силовому воздействию на трубопровод);

для трубопроводов, прокладываемых в местах, где возможно нерегулярное движение автомобильного транспорта — нагрузку от колонны автомобилей H-18 или от гусеничного транспорта HГ-60 в зависимости от того, какая из этих нагрузок вызывает большее воздействие на трубопровод;

для трубопроводов различного назначения, прокладываемых в местах, где движение автомобильного транспорта невозможно — равномерно распределенную нагрузку с интенсивностью 5 kH/m^2 ;

для трубопроводов, прокладываемых под железнодорожными путями — нагрузки от подвижного состава К-14 или другую, соответствующую классу данной железнодорожной линии.

Величину временной нагрузки от подвижных транспортных средств, исходя из конкретных условий работы проектируемого трубопровода, при соответствующем обосновании, допускается увеличивать или уменьшать.

Равнодействующие нормативной вертикальной и горизонтальной нагрузок V_n и V_{hn} , кН/м, на трубопровод от автомобильного и гусеничного транспорта определяются по формулам:

$$V_n = v_n d_\rho \mu \alpha_2 \quad ; \tag{14}$$

$$V_{hn} = v_n d_e \mu \lambda_2 , \qquad (15)$$

где μ — динамический коэффициент подвижной нагрузки, зависящий от высоты h засыпки вместе с покрытием

$$h, \text{ M...}$$
 0,5 0,6 0,7 0,8 0,9 $\geqslant 1$
 $\mu \dots$ 1,17 1,14 1,1 1,07 1,04 1

 ν_n — нормативное равномерно распределенное давление от автомобильного и гусеничного транспорта, к H/m^2 , принимаемое по табл. 6 в зависимости от приведенной глубины запожения трубопровода, которая определяется по формуле

$$h_{red} = h + h_{sup} \left(\sqrt[3]{\frac{E_{sup}}{E}} - 1 \right) ,$$
 (16)

где h_{SUD} — толщина слоя покрытия, м; E_{SUD} — модуль деформации покрытия (дорожной одежды), определяемый в зависимости от его конструкции, материала покрытия, МПа.

Расчетные нагрузки получаются путем умножения нормативных нагрузок на коэффициенты надежности по нагрузке, принимаемые равными: $\gamma_f = 1, 2$ — для вертикального давления нагрузок H-30, H-18 и H-10; $\gamma_f = 1$ — для вертикального давления нагрузок HK-80 и HГ-60 и горизонтального давления всех нагрузок.

Равнодействующие нормативных вертикальной и горизонтальной нагрузок V_n и V_{hn} , кH/M, от подвижного железнодорожного состава на трубопроводы, прокладываемые под железнодорожными путями, определяются по формулам:

$$V_n = v_n d_e \mu \alpha_2 (17)$$

$$V_{hn} = v_n d_o \mu \lambda_2 \quad , \tag{18}$$

где v_n — нормативное равномерное распределенное давление, к H/m^2 , определяемое для нагрузки K-14 — по табл. 7.

Для получения расчетных нагрузок нормативные нагрузки умножаются на коэффициент надежности по нагрузке: $\gamma_f = 1, 3$ — для вертикального давления; $\gamma_f = 1, 2$ — для горизонтального давления.

Равнодействующие нормативных вертикальной и горизонтальной нагрузок V_{an} и V_{ahn} , кН/м, на трубопроводы от равномерно распределенной нагрузки интенсивностью v_{an} , кН/м², определяются по формулам:

$$V_{an} = v_{an} d_e \alpha_2 \quad ; \tag{19}$$

$$V_{ahn} = v_{an} d_e \lambda_2 \quad . \tag{20}$$

Для получения расчетных нагрузок нормативные нагрузки умножаются на коэффициент надежности по нагрузке: $\gamma_f = 1, 4$ — для вертикального давления; $\gamma_f = 1$ — для горизонтального давления.

Таблица 6

h _{red} , M	Нормативное равномерно распределенное давление V_n , к H/M^2 , при d_e , м						
	0,1	0,3	0,5	0,7	0,9	1,1	≥1,3
			Колесная	нагрузка I	HK-80		
0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,75 3,3,25 3,75 4,25 4,5 4,75	136 106,7 79,8 56,4 35,4 30,9 26,5	128,7 101,9 75,9 55,2 35,3 30,9 26,5	122,8 97,4 73,3 54,3 35,2 30,8 26,4 22,5 21 19,6 18,3 17,1 15,8 14,7 12,7 11,9	116,6 93,8 71,1 53,1 35,1 30,7 26,4	110,5 90 69,2 52 35 30,6 26,3	104,9 87,9 68,5 51,6 34,9 30,5 26,2	101 85,1 68,1 51,4 34,8 30,4 26,1

						11 poots	isienae 1awi.
 h _{red} , м]	Норма	тивное раз Т	вномерно р n, кН/м²,	распределен при d_{e} , м	ное давле	ние
	0,1	0,3	0,5	0,7	0,9	1,1	≥1,3
5 5,25 5,5 5,75 6 6,25 6,75 7 7,25 7,75 8	•		11,1 10,3 9,61 9 8,43 7,84 7,35 6,86 6,37 6,08 5,59 5,29 5,1				
			Гусенична	я нагрузка	нг-60		
0,6 0,75 1	59,8 ;4,1 35,3	59,8 44,1 35,3	58,8 43,3 34,8	56,9 42,7 34,5	54,9 41,7 34,4	52 40,9 34,3	49 40,2 34,3
1,25 1,5 1,75 2 2,25 2,75 3,3,25 3,75 4 4,25 4,75 5,25 5,5,5 5,6 6 6,5 7,5				29,8 25,4 21,7 18,7 17,6 16,5 13,7 12,9 11,4 10,4 9,81 9,12 8,43 7,45 6,67 6,18 5,39 4,71 4,31			
			Автомо бил	ьная нагру	зка Н-30		
0,5 0,75 1 1,25	111,1 56,4 29,9 21,5	111,1 56,4 29,9 21,5	102,7 53,1 29,2 21,3	92,9 49,8 28,2 20,4	82,9 46,2 27,2 20	76,8 42,5 25,9 19,4	70,3 39,2 24,5 19,2

 h _{red} , м	Нормативное равномерно распределенное давление							
764,	V_n , кН/м 2 , при d_e , м							
	0,1	0,3	0,5	0,7	0,9	1,1	≥1,3	
1,5 1,75 2 2,25 2,5 3	16,3 14,5 13 11,8 10,5 8,53	16,3 14,5 13 11,8 10,5 8,53	16,1 14,4 12,8 11,6 10,4 8,43	15,9 14,3 12,6 11,5 10,2 8,34	15,9 14,1 12,6 11,3 10,1 8,24	15,9 14 12,4 11,1 9,9 8,14	15,9 13,8 12,2 10,9 9,71 8,04	
3,5 4,25 4,5 4,75 5,25 5,5 6 6,5 7				6,86 5,59 5,1 4,71 4,31 4,02 3,73 3,43 2,94 2,55 2,16 1,96				
		A	втомоби	тьная нагру				
0,5 0,75 1 1,25 1,5 1,75	111,1 51,9 28,1 18,3 13,4 10,5	111,1 51,9 28,1 18,3 13,4 10,5	102 48,2 27,2 17,8 13,3 10,4	92,9 45,6 25,6 17,3 13,1 10,3	83,2 42,9 24,5 16,8 12,9 10,2	75,9 40 23 16,3 12,8 10,1	69,1 38 21,6 15,8 12,7 10,1	
2 2,25 2,75 3,75 3,75 4,25 4,5 4,75 5,25 5,75				8,43 7,65 6,86 6,18 5,49 4,8 4,22 3,63 3,04 2,65 2,26 2,06 2,06 1,86 1,77 1,67				
6 6,25 6,5 6,75 7 7,25 7,5				1,57 1,47 1,37 1,27 1,27 1,18 1,08				

<i>h</i> , м	Для нагрузки К v _n , кН/м²	-14 h, м	Для нагрузки К-14 v _n , кН/м²
1	74,3	4	41
1,25	69,6	4,25	39,6
1,5	65,5	4,5	38,2
1,75	61,8	4,75	36,9
2	58,4	5	35,7
2,25	55,5	5,25	34,5
2,5	53	5,5	33,7
2,75	50,4	5,75	32,7
3	48,2	6	31,6
3,25	46,1	6,25	30,8
3,5	44,3	6,5	30
3,75	42,4	6,75	29

НОРМАТИВНЫЕ И РАСЧЕТНЫЕ НАГРУЗКИ ОТ СОБСТВЕННОГО ВЕСА ТРУБ И ВЕСА ТРАНСПОРТИРУЕМОЙ ЖИДКОСТИ

Равнодействующая нормативной вертикальной нагрузки G_{mn} , кН/м, от собственного веса трубопровода определяется по формуле

$$G_{mn} = \pi \gamma_{mn} t \left(d_i + d_e \right) / 2 \quad , \tag{21}$$

где $\pi \cong 3,14;\ d_i;\ d_e;\ t$ — соответственно внутренний и наружный диаметры трубопровода и толщина стенки, м; γ_{mn} — нормативное значение удельного веса материала трубопровода, к H/M^3 .

Для получения расчетной нагрузки нормативная нагрузка умножается на коэффициент надежности по нагрузке $\gamma_f = 1, 1$.

Равнодействующая нормативной вертикальной нагрузки V_{wn} , кH/M, от веса транспортируемой жидкости определяется по формуле

$$V_{wn} = -\frac{\pi}{4} - \gamma_{wn} d_i^2 , \qquad (22)$$

где $\gamma_{\psi n}$ — нормативное значение удельного веса жидкости, принимаемое равным, кН/м³: для пресной воды — 9,8; для морской воды — 10,1; для сточной жидкости — 10,4; для пульпы — 14,7.

ОПОРНЫЕ РЕАКЦИИ И ЭКВИВАЛЕНТНЫЕ ПРИВЕДЕННЫЕ НАГРУЗКИ

Направление опорных реакций трубопровода, укладываемого на грунтовое основание, принимается вертикальным, а распределение — равномерным по всей ширине опорной поверхности, определяемой углом охвата трубопровода.

Нормативная интенсивность опорной реакции основания трубопровода определяется по формуле

$$g_f = \frac{\sum (G_n + V_n)}{d_\rho \sin \alpha}.$$
 (23)

(При укладке трубопровода на плоское грунтовое основание принимается $2\alpha = 300$).

Направление опорный реакций трубопровода, укладываемого на бетонный фундамент, принимается нормальным к поверхности трубопровода, а распределение равномерным по всей поверхности касания.

Расчет трубопроводов следует вести по приведенным нагрузкам, определяемым по формуле

$$F_{red} = \sum (G + V) \eta \beta , \qquad (24)$$

где F_{red} ; $\Sigma(G+V)$ — расчетная приведенная внешняя нагрузка и соответственно равнодействующая расчетной вертикальной нагрузки, определенная для всех учитываемых в расчете видов нагрузки, кH/m; β — коэффициент приведения, см. табл. 8; η — коэффициент бокового давления, принимаемый по табл. 5.

Приведенная внешняя нагрузка — это линейные, вертикальные нагрузки, приложенные вдоль верхней и нижней образующих цилиндра трубы по направлению к ее оси и эквивалентные по максимальному изгибающему моменту действию фактических нагрузок.

Таблица 8

Способ укладки труб	Коэффициснт приведения β для нагрузок от			
	давления грунта и временных нагрузок	собственного веса трубо- провода и транспортиру- емого продукта		
На плоское грунтовое основание с подбивкой засыпки под круглые трубы	0,75	0,60		
На грунтовое спрофилированное основание с углом охвата трубы:				
$2\alpha = 750$	0,55	0,37		
$2\alpha = 90^{\circ}$	0,50	0,32		
$2\alpha = 120^{\circ}$	0,45	0,25		
На железобетонный фундамент с углом охвата трубы $2\alpha = 120^{\circ}$	0,35	0,20		

ПРИЛОЖЕНИЕ 4

ПРИМЕР РАСЧЕТА

1. Исходные условия

Выбрать марку, группу и категорию стали и определить толщину стенки стального водовода d 900 мм ($d_e = 0.92$ м) для следующих условий строительства и эксплуатации: расчетное внутреннее давление — p = 2.5 МПа; глубина заложения (до верха труб) — h = 3 м; по степени ответственности водовод относится к 1 классу; прокладка в траншее с откосами 1: 1.5 с шириной по дну 1.4 м, на плоском

грунтовом основании с нормальной степенью уплотнения грунтов засыпки; грунты — пески гравелистые средней крупности (Γ 3- Γ 1) с нормативным удельным весом $\gamma_n = 16.7 \text{ кH/m}^3$ и модулем деформации E = 7 МПа; расчетная транспортная нагрузка — Π 60; расчетная температура наружного воздуха в районе строительства — минус 18° C; на водоводе установлена противовакуумная арматура.

2. Расчет по формулам

Определение внешних нагрузок (расчет по прил. 3)

Расчетная приведенная внешняя нагрузка от давления грунта в траншее определяется меньшим значением из двух формул:

$$F = \gamma_f \gamma_n h b \alpha_1 \psi \eta \beta ,$$

$$F = \gamma_f \gamma_n h d_\rho \alpha_2 \eta \beta .$$

Выбор формулы производим сравнением значений

$$b\alpha_1\psi$$
 и $d_\alpha\alpha_2$,

где

$$b = 1.4 + 2 \cdot 1.5 \cdot 0.92 = 4.16 \text{ m}$$
:

$$a_1 = 0.934$$
 (по табл. 3 для $h/b_m = 3/8.31 = 0.36$);

$$\psi = 1/(1+2\frac{B}{B_t} - \frac{b-d_e}{\kappa d_e})$$
;

$$B = 0.125 E = 0.125 \cdot 7 = 0.875 \text{ MHz}$$

$$\kappa = 1$$
:

$$B_t = 2 \cdot E_a / (1 - v^2) t^3 / d_e^3 = 2 \cdot 21 \cdot 10^4 / (1 - 0.3^2) \cdot t^3 / 0.92^3 = 5.93 \cdot 10^3 t^3$$

Подсчитываем значения B_t и затем ψ для различных толщин стенок:

для
$$t = 10$$
 мм $(0,01$ м) $B_t = 0,593$ МПа, $t = 9$ мм $B_t = 0,432$ МПа, $t = 8$ мм $B_t = 0,303$ МПа, $t = 7$ мм $B_t = 0,203$ МПа, $t = 6$ мм $(0,006$ м) $B_t = 0,128$ МПа.

$$\psi_{t=10} = 0{,}088;$$

$$\psi_{t=8} = 0.047$$
;

$$\psi_{t=6} = 0.02$$
.

Так как все значения ψ меньше d_e / b = 0,92 / 4,16 = 0,221 принимаем ψ = 0,221, так как B_t < B, то a_2 = 1.

Определяем

$$b \alpha_1 \psi = 4.16 \cdot 0.934 \cdot 0.221 = 0.86$$
;
 $\alpha_2 d_e = 1 \cdot 0.92 = 0.92$.

Так как b a_1 $\psi < a_2$ d_e , то расчет ведем по первой формуле, для которой: $\gamma_f = 1,15$; $\gamma_n = 16,7$ МПа; $\eta = 0.95$ (табл. 5 для Гэ-І); $\beta = 0.75$ (табл. 8 для плоского основания).

$$F = 1.15 \cdot 16.7 \cdot 3 \cdot 4.16 \cdot 0.934 \cdot 0.221 \cdot 0.95 \cdot 0.75 = 35.25 \text{ kH/m}$$

Расчетную приведенную нагрузку от временной нагрузки HГ-60 определяем по формуле

$$F = \gamma_f \nu_n d_e \mu \alpha_2 \eta \beta ,$$

где

$$\gamma_f$$
 = 1 ; ν_n = 14,5 кH/м (по табл. 6 для h = 3 м) ; μ = 1 .

$$F = 1 \cdot 14.5 \cdot 0.92 \cdot 1 \cdot 1 \cdot 0.95 \cdot 0.75 = 9.5 \text{ kH/m}$$
.

Нагрузка от веса транспортируемой жидкости

Расчетную приведенную нагрузку от веса жидкости определяем по формуле:

$$F = 0.785 \gamma_{um} d_i^2 \eta \beta,$$

где

 $\beta = 0.6$

$$F = 0.785 \cdot 9.8 \cdot 0.9^2 \cdot 0.95 \cdot 0.6 = 3.55 \text{ kH/m}$$
.

Нагрузку от собственного веса стальных труб можно не учитывать, Суммарная приведенная внешняя нагрузка (с учетом коэффициентов сочетания)

$$F_{red} = \Sigma F = 35,25 + 9,50 \cdot 0,9 + 3,55 \cdot 0,95 = 47,15 \text{ kH/M}$$
.

Определение марки, группы и категории стали (по разд. 2 Пособия)

Согласно п. 2.2 и табл. 1 Пособия при расчетной температуре до минус 20°C при толщине стенки не более 10 мм следует применять трубы из полуспокойной стали (ВСт2пс2, ВСт3пс2) и из низколегированной стали. Стали группы В с нормированными механическими свойствами и химическим составом, как указано в п. 2.2. Пособия, как раз и рекомендуются преимущественно для трубопроводов 1-го класса по степени ответственности.

Трубы из стали группы B изготовляются как по ГОСТ 8696-74, так и по ГОСТ 10706-76. Категории сталей 2 или 3 для труб по ГОСТ 8696-74 и 1-4 для труб по ГОСТ 10706-76.

Для дальнейших расчетов принимаем стали ВСт3пс2 и 17ГС.

Определение расчетных сопротивлений сталей (по разд. 3 Пособия)

Так как приняты стали с нормируемыми механическими свойствами, то величину расчетного сопротивления материала труб определяем по формуле

$$R_{y} = -\frac{R_{yn}}{1.1} .$$

Нормативные сопротивления для стали ВСт3пс2 — R_{yn} = 245 МПа, для низколегированной стали типа 17ГС при толщине стенок до 9 мм — R_{yn} = 343 МПа.

Расчетные сопротивления для стали ВСт3пс2 — $R_y = 223$ МПа, для стали типа $17\Gamma C - R_v = 312$ МПа.

Определение толщины стенки (по разд. 4 Пособия)

Расчет на прочность от воздействия внешних нагрузок. Толщина стенки, в мм, определяется по формуле

$$t_1 = \sqrt{\frac{F_{red} \cdot d_e \cdot \varphi}{0,00105 \cdot R_v \cdot m}} ,$$

где $F_{red}=47,15\,$ кН/м; $d_e=0,92\,$ м; $m=0,9\,$ (для 1-го класса по степени ответственности).

Таким образом

$$t_1 = \sqrt{\frac{47,15 \cdot 0,92 \cdot \varphi}{0,00105 \cdot R_y \cdot 0,9}} = 214,1 \sqrt{\frac{\varphi}{R_y}}.$$

Так как значение толщины стенки входит как в левую, так и в правую (φ) части формулы, то определение расчетной толщины стенки может быть произведено только методом подбора. Необходимо, задаваясь различными значениями t для определения φ , вычислять значение t_1 до его совпадения с t.

$$\varphi = (0, 1 \cdot B + B_t) / (1, 1 \cdot B + B_t)$$

(значения B и B_t подсчитаны в п. 2.1).

$$\varphi_{t=10} = (0.1 \cdot 0.875 + 0.593) / (1.1 \cdot 0.875 + 0.593) = 0.437$$
;

$$\varphi_{t=0} = 0.372$$
;

$$\varphi_{t=8} = 0.308$$
;

$$\varphi_{t=7} = 0.249$$
;

$$\varphi_{t=6} = 0,198$$
.

Для стали ВСт3пс2

$$t_1 = 214.1 \sqrt{\frac{\varphi}{-223}} = 14.34 \sqrt{\varphi};$$

$$t = 10 \rightarrow t_1 = 14,34 \sqrt{0,437} = 9,46 < 10$$

$$t=9$$
 $t_1=8,75<9$

$$t = 8$$
 $t_1 = 7.95 \approx 8$.

Удовлетворяет $t_1 = 8$ мм.

Пля стали типа 17ГС

$$t_1 = 214, 1\sqrt{\frac{\varphi}{312}} = 12, 1\sqrt{\varphi},$$

$$t = 7 \rightarrow t_1 = 12,1 \sqrt{0,249} = 6,03 < 7$$

$$t = 6 \rightarrow t_1 = 5,38 < 6$$
.

Удовлетворяет $t_1 < 6$ мм.

Расчет на деформацию от воздействия внешних нагрузок. Определяем минимально допустимую толщину стенки (независимо от марки стали) по формуле

$$t_2 = 1,47 \sqrt[3]{10 \cdot F_{red} \cdot d_e^2 \cdot \varphi} ,$$

$$t_2 = 1,47 \sqrt[3]{10 \cdot 47,15 \cdot 0,92^2 \cdot \varphi} = 10,77 \sqrt[3]{\varphi} ,$$

при
$$t = 7$$
, $t_2 = 10.77 \sqrt[3]{0.249} = 6.77 < 7$,

$$t=6$$
, $t_2=6,28>6$.

При расчете на деформацию $t_2 \geqslant 7$ мм.

Расчет на внутреннее давление при отсутствии внешней нагрузки производим по формуле

$$t_3 = 500 - \frac{p}{m} \frac{d_e}{R_y + p} - - ,$$

где

$$p = 2.5 \text{ M}\Pi a, m = 0.9.$$

Для стали ВСт3пс2

$$t_3 = 500 \cdot 2, 5 \cdot 0,92 / (0,9 \cdot 223 + 2,5) = 5,6 \text{ mm}.$$

Для стали типа 17ГС

$$t_3 = 4 \text{ MM}$$
.

Полученные значения меньше, чем по предыдущим расчетам.

Дополнительно проверяем трубу с минимальной толщиной стенки t=7 мм на устойчивость по формуле

$$F_{red} / 100 d_e \beta \leq 1.2 \sqrt{BB_t}$$
,

$$F_{red}$$
 / 1000 d_{ρ} β = 47,15 / 1000 · 0,92 · 0,75 = 0,069 ,

$$1,2\sqrt{B\cdot B_t} = 1,2\sqrt{0,203\cdot 0,875} = 0,506$$
.

Условие устойчивости удовлетворяется.

Окончательно принимаем трубы \emptyset 920x8 мм из стали ВСт3пс2 (по расчету на прочность) или \emptyset 920x7 мм из стали типа 17ГС (по расчету на деформацию).

3. Расчет по таблицам и графикам

Расчет внешних нагрузок не производится. Определение марок, групп и категорий сталей и их расчетных сопротивлений производится так же, как и при расчете по формулам с тем же результатом ВСт3пс2 с R_y = 223 МПа или 17ГС с R_y = 312 МПа.

Определение толщин стенок при расчете на прочность, деформацию и устойчивость под воздействием внешних нагрузок производим по таблицам разд. 6 Пособия.

Для заданных условий: $d_e = 920$ мм; грунт засыпки — Гз-I; 1 класс по степени ответственности; укладка труб на плоское основание с нормальной степенью уплотнения грунтов засыпки; соотношения между t; R_y ; h принимаем по табл. 6 ($d_e = 920$; Гз-1).

По этой таблице находим, что при h=3 м: t=8 мм для стали с $R_y=223$ МПа (по интерполяции), t=7 мм для стали с $R_y=312$ МПа (этой толщине удовлетворяют трубы с $R_y=250$ МПа; это показывает, что подбор производится по расчету на деформацию).

Определение толщин стенок при расчете на внутреннее давление производим по графику разд. 5 Пособия.

На графике проводим горизонталь p=2,5 до пересечения с прямой $d_e=920$ и эту точку сносим вниз на шкалу R_y , где и определяем (с округлением в большую сторону до 0,5 мм): для стали с $R_y=223$ МПа -t=5,5 мм, для стали с $R_y=312$ МПа -t=4 мм.

Таким образом, без проведения расчета получены те же результаты, что и в п. 2 \emptyset 920х8 мм из стали ВСт3пс2 или \emptyset 920х7 мм из стали типа 17ГС.

4. Выводы

Для рассмотренного примера очевидно, что применение низколегированной стали не дает большого эффекта, поэтому в проекте целесообразно принять трубу \cancel{O} 920х8 мм из стали BCт3пc2.

Расчеты толщин стенок по формулам и их подбор по таблицам и графикам дал одинаковые результаты, так как в рассмотренном случае заданные условия (включая укладку труб в траншею с откосами) совпали с принятыми при разработке таблиц (см. п. 1.5 Пособия).

Если трубопровод укладывается в узкую траншею, то расчет по таблицам может дать завышенные результаты. В этом случае обязателен индивидуальный расчет по формулам.

5. Расчет по формулам для узкой траншеи

Расчет по формулам для исходных условий, оговоренных в п. 1, за исключением прокладки в траншее с креплениями (с вертикальными стенками) шириной b = $= b_m = 2 \text{ M}.$

Расчет производим с использованием результатов по п. 2.

Нагрузка от давления грунта

Для выбора расчетной формулы сравниваем произведения:

$$b \alpha_1 \psi$$
 и $d_{\rho} \alpha_2$

где
$$b=2\text{ M};\quad \alpha_1=0,787\text{ для }h/b_m=-\frac{3}{2}=1,5\text{ и Гэ-1}\,,$$

$$\psi_{t=10}=0,224\,.$$

Так как

$$\psi_{t=10} < d_e / b = 0.92 / 2 = 0.46$$
,

а значения ψ для t < 10 мм меньше $\psi_t = 10$, принимаем

$$\psi = 0.46$$

$$b \alpha_1 \psi = 2 \cdot 0.787 \cdot 0.46 = 0.724$$

$$\alpha_2 d_e = 1 \cdot 0.92 > b \alpha_1 \varphi$$
.

Расчет ведем по формуле

$$F = \gamma_f \gamma_n \ h \ (b \ \alpha_1 \ \psi) \ \eta \ \beta = 1,15 \cdot 16,7 \cdot 3 \cdot 0,724 \cdot 0,95 \cdot 0,75 = 29,72 \ \kappa H/M \ .$$

Нагрузки от НГ-60 и веса транспортируемой жидкости принимаем по п. 2 = 9,50 kH/m, F = 3.55 kH/m.

Суммарная приведенная внешняя нагрузка (с учетом коэффициентов сочетания)

$$F_{red} = 29.72 + 9.50 \cdot 0.95 + 3.55 \cdot 0.9 = 41.6 \text{ kH/m}.$$

Выбор марки, группы и категории стали и их расчетных сопротивлений произведен в п. 2.

Для расчета принимаем сталь ВСт3пс2 при $R_{\nu} = 223$ МПа.

Определение толщины стенки

Расчет на прочность от воздействия внещних нагрузок:

$$t_1 = \sqrt{\frac{F_{red} \cdot d_e \cdot \varphi}{0,00105 \cdot R_v \cdot m}} = 13,5 \sqrt{\varphi}$$

$$t = 8 \rightarrow t_1 = 13,5 \sqrt{0,308} = 7,46 < 8,$$

 $t = 7 \rightarrow t_1 = 6,74 < 7,$
 $t = 6 \rightarrow t_1 = 5,96 \approx 6.$

Удовлетворяет $t_1 = 6$ мм.

Расчет на деформацию от воздействия внешних нагрузок:

$$t_2 = 1,47 \sqrt[3]{10 \cdot F_{red} \cdot d_e^2 \cdot \varphi} = 10,61 \sqrt[3]{\varphi},$$

$$t = 7 \rightarrow t_2 = 10,61 \sqrt[3]{0,249} = 6,68 < 7,$$

$$t = 6 \rightarrow t_2 = 6.18 > 6.$$

Удовлетворяет $t_2 \geqslant 7$ мм.

Расчет на внутреннее давление дает меньшую толщину стенки, а условие устойчивости заведомо удовлетворяется (см. п. 2).

Для заданных условий принимаем трубу Ø 920х7 мм из стали ВСт3пс2 (по расчету на деформацию).

6. Вывол

Укладка труб в узкой траншее привела к снижению толщины стенки на 1 мм, что дает экономию стали 22,4 т на 1 км трубопровода.

СОПЕРЖАНИЕ

1. Общие положения	3
2. Рекомендации по выбору марок, групп и категорий сталей труб.	5
3. Прочностные характеристики сталей труб	9
4. Расчет труб на прочность, деформацию и устойчивость	12
5. Графики выбора толщины стенки труб по расчетному внутрен-	
нему давлению	16
6. Таблицы допустимых глубин заложения труб в зависимости от	
условий укладки	18
Приложение 1. Сортамент стальных сварных труб, рекомендуемых	
для трубопроводов водоснабжения и канализации	59
Приложение 2. Стальные сварные трубы, выпускаемые по номен-	
клатурному каталогу продукции Минчермета СССР, рекоменду-	
	60
	60
_ * * _ * _ * _ * _ * _ * _ * _ * _	72

Нормативно-производственное издание

Союзводоканалироект Госстроя СССР

Пособие по определению толщин стенок стальных труб, выбору марок, групп и категорий сталей для наружных сетей водоснабжения и канализации (к СНиП 2.04.02—84 и СНиП 2.04.03—85)

Редактор Л. В. Павлова Мл. редактор Г. А. Вепренцева Технический редактор Н. Н. Аксенова Корректор Л. А. Егорова Оператор Е. А. Новоселова

H/K

Подписано в печать 05.09.89 Формат 60х84/16 Бумага офсетная № 2 Печать офсетная Усл. печ. л. 4,65 Усл. кр.-отт. 4,90 Уч.-изд. л. 5,79 Тираж 10000 экз. Изд. № XII—3212 Заказ 3239 Цена 30 коп. Стройиздат, 101442, Москва, Каляевская, 23а

Московская типография №9 НПО "Всесоюзная книжная палата" Государственного комитета СССР по печати 109033, Москва, Волочаевская ул., 40